
MalScan: Fast Market-Wide Mobile Malware
Scanning by Social-Network Centrality Analysis

Yueming Wu∗,‡, XiaoDi Li¶, Deqing Zou∗,‡,§ �, Wei Yang¶, Xin Zhang∗,‡, Hai Jin∗,†
∗National Engineering Research Center for Big Data Technology and System, Cluster and Grid Computing Lab

Services Computing Technology and System Lab, Big Data Security Engineering Research Center
†School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
‡School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China

§Shenzhen Huazhong University of Science and Technology Research Institute
¶University of Texas at Dallas

Abstract—Malware scanning of an app market is expected
to be scalable and effective. However, existing approaches use
either syntax-based features which can be evaded by transfor-
mation attacks or semantic-based features which are usually
extracted by performing expensive program analysis. Therefor,
in this paper, we propose a lightweight graph-based approach
to perform Android malware detection. Instead of traditional
heavyweight static analysis, we treat function call graphs of apps
as social networks and perform social-network-based centrality
analysis to represent the semantic features of the graphs. Our
key insight is that centrality provides a succinct and fault-
tolerant representation of graph semantics, especially for graphs
with certain amount of inaccurate information (e.g., inaccurate
call graphs). We implement a prototype system, MalScan, and
evaluate it on datasets of 15,285 benign samples and 15,430
malicious samples. Experimental results show that MalScan is
capable of detecting Android malware with up to 98% accuracy
under one second which is more than 100 times faster than
two state-of-the-art approaches, namely MaMaDroid and Drebin.
We also demonstrate the feasibility of MalScan on market-wide
malware scanning by performing a statistical study on over 3
million apps. Finally, in a corpus of dataset collected from Google-
Play app market,MalScan is able to identify 18 zero-day malware
including malware samples that can evade detection of existing
tools.
Index Terms—Lightweight feature, Android Malware, API

Centrality, Market-wide

I. INTRODUCTION

The explosive growth of Android devices and applications

(app for short) has brought in several Android markets and

spurred the growth of Android malware. Millions of apps have

been installed by Android users around the world from various

app markets. Up to the end of the third quarter of 2018,

the number of new malware apps had an increase of over

40 percent compared to the same period last year1. Stopping

the spread of malware primarily relies on the effort from

the app markets, since they are the first place to provide

installations of Android apps. Therefor, market-wide mobile

malware scanning can be the primary task to prevent the fast

malware spreading.

1https://www.gdatasoftware.com/blog/2018/11/31255-cyber-attacks-on-
android-devices-on-the-rise.

Android malware scanning depends on the techniques for

detecting Android malware. Existing mobile malware detec-

tion approaches extract program features [1], [2], [3], [4] to

distinguish benign apps from malware. However, many of the

techniques can be easily evaded by obfuscation because these

techniques are lack of semantic and contextual information

of the program behaviors. To overcome the challenge, several

systems have been proposed to focus on distilling an app’s

program semantics into a graph representation and detecting

malware by matching the graphs. Nevertheless, these graph-

based techniques such as DroidSIFT [5] and Apposcopy [6]
have two main limitations. First, graph matching is typically

time-consuming because a graph often contains thousands of

nodes. For instance, the average running time of DroidSIFT
and Apposcopy to analyze an app is 175.8 seconds [5] and
275 seconds [6], respectively. Additionally, these graph-based

systems conduct graph matching based on similarity to graphs

of existing malware making the systems perform poorly on

new malware instances due to the constant evolution of

Android malware [7]. Therefor, these graph-based techniques

are not scalable and realistic to complete market-wide malware

scanning.

To further enhance the state-of-the-art techniques, ap-

proaches such as MaMaDroid [8] tried to use coarser-
granularity information (e.g., using package-level information
instead of method-level information) and divide graphs into

subgraphs (e.g., using multiple pairwise invocation relation-
ships instead of a call graph representing all invocation re-

lationships). It has validated the robustness against Android

malware evolution and increase the lifetime of the trained

model. However, the average running time of an app is 165.63

seconds (Table VIII and Figure 7) which is not applicable

for malware scanning of an app market. Additionally, the

subgraphs (e.g., the pairwise invocations) cannot fully reflect
dependencies among method calls, thus the approaches are

lack of key information to distinguish some of the malicious

apps from benign ones. Moreover, such approach requires

a sizable amount of memory when performing classification

because of its large feature sets by extracting all pairwise

invocations [8]. Another state-of-the-art technique for malware

139

2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE)

978-1-7281-2508-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ASE.2019.00023

scanning is MassVet [9], which abstracts the UIs of an app as
a directed graph where each node is a view and each edge is

a relationship description. It has validated the high efficiency

on malware scanning, however, it can only detect repackaged

malware and can cause a false negative when the app is a new

malware.

To address these limitations, in this paper, we propose

MalScan, a semantic-preserving market-wide malware scan-
ning system that can accurately detect a malicious Android

app in at least 0.7 seconds and at most 4.92 seconds on

average (Table VIII and Figure 7). To preserve the program

semantic information while perform fast processing on all the

information, we regard the function call graph as a complex

social network and perform centrality analysis [10], [11] to

represent the semantic features of the graph. Both call graphs

and social networks are static graphs representing dynamic

behaviors. Call graphs represent the program behaviors and

each edge of a call graph may represent multiple function

invocations. Social networks represent the social behaviors

and each edge of a social network may represent multiple

social communications. Centrality measures the ‘importance’

of a function in the whole function call graph and reflects

the structural attribute/properties of the graph. Because of

its succinct representation, centrality works well on graphs

with inaccurate information [12], [13], [14], [15], making

centrality a perfect candidate to represent graphs obtained from

low-cost program analysis (e.g., context- and flow-insensitive
analysis). By performing centrality analysis on each sensitive

API method, MalScan provides a balance between abstracting
graph details to defend against obfuscation and preserving

semantic information to distinguish between malware and

benign apps.

We evaluate MalScan from seven perspectives over malware
spanning from January 2011 to December 2018 to better

observe the robustness of MalScan against the evolution in
Android malware. Our first four experiments focus on the

effectiveness of malware detection, robustness against evolu-

tion of Android apps, robustness against adversarial attack,

and runtime overheads of MalScan. In addition, we conduct
a statistical study to investigate the scalability of MalScan on
real-world app market (e.g., Google-Play). We totally crawl
over 3 million apps’ information and the analysis result sug-

gests that MalScan is capable of scanning malware on Google-
Play app market. Furthermore, we utilize and combine the

different centrality experimental results on malware detection.

The experimental result indicates that it can indeed improve

the effectiveness on Android app classification. Finally, we

demonstrate the capability of MalScan in detecting real-world
zero-day malware. Specifically, in a corpus of apps collected

from Google-Play app market, MalScan is able to identify 18
zero-day malware including malware samples that can evade

detection of existing tools [16].

In summary, this paper makes the following contributions:

• We propose a novel lightweight method to perform clas-
sification on Android malware by analyzing the centrality

of sensitive API calls within a function call graph of an

app.

• We design and implement a prototype system, MalScan,
a novel, automatic, and efficient system that can perform

classification on large-scale Android malware with high

accuracy.

• We conduct a comprehensive evaluation using 15,285
benign samples and 15,430 malicious samples. Exper-

imental results show that MalScan can complete the
classification of an app in 0.7 seconds on average with

up to 98% accuracy.

Paper organization. The remainder of the paper is organized
as follows. Section II presents the preliminary study on degree

centrality of Android apps. Section III introduces our system.

Section IV reports the experimental results. Section V dis-

cusses the future work. Section VI describes the related work.

Section VII concludes the present paper.

II. PRELIMINARY STUDY ON CENTRALITY

A social network is a social structure made up of a set

of social actors (such as individuals or organizations), sets

of dyadic ties, and other social interactions between actors2.

The source code of an app is made up of a set of functions,

and there are several call relationships between them. If we

regard functions as actors and the call relationships as social

interactions, the function call graph of an app can be regarded

as a social network.

Centrality concepts were first developed in social network

analysis which quantify the importance of a node in the net-

work and have the potential to unveil the structural pattern of

the network. Centrality measures are very useful for network

analysis, and much work has been proposed to use centrality

measures in different areas, such as biological network [12],

co-authorship network [13], transportation network [14], crim-

inal network [15], affiliation network [17]. There have been

proposed many different centrality measures, such as degree

centrality [10], katz centrality [11], closeness centrality [10],

harmonic centrality [18], betweenness centrality [19], percola-

tion centrality [20], cross-clique centrality [21], dissimilarity-

based centrality [22].

On the one hand, centrality measures can indicate the

importance of a node within a network and have the potential

to unveil the structural patterns and behaviors. On the other

hand, malware usually invokes sensitive API calls to perform

malicious activities. Therefor, we perform a preliminary study

to investigate a question:

Can the centrality of sensitive API calls reflect the difference
between benign apps and malicious apps? In other words, is
there a significant difference between the centrality of sensitive
API calls in benign apps and malicious apps?
To answer the proposed question, we first randomly select

500 benign apps and 500 malicious apps from AndroZoo [23],

then the call graphs are extracted by using static analysis.

Given a call graph, we perform centrality analysis only for

2https://en.wikipedia.org/wiki/Social network.

140

TABLE I: Summary of results of one way-ANOVA, with α = 0.05 for degree centrality values of sensitive API call ConnectivityMan-
ager.getActiveNetworkInfo() in benign apps and malicious apps. [SS: sum of squares, df: degree of freedom, MS: mean square, F: calculated
F-value, P: calculated p-value, F crit: critical value of F]

ANOVA: Single factor
Summary
Groups Count Sum Average Variance
Degree centrality in benign apps 500 0.237218 0.000474 1.08E-07
Degree centrality in malicious apps 500 0.751806 0.001504 6.51E-07
ANOVA
Source of variance SS df MS F P-value F crit
Between groups 0.000265 1 0.000265 697.6574 5.3E-117 3.850793
Within groups 0.000379 998 3.8E-07
Total 0.000644 999

������ ���	�
�
��
���

�
���

�
���

�
���

�
���

�
���

�
���

�
�
�
��
�
�
�
�
��
	

��
�

(a) API1: ConnectivityMan-
ager.getActiveNetworkInfo()

������ ���	�
�

�����

����

�����

�����

�����

�
�
�
��
�
�
�
�
��
	

��
�

(b) API2: LinearLayout.init()

������ ���	�
�
��
���

�
���

�
���

�
���

�
���

�
���

�
���

�
���

�
�
�
��
�
�
�
�
��
	

��
�

(c) API3: TextView.init()

������ ���	�
�
��
����

�
����

�
����

�
����

�
����

�
����

�
����

�
�
�
��
�
�
�
�
��
	

��
�

(d) API4: Activity.finish()

Fig. 1: The degree centrality distributions of sensitive API calls

between benign apps and malicious apps

the node representing security-sensitive methods (by using a

list of security-sensitive methods [24]). We then conduct a

preliminary frequency analysis to check whether centrality

can indeed suggest the inherent differences between benign

apps and malicious apps. We select the top 10 frequently-

invoked sensitive API calls as the test object. Due to the

limitation of the page, we only show a portion of our results

in Figure 1. From the results presented in Figure 1, we

find that the degree centrality of sensitive API calls can be

considerably different between benign apps and malicious

apps. To obtain more determinate results, we apply Analysis
of Variance (ANOVA) [25] to research the difference of these
centrality values between benign apps and malicious apps.

Here null hypothesis H0 is that the centrality of sensitive API

calls between benign apps and malicious apps are similar and

there is no significant difference in their means. We apply one-
way ANOVA to test whether we can reject or accept the null
hypothesis.

P-value is the probability when the null hypothesis H0 is

true after performing statistical test with a pre-determined

probability α (we select α = 0.05 in our tests). If the calculated

TABLE II: P-values of degree centrality in benign apps
and malicious apps in Figure 1. [API1: ConnectivityMan-
ager.getActiveNetworkInfo(), API2: LinearLayout.init(), API3:
TextView.init(), API4: Activity.finish()]

API Call API1 API2 API3 API4
P-value 5.3E-117 1.20667E-85 8.05623E-91 3.9192E-30

p-value is below α, then the null hypothesis H0 is rejected.

Table I depicts the summary results by performing one-way
ANOVA on the centrality values in Figure 1(a). As shown
in Table I, the average value of degree centrality of Con-
nectivityManager.getActiveNetworkInfo() in malicious apps is
0.001504 while is 0.000474 in benign apps. Particularly, the p-

value in Table I is 5.3E-117 which is extremely less than 0.05,

by this we can reject the hypotheses H0. In other words, the

alternate hypothesis H1 (i.e., the difference of degree centrality
of ConnectivityManager.getActiveNetworkInfo() between be-
nign apps and malicious apps is significant) is accepted.

We also apply one-way ANOVA on the other dataset in
Figure 1. However, due to the limited page, we only show

the p-values in Table II3. From the results shown in Table II,

all the p-values are extremely less than 0.05, which indicates

that the degree centrality of sensitive API calls can reflect the

inherent difference between benign apps and malicious apps.

Therefor, based on the observation, we build a model and

propose a lightweight Android malware detection system by

analyzing the centrality of sensitive API calls within a call

graph.

III. SYSTEM ARCHITECTURE

A. System Overview

As shown in Figure 2, MalScan’s operation goes through
three main phases: Static Analysis, Centrality Analysis, and
Classification.

• Static Analysis: This phase aims at extracting the func-
tion call graph of an app based on static analysis, where

each node is a function that can be an API call or a

user-defined function.

• Centrality Analysis: After obtaining the call graph of an
app, we then compute the centrality of sensitive API calls

3The summary results of Figure 1(b) to (d) are available in
https://github.com/malscan-android/malscan.

141

��������	
���	

����

��������������	
�

�	��	���� ������������� ���	�

�	�	��	� �	�	� ��	�

���������	
 !��

�������	
"�����

	
��������#

�����$���

������	
 ���#���

��������#	
 ���#���
�����$�������

%&

Fig. 2: System architecture of MalScan

(d1, d2, d3, d4)

degree centrality

(k1, k2, k3, k4)

katz centrality

(c1, c2, c3, c4)

closeness centrality

(h1, h2, h3, h4)

harmonic centrality

(d1, d2, d3, d4, k1, k2, k3, k4, c1, c2, c3, c4, h1, h2, h3, h4)
concatenate centrality

((d1+k1+c1+h1)/4, (d2+k2+c2+h2)/4, (d3+k3+c3+h3)/4, (d4+k4+c4+h4)/4)
average centrality

Feature vectors of four individual centralities

Feature vectors of added two centralities

Fig. 3: Illustration of the construction of average centrality and

concatenate centrality

within the graph. The output of this phase is the feature

vector.

• Classification: In the final phase, given the feature vector,
we can accurately and efficiently classify the app as

either benign or malicious by using a machining learning

classifier.

B. Static Analysis and Centrality Analysis

In this paper, we aim at proposing a graph-based market-

wide malware scanning system, which requires high efficiency

on app processing and graph analysis. Therefor, we conduct

low-cost program analysis (e.g., context- and flow-insensitive
analysis) to extract succinct function call graphs based on an

Android reverse engineering tool, Androguard [26].

As API calls are used by the Android apps to access

operating system functionality and system resources, they

can be used as representations of the behaviours of Android

apps. Particularly, Android malware usually invokes some

security-related API calls to perform malicious activities.

For instance, getDeviceID() can get your phone’s IMEI and
getLine1Number() can obtain your phone number. Therefor, in
order to characterize malicious behaviors, we focus on these

security-related API calls, namely sensitive API calls on the

basis of the results reported by PScout [24] which consist of

21,986 sensitive API calls.

In centrality analysis, we pay attention to extract the cen-

trality of sensitive API calls. There have been proposed several

definitions of centrality in a social network, for example:

• Degree centrality [10] of a node is the fraction
of nodes it is connected to. The degree centrality

values are normalized by dividing by the

maximum possible degree in a simple graph N -

1 where N is the number of nodes in the graph.

CD(v) = deg(v)
N−1

Note that deg(v) is the degree of node v.
• Katz centrality [11] is a generalization of degree
centrality. Degree centrality measures the number

of direct neighbors, and Katz centrality measures the

number of all nodes that can be connected through a path,

while the contributions of distant nodes are penalized. Let

A be the adjacency matrix of a graph under consideration.

CK(i) =
∞∑

k=1

n∑

j=1

α(Ak)ij

Note that the above definition uses the fact that the

element at location (i, j) of Ak reflects the total number
of k degree connections between nodes i and j. The value
of the attenuation factor α has to be chosen such that it
is smaller than the reciprocal of the absolute value of the

largest eigenvalue of A.
• Closeness centrality [10] of a node is the average
length of the shortest path between the node and

all other nodes in the graph. Its normalized form is

generally given by the previous value multiplied by

N -1, where N is the number of nodes in the graph.

CC(v) = N−1∑
y
d(t,v)

Note that d(t, v) is the distance between nodes v and t.
• Harmonic centrality [18] reverses the sum and reciprocal
operations in the definition of closeness centrality.

CH(v) =

∑

t �=v

1
d(t,v)

N−1
Note that d(t, v) is the distance between nodes v and t
and N is the number of nodes in the graph.

• Betweenness centrality [19] quantifies the

number of times a node acts as a bridge along

the shortest path between two other nodes.

CB(v) =
∑

s�=v �=tεV
σst(v)
σst

Note that σst is total number of shortest paths from node
s to node t and σst(v) is the number of those paths
that pass through v. The betweenness may be normalized
by dividing through the number of pairs of nodes not

including v, which for directed graphs is (n-1)(n-2) and
for undirected graphs is (n-1)(n-2)/2 where n is the
number of nodes in the graph.

Given a call graph, we then compute the centrality of

sensitive API calls. Some sensitive API calls that are not

contained in this call graph are represented as 0 in the feature

vector. We select total four different centrality measures which

are degree centrality, katz centrality, closeness centrality, and

harmonic centrality to commence our experiments. We ex-

clude betweenness centrality due to the low efficiency on

Centrality Analysis, it requires about 71 seconds to complete
extracting the centrality of a call graph while the number

of nodes is 11,240. Additionally, it is generally to measure

142

the importance of a vertex in a social network by combining

multiple centrality measures. Therefor, we construct another

two types of centrality by integrating the four individual

centrality measures: the one is to calculate the average value

of the former four centrality measures (average centrality) and

the other is to concatenate the former four centrality measures

(concatenate centrality). Figure 3 shows the construction of

these two types of centrality. In our experiments, the dimension

of the feature vector of four individual centrality measures is

the total number of sensitive API calls reported in PScout [24],

which is 21,986. Therefor, as shown in Figure 3, the dimension

of the feature vector of average centrality and concatenate

centrality is 21,986 and 21,986*4=87,944, respectively.

C. Classification

Our final phase focuses on classification, i.e., labeling apps
as either benign or malicious. To this end, we select three dif-

ferent classification algorithms: 1-Nearest Neighbor (1-NN),

3-Nearest Neighbor (3-NN), and Random Forest to complete

classification. These three classifiers are implemented by using

a python library scikit-learn [27]. For the Random Forest, we

adopt the default parameters to commence our experiments 4.

Each model is trained by using feature vectors obtained from a

training dataset and then performing classification on a testing

dataset. All the experimental results are presented in Section

IV by performing 10-fold cross validations on our datasets.

IV. EXPERIMENTAL EVALUATION

In this section, we conduct seven experiments to check

MalScan’s capability on detecting Android malware. Specif-
ically, we first evaluate the effectiveness of MalScan by
classifying datasets that are developed during the same year.

Then we examine the robustness of MalScan in two ways:
the first is to classify newer samples by models trained on old

datasets, the second is to detect adversarial samples crafted by

adversarial attack. Next, we present the runtime performance

of MalScan. Then, we validate the feasibility of MalScan
on market-wide malware scanning. Finally, we introduce the

combination of different centrality measures of MalScan on
malware scanning and demonstrate the ability on detecting

zero-day malware.

A. Datasets and Metrics

Datasets used to evaluate MalScan include total 30,715
samples, which are available in github5, by this researchers

can conduct reproducible experiments. We crawled these APK

files from AndroZoo [23] which currently contains over nine

millions APK files, and each of which has been detected by

several different antivirus products in VirusTotal [16]. Our

final datasets include 15,285 benign apps and 15,430 malicious

apps. In addition, the time period of our datasets ranges from

January 2011 to December 2018, by this we can conduct a

more detailed evaluation to verify how robust MalScan is to

4More detailed information of parameters are available in the official
website: https://scikit-learn.org/.
5https://github.com/malscan-android/malscan.

TABLE III: Summary of datasets used in our experiments

Dataset Benign Malware Total Average Size (MB)
2011 1,920 1,916 3,836 2.49
2012 1,875 2,000 3,875 3.73
2013 1,896 2,000 3,896 6.56
2014 1,826 1,982 3,808 7.15
2015 1,811 1,839 3,650 8.35
2016 2,015 1,940 3,955 5.12
2017 1,884 1,834 3,718 7.92
2018 2,058 1,919 3,977 8.15
Total 15,285 15,430 30,715 6.17

TABLE IV: Descriptions of used metrics in our experiments

Metrics Abbr Definition

True Positive TP #samples correctly classified as
malicious

True Negative TN #samples correctly classified as
benign

False Positive FP #samples incorrectly classified
as malicious

False Negative FN #samples incorrectly classified
as benign

True Positive Rate TPR TP/(TP+FN)
False Negative Rate FNR FN/(TP+FN)
True Negative Rate TNR TN/(TN+FP)
False Positive Rate FPR FP/(TN+FP)

Accuracy A (TP+TN)/(TP+TN+FP+FN)
Precision P TP/(TP+FP)
Recall R TP/(TP+FN)
F-measure F1 2*P*R/(P+R)

changes in Android apps. Table III lists the summary of our

datasets.

To evaluate MalScan, we conduct experiments by perform-
ing 10-fold cross validations using the datasets. Additionally,

we use the widely used metrics as shown in Table IV to mea-

sure the effectiveness of MalScan. Note that all experiments
are compared with following two state-of-the-art Android

malware detection systems: MaMaDroid and Drebin.
• MaMaDroid [8]: a state-of-the-art Android malware de-
tection system, which leverages the sequences of ab-

stracted function calls obtained from a call graph to build

a behavioral model, and uses it to extract features to

conduct classification.

• Drebin [4]: a state-of-the-art Android malware detection
system, which performs a broad static analysis for ex-

tracting as many features as possible from an app, and

embeds them in a joint vector space to classify malware.

B. Detection Effectiveness

We first evaluate how well MalScan on detecting malware
by training and testing using samples that are developed in

the same year. To this end, we conduct experiments on eight

datasets as depicted in Table III by performing 10-fold cross

validations. Table V presents the detection results achieved by

MalScan, MaMaDroid, and Drebin on each dataset, respec-
tively. The results include f-measure and accuracy for each

experiment. In order to verify the effectiveness of different

centrality measures on detecting Android malware, we first

conduct four individual centrality experiments. Additionally, it

is generally to measure the importance of a vertex in a social

143

TABLE V: Experimental results of MalScan, MaMaDroid, and Drebin classification with datasets from the same year

Dataset 2011 2012 2013 2014 2015 2016 2017 2018
Metrics F1 A F1 A F1 A F1 A F1 A F1 A F1 A F1 A
Degree 95.5 95.4 96.7 96.5 96.4 96.2 95.6 96.4 98.1 98.1 98.5 98.5 97.0 97.0 97.9 98.0
Closeness 96.2 96.1 96.5 96.3 96.7 96.5 96.7 96.5 97.6 97.6 97.3 97.3 97.7 97.7 98.8 98.8
Harmonic 96.9 96.8 98.0 97.9 97.2 97.1 96.8 96.6 96.0 96.1 97.2 97.3 96.8 96.8 97.9 98.0
Katz 96.0 95.8 96.4 96.1 96.9 96.8 96.6 96.5 97.4 97.4 98.0 98.0 98.4 98.4 98.0 98.1
Average 97.2 97.2 97.9 97.9 97.2 97.1 96.6 96.5 96.7 96.7 97.7 97.7 96.9 97.0 98.3 98.3
Concatenate 97.5 97.5 98.1 98.0 97.5 97.4 97.7 97.6 97.6 97.6 97.7 97.7 97.1 97.1 98.4 98.5
MaMaDroid 94.4 94.2 95.6 95.3 94.3 93.9 95.9 95.6 95.6 95.4 96.0 96.0 96.5 96.5 97.3 97.2
Drebin 96.4 96.4 96.4 96.4 97.4 97.4 94.8 94.8 94.7 94.7 95.3 95.3 91.0 91.0 91.2 91.2

network by combining multiple centrality metrics. Therefor,

we add another two experiments by integrating the former

four individual centrality measures as shown in Figure 3. In

a word, we evaluate MalScan by conducting six experiments
on each dataset per year.

As shown in Table V, we see that for each dataset, MalScan
can maintain a high f-measure and accuracy above 95% for all

six experiments. In addition, the detection performances vary

according to the selected centrality measures. For instance,

the f-measure is 98.1% when we choose degree centrality to

conduct classification on 2015 dataset while is 97.4% when we

select katz centrality. This observation is mainly due to that the

definitions are different between selected centrality measures.

Particularly, the results of concatenate centrality is generally

better than other centralities, which is because of the more

comprehensive features in concatenate centrality (Figure 3).

Compared to MaMaDroid, MalScan can achieve better
performance on all datasets in terms of accuracy. As for

f-measure, it outperforms MaMaDroid on most of datasets
except 2014 dataset. The f-measure is 95.6% when we conduct

classification by using degree centrality measure on 2014

dataset, while MaMaDroid can achieve 95.9% f-measure.

However, the maximum f-measure and accuracy of six ex-

periments in MalScan is all above MaMaDroid. Such results
indicate that MalScan can obtain better performance than
abstraction-based approach when performing classification on

dataset in the same year. This happens because the ab-

straction of API calls can cause some false positives, for

instance, API calls TelephonyManager.getDeviceId() and Sms-
Manager.sendTextMessage() can be abstracted into the same
package and family, which are android.telephony and android,
respectively.

Through the results shown in Table V, we can see that

the f-measure and accuracy of another compared Android

malware detection method, Drebin, both take up 97.4% which
are almost the same as the maximum f-measure and accuracy

of MalScan on 2013 dataset. However, it performs poorer
than MalScan on most of datasets. In general, MalScan can
achieve higher f-measure and accuracy on datasets from 2014

to 2018. Particularly, it significant outperforms Drebin on 2017
and 2018 datasets. In addition, the maximum f-measure and

accuracy of six experiments in MalScan on all datasets are all
above Drebin. It is reasonable that MalScan performs better
than Drebin because MalScan considers the program structural
semantics while Drebin ignores them.

TABLE VI: Mean values of f-measure and accuracy of

MalScan, MaMaDroid, and Drebin to perform classification
on newer samples by training an old dataset

Testing Gap one year two year three year four year
Metrics F1 A F1 A F1 A F1 A
Degree 82.03 82.95 67.83 74.00 57.01 69.02 36.24 60.64
Closeness 80.80 82.85 62.98 72.23 53.98 67.99 37.04 60.95
Harmonic 86.19 86.91 71.34 76.69 62.35 70.97 48.48 64.33
Katz 82.43 83.17 65.65 72.16 56.43 68.52 35.48 58.95
Average 86.63 87.22 69.34 76.11 63.27 71.25 49.22 64.55
Concatenate 88.20 88.37 70.74 77.21 59.66 71.59 47.42 64.72
MaMaDroid 84.30 83.80 75.76 75.78 67.92 68.94 57.31 62.38
Drebin 82.18 83.20 71.73 74.01 66.05 70.32 39.54 59.60

In conclusion, MalScan can achieve better performance than
MaMaDroid and Drebin on detecting malware by training and
testing using samples that are developed in the same year.

C. Robustness against Android Evolution

For testing the resilience of MalScan on the evolution
of Android apps. We create four scenarios and conduct ex-

periments on each scenario, the f-measure and accuracy of

MalScan, MaMaDroid, and Drebin are presented in Figure 4.
In the first scenario, each system is trained by using 2011

dataset, and then classify the samples from 2012 to 2018. In

the second scenario, we use the samples randomly selected

from datasets before 2012 (i.e., 2011 and 2012 datasets) as
the training data and test the samples from 2013 to 20186.

Similar to the previous scenarios, the training samples in

the third scenario are randomly selected from datasets before

2013, and the testing samples are from 2014 to 2018. Our

final scenario includes randomly-chosen training samples from

datasets before 2014, and conduct classification on the samples

in 2015, 2016, 2017, and 2018.

In order to show more clearly in figures, we only present the

average and concatenate experimental results of MalScan in
Figure 47. In scenario one, as shown in Figure 4(a) and 4(e),

the f-measure and accuracy of MalScan is above MaMaDroid
and Drebin when conduct testing on 2012 and 2013 datasets.
However, the f-measure and accuracy of MalScan and Drebin
both drop a lot when the year of testing dataset increases to

2015. This is because the sensitive API calls between 2011

6To maintain the coherence of the number of these four scenarios, the
number of training samples in the last three scenarios are the same as 2011
dataset, which are 1,920 benign apps and 1,916 malicious apps.
7More detailed results can be available in the following website:

https://github.com/malscan-android/malscan.

144

���� ���� ���� ���� ���� ���� ���	

��

��

��

��

��

��

��

	�

�

���

�
��
�
�
�
�
��
	

�

������� �	�	���

�������

��	
���	���

����
����

����	

(a) scenario one

���� ���� ���� ���� ���� ���	

��

��

��

��

��

��

	�

�

���

�
��
�
�
�
�
��
	

�

������� �	�	���

�������

��	
���	���

����
����

����	

(b) scenario two

���� ���� ���� ���� ����

��

	�

��

��

��

��

��

�

���

�
��
�
�
�
�
��
	

�

������� �	�	���

���	��

���	���	��

�	�	�����

������

(c) scenario three

���� ���� ���� ����

��

��

��

��

��

	�

���

�
��
�
�
�
�
��
	

�

������� �	�	���

�������

��	
���	���

����
����

����	

(d) scenario four

���� ���� ���� ���� ���� ���� ���	

��

��

��

��

	�

�

���

�
�
�
�
��
�
�
�
�
	

������� �	�	���

�������

��	
���	���

����
����

����	

(e) scenario one

���� ���� ���� ���� ���� ���	

��

��

��

	�

�

���
�
�
�
�
��
�
�
�
�
	

������� �	�	���

�������

��	
���	���

����
����

����	

(f) scenario two

���� ���� ���� ���� ����

��

��

��

��

��

	�

���

�
�
�
�
��
�
�
�
�
	

������� �	�	���

�������

��	
���	���

����
����

����	

(g) scenario three

���� ���� ���� ����

��

��

��

��

��

��

��

��

��

��

���

�
�
�
�
��
�
�
�
�
	

������� �	�	���

�������

��	
���	���

����
����

����	

(h) scenario four

Fig. 4: The f-measure and accuracy of MalScan, MaMaDroid, and Drebin to perform classification on newer samples by
training an old dataset

and 2015 dataset vary a lot, and both MalScan and Drebin
are based on the analysis of sensitive API calls. In scenario

two, all the methods can both achieve high f-measure and

accuracy when testing on 2013 dataset as shown in Figure 4(b)

and 4(f). Drebin is able to maintain the best performance on
datasets from 2013 to 2016. In scenario three, the f-measure

and accuracy of MalScan and Drebin both drop a lot when
the year of testing dataset increases from 2014 to 2015. The

reason is the same as scenario one, for instance, the overlap

ratio8 of sensitive API calls invoked by malware samples

between the training dataset and 2014 dataset is 80% while

drop to 56% when the year of testing dataset increases to

2015. In other words, almost half of sensitive API calls in the

malware samples of 2015 dataset do not appear in the malware

samples of training dataset, which can cause a high false

negative. In the last scenario, both MalScan and MaMaDroid
can obtain better performance than Drebin, the f-measure and
accuracy of concatenate experiment of MalScan are higher
than MaMaDroid and Drebin on all testing datasets.
To research the overall performance on detecting newer

samples by using an old dataset for training, we present the

mean values of f-measure and accuracy of MalScan, Ma-
MaDroid, and Drebin on detecting newer datasets whose time
period ranges from one year to four year. Table VI presents

the results. As for f-measure, MalScan is able to maintain the
best performance when the time period between testing dataset

and training dataset differs by one year. However, when the

8Given two sets of sensitive API calls S1 and S2, the overlap ratio between

S1 and S2 is defined as O(S1, S2) =
|S1∩S2|

max(|S1|,|S2|) .

TABLE VII: Attack details in this evaluation

Attack terms Descriptions

Attack Scenario
The adversary knows both the feature set
and the training set, and also has access to

the target system as a black box
Attack Algorithm Modified JSMA
Attack Dataset 2011 dataset

Attack Detectors
1NN (MalScan), Random Forest
(MaMaDroid), and SVM (Drebin)

time period increases to two year, three year, and four year,

MaMaDroid performs slight better than the others. This is
mainly due to the abstraction of API calls, which is more

resilient to the evolution of Android apps. As for accuracy,

MalScan can achieve better performance thanMaMaDroid and
Drebin on detecting newer samples by training an old dataset.
In general, compared with MaMaDroid and Drebin,

MalScan can obtain an approximate good effect on detecting
newer samples by using an old dataset.

D. Robustness against Adversarial Attack

In order to research the robustness ofMalScan to adversarial
samples, we leverage a recent and state-of-the-art adversarial

attack tool [28] to complete our evaluation. It can calculate the

perturbations, modify source files, and rebuild the modified

APK file to craft adversarial samples of Android malware.

Due to open source of all the datasets and algorithms of

MaMaDroid, Drebin, andMalScan, the adversary has access to
all datasets. As for machine learning models (i.e., classifiers),
they can be obtained by reimplemented the algorithms pre-

sented in corresponding papers. Therefor, our attack scenario

145

��� ��� ��	
���
�� ��� ���� �	�
���

���

���

���

���

���
�
�
�
�
��
�
�
�
	

���� ������

���� ���	�
�		

���� ���
�
��

����� ����

���� �������

��
� ��
����
���

����� ���������

���� �����

Fig. 5: The evasion rate of adversarial examples crafted by

JSMA on MalScan, MaMaDroid, and Drebin

in this section is that the adversary knows all datasets, and also

has access to the target detector as a black box. Specifically,

we choose our 2011 dataset as our test object to commence

the evaluation. Moreover, the attack algorithm we select is

modified JSMA [28], which crafts adversarial examples by

using the forward derivatives of the classifier9. As described

in [8], MaMaDroid can achieve better performance when it
adopts Random Forest to detect malware. As for MalScan,
we find that 1NN is able to maintain better effectiveness on

detecting malware. Therefor, the selected machine learning

classifiers in this section are 1NN, Random Forest, and SVM

for MalScan, MaMaDroid, and Drebin, respectively. Table VII
summarizes these attack details.

Figure 5 presents the evasion rate (i.e., FNR) of crafted
malware samples on MalScan, MaMaDroid, and Drebin. It
shows that all the three systems can be evaded easily by

these crafted adversarial samples. This happens because the

attack launched by [28] is a tailor-made attack, it can make

corresponding changes to the attack steps according to the dif-

ferent algorithms implemented by classifiers, until the crafted

adversarial sample can be misclassified by the detector or

exit when the number of iterations reaches the set threshold.

However, the attack cost of Drebin is the lowest, since it only
extracts syntax features and the adversary only needs to add

code containing the required features (e.g., restricted API calls)
but never being invoked or executed. As for MaMaDroid and
MalScan, it requires more cost for the adversary to complete
the attack due to the consideration of program semantics. For

instance, the added features are not the simple restricted API

calls but calls from some callers to some callees. Moreover,

when the adversary attacks on average or concatenate central-

ity detector, the attack cost is more since they are constructed

by integrated four individual centrality measures. Therefor, the

adversary must consider four different algorithms of centrality

extraction for crafting adversarial samples.

In conclusion, MalScan, MaMaDroid, and Drebin are not
robust enough in the face of tailor-made adversarial attack.

9More detail procedures are in [28].

� ����� ����� ����� ����� ������ ������

�

��

��

��

��

��

��

	�

������

�����	���

����	
�

����

�������

��	����	���

�
�
��
�
�
�
�
�
	

�
�

�
��
�
�
�
�
�
�

������ ���� 	
���
�

Fig. 6: Total runtime overheads of MalScan on different
sample size by using Random Forest

E. Runtime Overhead

In this section, we estimate the runtime overhead of

MalScan, MaMaDroid, and Drebin by using a dataset ran-
domly selected from our 30,715 samples, which consists of

3,000 benign apps and 3,000 malicious apps. The average

number of nodes in these 3,000 benign samples and 3,000

malicious samples are 17,669 and 12,991, respectively.

Given a new app, MalScan consists of three main phases
to analyze it: (1) Function call graph extraction, (2) Feature

extraction, and (3) Classification. The runtime overheads of

these three main phases are illustrated in Table VIII. It is

required an average of 0.67 seconds to construct the call

graph for a given APK file. In feature extraction, the runtime

overhead differs according to the selected centrality measures.

On average, 0.03 seconds is required for degree centrality

extraction, which is considerably less than the other three

centrality measures. To extract the average centrality and

concatenate centrality of a node within a graph, we first

need to obtain the four individual centrality values (Figure 3).

Therefor, it takes both about an average of 4.26 seconds

to construct the feature vector for average centrality and

concatenate centrality. Given a feature vector, we can perform

classification by using a trained machine learning model10. As

shown in Table VIII, the runtime overhead of classification

varies according to not only the selected centrality measures

but also the selected classification algorithms. As for centrality

measures, the runtime overhead of concatenate centrality is

higher than the other five centrality measures. This happens

due to that the dimension of feature vector of concatenate

centrality is four times longer than the other five centrality

measures.

Moreover, as shown in Figure 6, the total running time to

process an app by MalScan is generally positive related to the

10In this evaluation, we trained machine learning models by using these
6,000 apps.

146

TABLE VIII: The average runtime overhead (seconds) of MalScan, MaMaDroid, and Drebin on different phases

Phases Graph Construction Feature Extraction
Classification

1NN 3NN RandomForest SVM
Degree

0.6654

0.0293 0.0093 0.0766 0.0015

—

Closeness 1.1007 0.0093 0.0886 0.0014
Harmonic 1.6275 0.0139 0.0697 0.0015
Katz 1.4984 0.0110 0.1102 0.0014
Average 4.2560 0.0139 0.0731 0.0014
Concatenate 4.2556 0.0456 0.2478 0.0016
MaMaDroid 163.1773 2.4562 0.4867 1.4501 0.0007 —
Drebin — 82.3846 — 0.3090

size of app’s function call graph. The more nodes in a call

graph, the longer the running time. Overall, given a new app,

as shown in Figure 7, MalScan can classify it as either benign
or malicious in an average of 0.7 seconds when we select

degree centrality to construct the feature vector and Random

Forest as the classification model.

We also evaluate the runtime overhead of MaMaDroid and
Drebin on detecting an app. As for MaMaDroid, it consists
of three main procedures to complete the classification. In the

first step, for constructing a more precise call graph of an

app, MaMaDroid performs heavyweight program analysis to
ensure contexts and flows preserved. So it takes an average of

163.18 seconds to extract the call graph per app in our 6,000

samples. Whereas, it takes about 2.46 seconds to finish the

feature extraction step per app. In the final step, classification

using Random Forest is fastest: 0.0007 seconds on average.

Therefor, as shown in Figure 7, in total,MaMaDroid consumes
about 165.63 seconds for a complete classification on an app

from our 6,000 samples when we select Random Forest as the

classification model. As for Drebin, on the one hand, it extracts
features not only from disassembled code but also from the

manifest. On the other hand, these features include several

complex features (e.g., network address) and the number of
extracted features is more than 90,000. Therefor, it takes about

82.38 seconds on average to extract features per app in our

6,000 samples. Given a feature vector, Drebin consumes about
0.31 seconds to flag it as either benign or malicious by using

a SVM classifier.

In conclusion, MalScan is tremendously scalable and effi-
cient than MaMaDroid and Drebin.

F. Market-wide Case Study

TABLE IX: The number and average size of apps collected

from Google-Play app market

Year #Apps Average Size (MB)
2011 79,192 2.09
2012 158,402 3.05
2013 350,736 4.35
2014 1,025,021 6.04
2015 524,026 8.69
2016 994,635 9.79
2017 207,280 11.01
2018 198,303 12.17
Total 3,537,595 7.73

To validate the feasibility of MalScan on malware scan-
ning of Google-Play scale Android app stores, we conduct

��� ���� ���� ���� ���� ����

��	��

�����

��� ��� ��	
���
�� ��� ���� �	�
�

��

��

��

��

���

���

���

���

���

���� ������

���� ���	�
�		

���� ���
�
��

����� ����

���� �������

��
� ��
����
���

����� ���������

���� �����

�
�
��
�
�
�
�
�	

�
�

�
��
�
�
�
�
�
�
�
�
�
�
�
�

Fig. 7: Total average runtime overheads of MalScan by using
Random Forest, MaMaDroid by using Random Forest, and
Drebin by using SVM

a statistical research of app size in Google-Play app market

from AndroZoo [23]. We collect some information of apps

in Google-Play app market which includes sha256, package

name, apk size, and dex date. As shown in Table IX, the time

period of these apps is from January 2011 to December 2018,

and the total number of collected apps in Google-Play app

market is 3,537,59511. Table IX presents the average size of

collected apps in different year, it can be seen that the average

size of apps will grow larger over time, and the average size

of total 3,537,595 apps is 7.73 MB.

We also introduce the Cumulative Distribution Functions
(CDFs) of the size of these apps in Google-Play app market

and our randomly selected 6,000 apps. As shown in Figure

8, in general, apps in Google-Play app market are slightly

larger than apps in MalScan (randomly selected 6,000 apps).
Because MalScan is a graph-based malware scanning system,
and the total running time to process an app is generally

positive related to the size of app’s function call graph (Figure

6). Therefor, we randomly select 6,000 apps from collected

3,537,595 apps and conduct static analysis to extract the

function call graphs. After obtaining the 6,000 function call

graphs, we then gather the size of these graphs. Specifically,

from the results presented in Table X, the average graph size

of apps in Google-Play app market is about 1.44 times larger

than in MalScan. In addition, the ratio of average running time
for MalScan to complete classification on Google-Play 6000

11All the collected information of these 3,537,595 apps can be available in
the following website: https://github.com/malscan-android/malscan.

147

TABLE X: The average size of apps in Google-Play app market and apps used in MalScan, average runtime overheads
to complete classification on these apps by using Random Forest and the size of ratio between Google-Play 6000 and

MalScan 6000

Apps Average Size (MB) Average Size (Nodes)
Average RunTime Overheads (second)

Degree Closeness Harmonic Katz Average Concatenate
Google-Play 3537595 7.73 — —
Google-Play 6000 7.53 22,143 0.9983 2.5761 3.3961 3.1121 7.2068 7.2052
MalScan 6000 6.29 15,330 0.6962 1.7676 2.2926 2.1652 4.9228 4.9226

Ratio (GP 6000/MS 6000) 1.1971 1.4444 1.4339 1.4574 1.4813 1.4373 1.4640 1.4637

Fig. 8: CDFs of the app size (MB) in Google-Play app market

(3,537,595 apps) and MalScan (6,000 apps)

and MalScan 6000 is almost around 1.44. Such result also

indicates that the total running time of MalScan to process an
app is generally positive related to the size of app’s function

call graph. Therefor, when we adopt MalScan to perform
malware scanning on Google-Play app market, the average

runtime overhead to process an app may be around one

second when we select degree centrality to form the feature

vector. Such high efficiency suggests that MalScan can enable
frequent market-wide scanning of Google-Play scale Android

app markets.

G. Combination of Centrality Measures

In this section, we propose the combination of different cen-

trality measures on detecting Android malware. As discussed

in the former experiments, we totally select four individual

centrality measures and add another two centrality measures

(Figure 3). In reality, these six experimental results can be

complementary, for instance, we can use majority-voting to

flag an app as either benign or malicious. In other words, an

app we consider as malware when it is reported to be malicious

by one or more of the six centrality experiments. For testing

the feasibility of majority-voting, we conduct an experiment

on scenario one in Section IV.C. We leverage a trained model

by using 2011 dataset and test on datasets from 2012 to 2014,

respectively. The thresholds to flag an app as malicious in our

TABLE XI: The f-measure and true positive rate (TPR)

of MalScan by adopting majority-voting, MaMaDroid and
Drebin to perform classification on 2012-2014 datasets by
using 2011 dataset for training

TestingYear 2012 2013 2014
Metrics F1 TPR F1 TPR F1 TPR
Degree 85.23 83.10 83.07 75.45 74.37 60.54
Closeness 82.93 74.70 73.83 63.05 68.96 54.59
Harmonic 89.73 89.35 86.32 83.10 76.54 65.84
Katz 86.25 85.15 79.43 74.35 76.66 65.29
Average 89.80 89.35 86.70 82.95 76.77 65.69
Concatenate 89.83 89.40 86.88 83.10 76.93 65.94
Vote 1 88.47 96.90 85.20 92.00 82.31 81.99
Vote 2 91.44 92.65 88.80 86.45 84.07 74.97
Vote 3 90.48 90.20 87.30 84.40 76.82 66.15
Vote 4 89.32 85.75 81.98 72.80 76.79 64.18
Vote 5 80.43 68.85 73.76 60.00 67.09 51.11
Vote 6 68.86 52.90 66.64 51.00 51.16 34.46

MaMaDroid 81.94 80.18 78.68 78.79 71.90 68.33
Drebin 84.37 71.90 80.37 63.60 81.64 65.69

experiment are one (Vote 1), two (Vote 2), three (Vote 3),

four (Vote 4), five (Vote 5), and all (Vote 6).

As shown in Table XI12, when we select two as the threshold

to flag an app as either benign or malicious (i.e., an app we
consider as malware when it is reported to be malicious by

two or more of the six centrality experiments), the f-measure

is highest among all the experimental results. Particularly,

the True Positive Rates (TPRs) improve significantly when
we adopt majority-voting to detect malware. When we train

a model by using 2011 dataset and perform classification

on 2012 dataset, the true positive rate is at most 89.40% if

we select concatenate centrality to form the feature vector.

However, the true positive rate can increase to 96.90% when

we adopt majority-voting to flag an app as either benign or

malicious. In other words, we can detect at most 96.90%

malware in 2012 dataset when we employ majority-voting.

In addition, parallel processing is a feasible choice when

we conduct six centrality experiments. Therefor, the runtime

overhead of majority-voting can be only slightly longer than

concatenate centrality experiment.

H. Detection of Zero-day Malware

To validate the capability of MalScan on detecting real-
world zero-day malware, we use our 2018 dataset to train

classifiers by adopting 1NN algorithm (we totally obtain six

classifiers according to the six different centrality measures).

12Due to the limited page, other detailed results are available in the website:
https://github.com/malscan-android/malscan.

148

Next, we crawl 5,000 apps from Google-Play app market and

feed them to the trained classifiers. We leverage majority-

voting method to flag an app as benign or malicious, and we

consider an app as malware when it is reported to be malicious

by two or more of the six centrality experiments. Among these

apps, MalScan reports 22 of them as being malicious. To
investigate whether these 22 apps are malware, we upload

them to VirusTotal [16] to analyze each of them. Among

these 22 apps, 17 of them are reported as malware by at least

one antivirus scanner. Of the remaining 5 apps, we manually

inspect them. Our manual inspection shows that 1 of these

5 apps contains highly suspicious behaviours, it contains 28

dangerous-level permissions, reads device’s memory and CPU

information, and writes many sensitive data into several log

files. In an effort to check more deeply, we leverage a state-of-

the-art Android app analysis system which combines static and

dynamic analysis for reporting detailed risky behaviours [29].

From the reported results, we can see that the app executes

shell code which can demonstrate that it is indeed a malware.

In conclusion, MalScan is able to find 1813 zero-day mal-
ware among 5,000 Google-Play apps, 1 of them is not reported

as malware by existing tools [16].

V. DISCUSSION

In our work, we totally select four individual centrality

measures and add another two centrality measures to perform

classification on Android apps. We plan to test the capability

of more different centrality measures on detecting Android

malware. Although the robustness of MalScan against tailor-
made adversarial attack is low, it can be used as the first

line of defense because of the high efficiency on malware

scanning. After filtering most of malware, other more com-

putational intensive and robust approaches can be used as the

second line of defense. By this we can save more times and

resources. Moreover, since most Android malware detection

systems are closed source, we only compare MalScan with
two open source systems (i.e., MaMaDroid and Drebin). We
will conduct detailed comparative analysis on more systems

in our future work.

VI. RELATED WORK

There has been many proposed approaches on Android

malware detection that rely on syntax features [1], [2], [3], [4],

[30], [31], [32] or program semantics [5], [6], [8], [33], [34],

[35], [36], [37], [38], [39], [40], [41], [42]. Drebin [4] uses a
broad static analysis to extract as many features as possible

from an app, and embeds them in a joint vector space to

classify malware. However, it only searches for the presence of

particular strings, such as some restricted API calls, rather than

considers the program semantics. So it can be easily evaded

by attacks on syntax features [28], [43]. DroidAPIMiner [2]
conducts frequency analysis to identify certain API calls

commonly used by malware and then performs a simple data

flow analysis to extract features to complete classification.

13Detailed information can be available in the following website:
https://github.com/malscan-android/malscan.

Unfortunately, it suffers from feature explosion because it

cannot generalize its feature space.

DroidSIFT [5] extracts the weighted contextual API de-
pendency graph to solve the malware deformation problem

based on static analysis. Apposcopy [6] utilizes static analysis
to extract the data-flow and control-flow properties of an app

to identify its malware family. However, both DroidSIFT [5]
and Apposcopy [6] suffer from heavy runtime overhead, they
consume 175.8s and 275s to analyze an app, respectively.

MaMaDroid [8] leverages the sequences of abstracted function
calls obtained from a call graph to build a behavioral model

and uses it to extract features to conduct classification. This

approach is more resilient to API changes and is more robust

to the evolution of Android apps. However, it sustains some

limitations, the one is that it can be easily evaded by the self-

defined packages that looks similar to Android’s, Google’s or

Java’s packages [28], the other is that it requires a sizable

amount of memory on classification because of its large feature

sets and the extraction of call graph [8]. Different from the

previous work, to avoid the heavy computation overhead of

graph matching, MalScan regards the function call graph of
an app as a complex social network and then extracts the

centrality of sensitive API calls to construct the feature vector.

Given a feature vector, MalScan can accurately flag it as either
benign or malicious.

VII. CONCLUSION

In this paper, we present a lightweight Android malware

detection method based on centrality analysis of sensitive

API calls. We implement an automated Android malware

detection system, MalScan, and conduct a comprehensive
evaluation in datasets of 30,715 apps. Experimental results

indicate that MalScan is capable of detecting Android malware
in an average of 0.7 seconds with up to 98% accuracy,

which is more than 100 times faster than two state-of-the-

art approaches, namely MaMaDroid and Drebin. We also
demonstrate the feasibility of MalScan on market-wide mobile
malware scanning by performing a statistical study on over

3 millions apps from Google-Play app market. Moreover, in

a corpus of dataset collected from Google-Play app market,

MalScan is able to identify 18 zero-day malware including
malware samples that can evade detection of existing tools in

VirusTotal [16].

ACKNOWLEDGEMENTS

We would thank the anonymous reviewers for their insight-

ful comments to improve the quality of the paper. We are also

grateful to Xiao Chen for his code sharing of his attack tool.

This work is supported by the National Key Research and

Development Plan of China under Grant 2017YFB0802205,

by the Shenzhen Fundamental Research Program under Grant

No. JCYJ20170413114215614, by the Guangdong Provin-

cial Science and Technology Plan Project under Grant No.

2017B010124001 and the Guangdong Provincial Key R&D

Plan Project under Grant No. 2019B010139001.

149

REFERENCES

[1] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru,
and I. Molloy, “Using probabilistic generative models for ranking risks
of android apps,” in Proceedings of the 2012 ACM Conference on
Computer and Communications Security (CCS’12), 2012.

[2] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-level features
for robust malware detection in android,” in Proceedings of the 9th
International Conference on Security and Privacy in Communication
Systems (SecureComm’13), 2013.

[3] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang, “Exploring
permission-induced risk in android applications for malicious application
detection,” IEEE Transactions on Information Forensics and Security,
2014.

[4] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket,” in Proceedings of the 2014 Annual Network
and Distributed System Security Symposium (NDSS’14), 2014.

[5] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware android mal-
ware classification using weighted contextual api dependency graphs,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS’14), 2014.

[6] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantics-
based detection of android malware through static analysis,” in Pro-
ceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE’14), 2014.

[7] G. Suarez-Tangil and G. Stringhini, “Eight years of rider measurement
in the android malware ecosystem: evolution and lessons learned,” arXiv
preprint arXiv:1801.08115, 2018.

[8] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross,
and G. Stringhini, “Mamadroid: Detecting android malware by building
markov chains of behavioral models,” in Proceedings of the 2017 Annual
Symposium on Network and Distributed System Security (NDSS’17),
2017.

[9] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou, and
P. Liu, “Finding unknown malice in 10 seconds: Mass vetting for new
threats at the google-play scale,” in Proceedings of the 24th USENIX
Security Symposium (USENIX Security’15), 2015.

[10] L. C. Freeman, “Centrality in social networks conceptual clarification,”
Social networks, 1978.

[11] L. Katz, “A new status index derived from sociometric analysis,”
Psychometrika, 1953.

[12] H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai, “Lethality and
centrality in protein networks,” Nature, 2001.

[13] X. Liu, J. Bollen, M. L. Nelson, and H. Van de Sompel, “Co-authorship
networks in the digital library research community,” Information Pro-
cessing & Management, 2005.

[14] R. Guimera, S. Mossa, A. Turtschi, and L. N. Amaral, “The worldwide
air transportation network: Anomalous centrality, community structure,
and cities’ global roles,” National Academy of Sciences, 2005.

[15] N. Coles, “It’s not what you know-it’s who you know that counts.
analysing serious crime groups as social networks,” British Journal of
Criminology, 2001.

[16] “Virustotal - free online virus, malware and url scanner,”
https://www.virustotal.com/, 2019.

[17] K. Faust, “Centrality in affiliation networks,” Social Networks, 1997.
[18] M. Marchiori and V. Latora, “Harmony in the small-world,” Physica A:

Statistical Mechanics and its Applications, 2000.
[19] L. C. Freeman, “A set of measures of centrality based on betweenness,”

Sociometry, 1977.
[20] M. Piraveenan, M. Prokopenko, and L. Hossain, “Percolation central-

ity: Quantifying graph-theoretic impact of nodes during percolation in
networks,” PloS one, 2013.

[21] M. R. Faghani and U. T. Nguyen, “A study of xss worm propagation and
detection mechanisms in online social networks,” IEEE Transactions on
Information Forensics and Security, 2013.

[22] A. Alvarez-Socorro, G. Herrera-Almarza, and L. González-Dı́az, “Eigen-
centrality based on dissimilarity measures reveals central nodes in
complex networks,” Scientific Reports, 2015.

[23] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,” in
Proceedings of the 13th Working Conference on Mining Software
Repositories (MSR’16), 2016.

[24] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing
the android permission specification,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security (CCS’12), 2012.

[25] D. C. Howell, Statistical methods for psychology, 2009.
[26] A. Desnos, “Androguard,” https://github.com/androguard/androguard,

2011.
[27] “scikit-learn,” https://scikit-learn.org/, 2019.
[28] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and

K. Ren, “Android hiv: A study of repackaging malware for evading
machine-learning detection,” IEEE Transactions on Information Foren-
sics and Security, 2019.

[29] “Sandroid - an automatic android application analysis system,”
http://sanddroid.xjtu.edu.cn/, 2019.

[30] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and I. Molloy,
“Android permissions: A perspective combining risks and benefits,” in
Proceedings of the 17th ACM Symposium on Access Control Models
and Technologies (ACMT’12), 2012.

[31] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets.” in Proceedings of the 2012 Annual Symposium on Network
and Distributed System Security (NDSS’12), 2012.

[32] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, “Significant
permission identification for machine-learning-based android malware
detection,” IEEE Transactions on Industrial Informatics, 2018.

[33] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “Appcontext:
Differentiating malicious and benign mobile app behaviors using con-
text,” in Proceedings of the 37th International Conference on Software
Engineering (ICSE’15), 2015.

[34] J. Allen, M. Landen, S. Chaba, Y. Ji, S. P. H. Chung, and W. Lee,
“Improving accuracy of android malware detection with lightweight
contextual awareness,” in Proceedings of the 34th Annual Computer
Security Applications Conference (ACSAC’18), 2018.

[35] W. Yang, M. Prasad, and T. Xie, “Enmobile: Entity-based character-
ization and analysis of mobile malware,” in Proceedings of the 40th
International Conference on Software Engineering (ICSE’18), 2018.

[36] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,
and E. Bodden, “Mining apps for abnormal usage of sensitive data,”
in Proceedings of the 37th International Conference on Software Engi-
neering (ICSE’15), 2015.

[37] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: An information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems, 2014.

[38] A. Machiry, N. Redini, E. Gustafson, Y. Fratantonio, Y. R. Choe,
C. Kruegel, and G. Vigna, “Using loops for malware classification
resilient to feature-unaware perturbations,” in Proceedings of the 34th
Annual Computer Security Applications Conference (ACSAC’18), 2018.

[39] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “Madam: Effective
and efficient behavior-based android malware detection and prevention,”
IEEE Transactions on Dependable and Secure Computing, 2018.

[40] A. Narayanan, M. Chandramohan, L. Chen, and Y. Liu, “A multi-view
context-aware approach to android malware detection and malicious
code localization,” Empirical Software Engineering, 2018.

[41] Y. Feng, O. Bastani, R. Martins, I. Dillig, and S. Anand, “Automated
synthesis of semantic malware signatures using maximum satisfiabil-
ity,” in Proceedings of the 2017 Annual Symposium on Network and
Distributed System Security (NDSS’17), 2017.

[42] J. Garcia, M. Hammad, and S. Malek, “Lightweight, obfuscation-
resilient detection and family identification of android malware,” ACM
Transactions on Software Engineering and Methodology, 2018.

[43] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial examples for malware detection,” in Proceedings of the
2017 European Symposium on Research in Computer Security (ES-
ORICS’17), 2017.

150

