
SCDetector: Software Functional Clone Detection Based on
Semantic Tokens Analysis

Yueming Wu∗†
Huazhong University of Science and

Technology, China
wuyueming@hust.edu.cn

Deqing Zou∗†‡
Huazhong University of Science and

Technology, China,�
deqingzou@hust.edu.cn

Shihan Dou∗
Huazhong University of Science and

Technology, China
shihandou@hust.edu.cn

Siru Yang†§¶
Huazhong University of Science and

Technology, China
yangsiru@hust.edu.cn

Wei Yang
University of Texas at Dallas, United

States
wei.yang@utdallas.edu

Feng Cheng∗
Huazhong University of Science and

Technology, China
fcheng@hust.edu.cn

Hong Liang∗
Huazhong University of Science and

Technology, China
hongliang@hust.edu.cn

Hai Jin†§¶
Huazhong University of Science and

Technology, China
hjin@hust.edu.cn

Abstract
Code clone detection is to find out code fragments with similar
functionalities, which has been more and more important in soft-
ware engineering. Many approaches have been proposed to detect
code clones, in which token-based methods are the most scalable
but cannot handle semantic clones because of the lack of consid-
eration of program semantics. To address the issue, researchers
conduct program analysis to distill the program semantics into a
graph representation and detect clones by matching the graphs.
However, such approaches suffer from low scalability since graph
matching is typically time-consuming.

In this paper, we propose SCDetector to combine the scalability of
token-based methods with the accuracy of graph-based methods for
software functional clone detection. Given a function source code,
we first extract the control flow graph by static analysis. Instead of
using traditional heavyweight graph matching, we treat the graph
as a social network and apply social-network-centrality analysis
to dig out the centrality of each basic block. Then we assign the
centrality to each token in a basic block and sum the centrality of

∗School of Cyber Science and Engineering, HUST, Wuhan, 430074, China
†National Engineering Research Center for Big Data Technology and System, Services
Computing Technology and System Lab, Hubei Engineering Research Center on Big
Data Security, HUST, Wuhan, 430074, China
‡Shenzhen HUST Research Institute, Shenzhen, 518057, China
§Cluster and Grid Computing Lab, HUST, Wuhan, 430074, China
¶School of Computer Science and Technology, HUST, Wuhan, 430074, China

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416562

the same token in different basic blocks. By this, a graph is turned
into certain tokens with graph details (i.e., centrality), called seman-
tic tokens. Finally, these semantic tokens are fed into a Siamese
architecture neural network to train a code clone detector. We eval-
uate SCDetector on two large datasets of functionally similar code.
Experimental results indicate that our system is superior to four
state-of-the-art methods (i.e., SourcererCC, Deckard, RtvNN, and
ASTNN) and the time cost of SCDetector is 14 times less than a tra-
ditional graph-based method (i.e., CCSharp) on detecting semantic
clones.

CCS Concepts
• Software and its engineering→ Softwaremaintenance tools.

Keywords
Social Network Centrality, Semantic Tokens, Siamese Network

ACM Reference Format:
Yueming Wu, Deqing Zou, Shihan Dou, Siru Yang, Wei Yang, Feng Cheng,
Hong Liang, and Hai Jin. 2020. SCDetector: Software Functional Clone
Detection Based on Semantic Tokens Analysis. In 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE ’20), September
21–25, 2020, Virtual Event, Australia. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3324884.3416562

1 INTRODUCTION
Code clone detection aims to dig out code snippets with similar
functionalities, which has attracted wide attention in software
engineering. Commonly, code clone types are classified into four
categories based on the syntactic or semantic level’s differences. The
first three types of clones are syntactically similar clones, while the
last type of clones characterizes semantically similar clones. As for
syntactic similarity, it usually occurs when programmers conduct
code copying and pasting while semantic similarity is introduced

https://doi.org/10.1145/3324884.3416562
https://doi.org/10.1145/3324884.3416562

ASE ’20, September 21–25, 2020, Virtual Event, Australia Y. Wu, D. Zou, S. Dou, S. Yang, W. Yang, F. Cheng, H. Liang, and H. Jin

when developers implement certain functionally similar codes from
scratch.

Many approaches have been proposed to detect code clones.
For example, CCFinder [28] extracts a token sequence from the
input code by lexical analysis and applies several rule-based
transformations to convert the token sequence into a regular form to
detect Type-1 and Type-2 clones. In an effort to detect more types of
clones, another state-of-the-art token-based tool, SourcererCC [43],
has been designed. It captures the tokens’ overlap similarity among
different methods to detect near-miss Type-3 clones. SourcererCC
[43] is the most scalable code clone detector which can scale to very
big code (e.g., 250M line codes). However, because of the lack of
consideration of program semantics, these token-based approaches
can not handle Type-4 clones (i.e., semantic clones). To address the
issues, researchers conduct program analysis to distill the semantics
of code fragments into graph representations and perform graph
matching (e.g., excavating isomorphic sub-graphs) to measure
the similarity between given codes. Compared to token-based
techniques [20, 28, 43], these graph-based detectors [32, 34, 50]
achieve higher effectiveness on detecting functional code clones.
However, they can not scale to big code due to the complexity of
graph isomorphism and heavy-weight time consumption of graph
matching. Given large-scale clone detection is essential for daily
software engineering activities such as code search [30], mining
library candidates [22], and license violation detection [19, 33],
there is an increasing need for a scalable technique to detect
semantic clones on a daily basis.

In this paper, we propose a novel method to combine the
scalability of token-based techniques with the accuracy of graph-
based approaches to detect semantic code clones. Specifically, we
address two major challenges.

• Challenge 1: How to transform the high-cost graph matching
into succinct token analysis while preserving the graph details?

• Challenge 2: How to design a scalable yet accurate similarity
computation process to handle semantic clones?

To address the first challenge, we treat the control flow graph
(CFG) of a method as a social network and apply social-network-
centrality analysis to dig out the centrality of all basic blocks of
the CFG. Centrality analysis was first introduced in social network
analysis while the purpose is to find out the importance of nodes
in a network. Centrality can retain the graph details and have the
potential to reflect the structural properties of a graph. Therefore,
instead of using traditional high-cost graph analysis, we assign the
centrality to each token in a basic block and sum the centrality of the
same token in different basic blocks. The outputs of this phase are
certain tokens with graph details (i.e., centrality), called semantic
tokens. By this, we transform the CFG into certain semantic tokens
to avoid the high-cost graph matching.

To solve the second challenge, we design a Siamese network
[10] to measure the similarity of a code pair. Siamese network has
been widely applied in many areas, such as paraphrase scoring,
where the inputs are two sentences and the output is a score of how
similar they are. Given two methods, the Siamese network first
maps them to the same feature space. If they are not a clone pair,
the distance between them will be adjusted larger and larger as the
training progresses. On the contrary, if the pair is a clone pair, the

distance will be adjusted to become smaller with training, making
it possible to detect semantic clones although they are syntactically
dissimilar.

We implement a prototype system, SCDetector, and evaluate
it on two widely used datasets, namely Google Code Jam [1]
and BigCloneBench [2, 45]. In our experiments, the number of
used code pairs are about 1.4 million and 0.28 million in Google
Code Jam dataset and BigCloneBench dataset, respectively. Our
evaluation results show that SCDetector is superior to four state-
of-the-art comparative systems including one token-based method
(i.e., SourcererCC [43]), one tree-based approach (i.e., Deckard [24]),
and two deep learning-based detectors (i.e., RtvNN [53] and ASTNN
[57]). For example, when detecting clones in BigCloneBench, the
F1 scores of SourcererCC [43], Deckard [24], RtvNN [53], and
ASTNN [57] are 14%, 12%, 1%, and 92% while SCDetector is able to
maintain 98% of F1. Moreover, we also examine the scalability of
SCDetector and our comparative systems, the results report that
SCDetector consumes more time to detect code clones compared
to a token-based method (i.e., SourcererCC [43]) because of the
consideration of graph details. However, compared to a traditional
graph-based method (i.e., CCSharp [50]), SCDetector is 14 times
faster on detecting semantic clones.

In summary, this paper makes the following contributions:

• We propose a novel method to transform a CFG into certain
semantic tokens (i.e., tokens with graph details) by centrality
analysis. The generation of semantic tokens avoids high-
cost graph analysis while preserving program semantics on
detecting semantic clones.

• We design a prototype system, SCDetector1, to combine the
scalability of token-based approaches with the accuracy of
graph-based tools for semantic clone detection.

• We conduct comparative evaluations on two widely used
datasets, namely Google Code Jam [1] and BigCloneBench
[2]. Experimental results show that SCDetector is able to
maintain the best performance than other four state-of-
the-art clone detectors (i.e., SourcererCC [43], Deckard [24],
RtvNN [53], and ASTNN [57]).

Paper organization. The remainder of the paper is organized as
follows. Section 2 presents our motivation. Section 3 shows the
definitions. Section 4 introduces our system. Section 5 reports the
experimental results. Section 6 discusses the future work. Section 7
shows the limitations. Section 8 describes the related work. Section
9 concludes the present paper.

2 MOTIVATION
To illustrate how we develop the proposed approach, we use a
simplified example, which is a clone pair in BigCloneBench [2]. As
shown in List 1 and 2, these two methods2 are both to calculate the
greatest common divisor of two integers. In BigCloneBench, the
clone pair is classified into a Type-4 clone, called semantic clone
since they implement the same functionality with syntactically
dissimilar code.

1https://github.com/SCDetector/SCDetector.
2The function ID of gcd1 .java and gcd2 .java in BigCloneBench are 28,840 and 428,867,
respectively.

SCDetector: Software Functional Clone Detection Based on
Semantic Tokens Analysis ASE ’20, September 21–25, 2020, Virtual Event, Australia

We first illustrate how SourcererCC [43] (i.e., a state-of-the-art
token-based clone detector) computes the similarity of twomethods.
SourcererCC [43] uses Overlap to measure the similarity because it
intuitively captures the notion of overlap among different methods.
For instance, given two methods M1 and M2, the overlap similarity
S(M1, M2) is calculated as the ratio between the number of same
tokens shared by M1 and M2 and the maximum number of tokens
in M1 and M2.

S(M1,M2) = |M1
⋂

M2 |
𝑚𝑎𝑥 (|M1 |, |M2 |)

We conduct lexical analysis to parse the methods into several
tokens. The analysis results show that the number of tokens
in gcd1.java and gcd2.java is 38 and 32, respectively. Then the
same tokens shared by gcd1.java and gcd2.java are obtained for
computing the overlap similarity. We observe that there are 19 same
tokens shared by these two methods, in other words, the overlap
similarity of gcd1.java and gcd2.java is 19/38=0.5. The default setting
of similarity threshold in SourcererCC is 70%, which means that
SourcererCC reports two methods as a clone pair only when the
similarity of them is larger than 70%. In this case SourcererCC will
cause a false negative by not reporting methods in gcd1.java and
gcd2.java as a clone pair.

1 p r i v a t e long gcd (long a , long b) {
2 whi l e (b != 0) {
3 l ong t = a % b ;
4 a = b ;
5 b = t ;
6 }
7 r e t u r n a ;
8 }

List 1: gcd1.java

1 pu b l i c s t a t i c i n t GCD(i n t a , i n t b) {
2 i f (b == 0) r e t u r n a ;
3 r e t u r n GCD(b , a % b) ;
4 }

List 2: gcd2.java

To achieve a more accurate clone detection, we need to in-
corporate information on CFGs to reflect program semantics. To
achieve a scalable clone detection, we plan to distill the topology
of CFGs and program semantics into certain tokens with their
corresponding degree. First, we use Soot [3] to conduct static
analysis to obtain the CFGs of gcd1.java and gcd2.java where each
node is a basic block. Figure 1 presents the two CFGs, it is obvious
that although these two methods are syntactically different, their
CFGs are structurally similar because they are all designed to
achieve the same functionality. Second, we dig out the degree of
each basic block and assign the degree value to each token in a
basic block. Finally, we sum the degree of the same token in all
basic blocks and treat it as the weight of the token. For example,
the degree3 of basic blocks ‘a = b’ and ‘b = t’ in gcd1.java are both 2.
Then the weight of tokens a, =, b, t are computed as 2, 2+2=4, 2+2=4,
and 2, respectively. After obtaining the corresponding weight of
all tokens, we compute the overlap similarity by weight instead
of by the number of same tokens shared between two methods.
In this way, the total weight of all tokens in CFGs of gcd1.java
and gcd2.java are 112 and 79, respectively. After overlap analysis,
3The degree consists of in-degree and out-degree.

this := @this

a := @parameter0

label0 : nop

b := @parameter1

temp$0 = b cmp 0L

if temp$0 == 0 goto label2

goto label1 label2 : nop

label1 : nop return a

temp$1 = a % b

t = temp$1

a = b

b = t

goto label0

a := @parameter0

b := @parameter1

if b == 0 goto label0

goto label1 label0 : nop

label1 : nop return a

temp$0 = a % b

temp$1 = GCD (b, temp$0)

return temp$1

CFG of gcd1.java CFG of gcd2.java

a := @parameter0

b := @parameter1

if b == 0 goto label0

goto label1 label0 : nop

label1 : nop return a

temp$0 = a % b

temp$1 = GCD (b, temp$0)

return temp$1

 public static int GCD(int a, int b) {

 if (b == 0) return a;

 return GCD(b, a % b);

 }

2/9=0.22

3/9=0.33

2/9=0.22

2/9=0.22

1/9=0.11

1/9=0.11

if: 0.33

b: 0.33

==: 0.33

0: 0.33

goto: 0.33

label0: 0.33

1/9=0.11

2/9=0.22

2/9=0.22

2/9=0.22

return: 0.11

a: 0.11

return: 0.11

temp$1: 0.11

label0: 0.22

:: 0.22

nop: 0.22

return:

0.11 + 0.11 = 0.22

label0:

0.33 + 0.22 = 0.55

Program Function Control Flow Graph Degree Centrality

Static Analysis Centrality Analysis

Semantic Tokens

GRU

{sV1, sV2, sV3, …, sVn}

word2vec

Vector

Veclabel0*0.55 Vecreturn*0.22 Vecn*Cn……

GRU Encoder

Vector Representation

Figure 1: Control flow graphs of gcd1.java and gcd2.java

we find that the weight of the same tokens shared by these two
graphs is 70. Therefore, the overlap similarity can be calculated as
70/112=0.625 which is greater than 19/38=0.5.

However, clone detectionmay not be accurate if we only consider
the degree of a basic block as the weight in a graph. For example,
suppose that there are two CFGs, namely cfg1 and cfg2, the number
of basic blocks of these two graphs are 201 and 21, respectively. The
degree of two basic blocks (bb1 in cfg1 and bb2 in cfg2) are both 10.
It is obvious that the weights of bb1 and bb2 are different because
bb1 in cfg1 is associated with half (i.e., 10/20=0.5) of the other basic
blocks while bb2 in cfg2 is only associated with 5% (i.e., 10/200=0.05)
of other basic blocks.

Table 1: The similarity of different types of tokens between
gcd1.java and gcd2.java

Token Type OriToken_Num DegreeToken_Num
No Normalization Normalization

gcd1.java 38 112 8
gcd2.java 32 79 8.7778
Same_Num 19 70 6.3889
Similarity 0.5 0.625 0.7986

Therefore, we compute another weight of tokens by normalizing
the sum of degree. In other words, the weight of a token is
normalized by dividing by the maximum possible degree in a graph
N-1 where N is the number of nodes in the graph. As shown in
Figure 1, the number of basic blocks in gcd1.java and gcd2.java
are 15 and 10, respectively. Therefore, the normalized weight
of all tokens in these two graphs can be computed as 112/(15-
1)=8 and 79/(10-1)=8.7778, respectively. Similarly, we discover
that the normalized weight of the same tokens shared by these
two graphs is 6.3889. In other words, the overlap similarity will
be 6.3889/8.7778=0.7986 which is the highest among the three
calculated similarities presented in Table 1.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Y. Wu, D. Zou, S. Dou, S. Yang, W. Yang, F. Cheng, H. Liang, and H. Jin

In conclusion, gcd1.java and gcd2.java will not be detected as a
clone pair if we only consider the frequency or total degree as the
weight of each token. However, when we use the normalized degree
as the graph details to conduct similarity computation, the code
pair can be detected as a clone pair. In other words, transforming a
graph representation into tokens with normalized degrees may be
a great candidate for handling semantic clones.

Therefore, based on the observation, we propose a novel method
by transforming the graph details into tokens with normalized
degrees for semantic clone detection.

3 DEFINITIONS
Before introducing our proposed system, we first describe the
formal definitions that we use throughout the paper.

1 / / o r i g i n a l
2 p r i v a t e long gcd (long a , long b) {
3 whi l e (b != 0) {
4 l ong t = a % b ;
5 a = b ;
6 b = t ;
7 }
8 r e t u r n a ;
9 }
10
11 / / Type−1
12 p r i v a t e long gcd (long a , long b) {
13 whi l e (b != 0) {
14 l ong t = a % b ;
15 a = b ;
16 b = t ;
17 }
18 r e t u r n a ;
19 }
20
21 / / Type−2
22 p r i v a t e long gcd (long m, long n) {
23 whi l e (n != 0) {
24 l ong t = m % n ;
25 m = n ;
26 n = t ;
27 }
28 r e t u r n m;
29 }
30
31 / / Type−3
32 pu b l i c s t a t i c i n t ca l cu la teGCD (i n t a , i n t b) {
33 whi l e (b != 0) {
34 i n t t = a ;
35 a = b ;
36 b = t % b ;
37 }
38 r e t u r n a ;
39 }
40
41 / / Type−4
42 pu b l i c s t a t i c i n t GCD(i n t a , i n t b) {
43 i f (b == 0) r e t u r n a ;
44 r e t u r n GCD(b , a % b) ;
45 }

List 3: Examples of different clone types

3.1 Clone Type
In our paper, we use the following well-accepted definitions [11, 41]
of code clone types.

• Type-1 (textual similarity): Identical code fragments,
except for differences in white-space, layout, and comments.

• Type-2 (lexical similarity): Identical code fragments, ex-
cept for differences in identifier names and literal values, in
addition to Type-1 clone differences.

• Type-3 (syntactic similarity): Syntactically similar code
fragments that differ at the statement level. The fragments
have statements added, modified and/or removed with
respect to each other, in addition to Type-1 and Type-2 clone
differences.

• Type-4 (semantic similarity): Syntactically dissimilar code
fragments that implement the same functionality.

To elaborate on the different types of clones, List 3 presents an
example from Type-1 to Type-4 clones. The original method is to
compute the greatest common divisor of two numbers. The Type-1
clone (starting in line 12) is identical to the original method. The
Type-2 clone (starting in line 22) differs only in identifiers name (i.e.,
𝑚 and 𝑛 instead of 𝑎 and 𝑏). Obviously, the two types mentioned
above are easy to detect. The Type-3 clone (starting in line 32) is
syntactically similar but differs at the statement level. The first line
in Type-3 (line 32) is totally different from the origin (line 2). The
method name and types of parameters are all changed. In addition, it
calculates the greatest common divisor in a similar but not identical
way. Detecting Type-3 clones is harder than the previous two types.
Finally, the Type-4 clone (starting in line 42) iterates to compute the
greatest common divisor which is a completely different way. Its
lexical and syntactic are dissimilar to the original method. Therefore,
it requires an in-depth understanding of code fragments to detect
Type-4 clones.

3.2 Code Granularity
We also specify a granularity unit which refers to the scale of a
code fragment.

• Token: This is the minimum unit the compiler can under-
stand. For example, in the statement ‘int i = 0;’ five tokens
exist: int, i, =, 0, and ;.

• Line: This represents a sequence of tokens delimited by a
new-line character.

• Function: This is a collection of consecutive lines that
perform a specific task.

• File: This contains a set of functions. A file may in fact
contain no functions. However, most source files usually
contain multiple functions.

• Program: This is a collection of files.
In summary, a program is a collection of files containing

functions, and a function is a collection of lines that are composed
of tokens. Code cloning can occur at any of the listed granularity
units. File-level and program-level code clone detection is too coarse
while line-level and token-level may detect manymeaningless clone
pairs (e.g., ‘int i = 0;’ and ‘int j = 0;’ may be detected as a clone pair).
Therefore, we take a function as our processing granularity since it
implements a specific functionality.

3.3 Centrality
Prior work has validated the effectiveness of centrality analysis
on different areas, such as biological network [23], co-authorship
network [36], transportation network [21], criminal network [13],
and affiliation network [16]. The wide usage of centrality indicates

SCDetector: Software Functional Clone Detection Based on
Semantic Tokens Analysis ASE ’20, September 21–25, 2020, Virtual Event, Australia

a, b, c

a, d d, f

basic block1

basic block2 basic block3

Static Analysis

Program

Function

a, b, c

a, d d, f

C1

C2 C3

Centrality Analysis

To obtain the centrality

of all basic blocks

To obtain the CFG of a

program function

a: C1 + C2

b: C1

c: C1

d: C2 + C3

f: C3

CNN

Tokens Embedding

To embed these weighted

tokens into a vector

Program

Processing

Phase

Vector

Clone Detection Phase

Program Functions

Program Processing

LSH Searching

Clone Report

Vectors

a, b, c

a, d d, f

basic block1

basic block2 basic block3

Static Analysis

Program

Function

a, b, c

a, d d, f

C1

C2 C3

Centrality Analysis

To obtain the centrality

of all basic blocks

To obtain the CFG of a

program function

a: C1 + C2

b: C1

c: C1

d: C2 + C3

f: C3

word2vec

Tokens Embedding

To embed these weighted

tokens into a vector

Program

Processing

Phase

Vector

Clone Detection Phase

Program Functions

Program Processing

LSH Searching

Clone Report

Vectors

GRU

Encoder

{sV1, sV2, sV3, …, sVn}

Static Analysis

Centrality Analysis

word2vec

Semantic

Tokens

GRU

Encoder

Share weights

function1

V1 V2

Distance(V1, V2)

probability

Control Flow

Graph

{sV'1, sV'2, sV'3, …, sV'n}

Static Analysis

Centrality Analysis

word2vec

Semantic

Tokens

function2

Control Flow

Graph

a, b, c

a, d d, f

basic block1

basic block2 basic block3

Static Analysis

Program

Function

a, b, c

a, d d, f

C1

C2 C3

Centrality Analysis

To obtain the centrality

of all basic blocks

To obtain the CFG of a

program function

a: C1 + C2

b: C1

c: C1

d: C2 + C3

f: C3

GRU Encoder

To embed these semantic

tokens into a vector

VectorGRU

GRU

{sV1, sV2, sV3, …, sVn}

Static Analysis

Centrality Analysis

word2vec

Semantic

Tokens

function1

V1

Distance(V1, V2)

probability

Control Flow

Graph

Clone Detection

GRU

Static Analysis

Centrality Analysis

word2vec

Semantic

Tokens

function2

V2

Control Flow

Graph

Share weights

{sV'1, sV'2, sV'3, …, sV'n}

Figure 2: System architecture of SCDetector

that it is very useful and has the ability to retain the network
structural properties for network analysis.

Centrality concepts were first developed in social network
analysis which quantifies the importance of a node in the network.
There has been proposed different centrality measures in a social
network, such as degree centrality [18], closeness centrality [18],
betweenness centrality [17], and katz centrality [29]. Prior work [54]
has suggested that degree centrality can achieve the highest
efficiency while maintaining high effectiveness on graph analysis
among the listed centrality measures. Therefore, in order to conduct
more scalable code clone detection, we choose degree centrality to
develop our proposed system. The degree centrality [18] of a node
is defined as the fraction of nodes it is connected to. The degree
centrality values are normalized by dividing by the maximum
possible degree in a graph 𝑁 -1 where 𝑁 is the number of nodes in
the graph. Note that 𝑑𝑒𝑔(𝑣) is the degree of node 𝑣 .

𝐶𝐷 (𝑣) = 𝑑𝑒𝑔 (𝑣)
𝑁−1

4 SYSTEM ARCHITECTURE
In this section, we introduce our proposed system, namely SCDe-
tector (Semantic Clone Detector).

4.1 System Overview
As shown in Figure 2, SCDetector consists of three main phases:
Static Analysis, Centrality Analysis, and Clone Detection.

• Static Analysis: This phase aims to extract the CFG of a
method based on static analysis, where each node is a basic
block. The input in this phase is a method while the output
is the CFG of the method.

• Centrality Analysis: In this phase, we first dig out the
centrality of each basic block of the CFG obtained from
static analysis. Then we assign the centrality to each token

in a basic block and sum the centrality of the same token
in different basic blocks. The outputs are tokens with graph
details (i.e., centrality), called semantic tokens.

• Clone Detection: Given a pair of code methods, the corre-
sponding semantic tokens are fed into a Siamese network.
The output is the probability that these two methods are a
clone pair. If the probability is large than 0.5, we identify that
they are a pair of clones. The Siamese network is trained
first by using labeled code pairs.

4.2 Static Analysis
In this paper, we aim to combine the scalability of token-based
methods with the accuracy of graph-based methods for semantic
clone detection. Therefore, we first conduct static analysis to extract
the graph representation of a program. Because the programming
language of the experimental dataset is Java, we implement our
static analysis based on a java optimization framework, namely
Soot [3], which has been used by many papers [48, 55]. In fact,
the purpose of static analysis is to convert a method into a graph
representation. It is not limited to which programming language
(e.g., Java and C/C++) the method is since different programming
languages have corresponding static analysis tools to analyze them.
For example, we leverage Soot [3] to obtain the CFG of a Java
method while others can use Joern [4] to extract the CFG of a C
method.

To better illustrate the different phases involved in our system,
we choose the method in List 2 as an example and present a more
clear description in Figure 3 about the three main steps.

4.3 Centrality Analysis
Instead of using traditional graph matching to measure the graph
similarity of two graphs, we treat a CFG as a social network
and conduct centrality analysis to excavate the graph details for
more efficient similarity computation. Centrality concepts were
first developed in social network analysis which quantify the
importance of a node in the network and have the potential to unveil
the structural patterns of the network. Many different types of
centrality measures (e.g., degree centrality and closeness centrality)
have been proposed for network analysis in different areas. In
this paper, we select degree centrality to commence our centrality
analysis since degree centrality is able to achieve the highest
scalability while maintaining high effectiveness on graph analysis
among many centrality measures [54].

Given a CFG, we first extract the degree centrality of all basic
blocks in the graph. A basic block is composed of several tokens,
which can be obtained by lexical analysis. For example, basic clock
‘if b == 0 goto label0’ consists of six tokens which are if, b, ==, 0,
goto, and label0. After degree centrality analysis, we assign the
corresponding centrality to all tokens in a basic block and compute
the total centrality of the same token in different basic blocks. To
better describe the main steps, we present a detailed example in
Figure 3. As shown in Figure 3, the degree centrality of two basic
blocks ‘return a’ and ‘return temp$1’ are both 0.11. Then the total
degree centrality of token return can be computed as 0.11+0.11=0.22.
After centrality analysis, we can obtain the corresponding total

ASE ’20, September 21–25, 2020, Virtual Event, Australia Y. Wu, D. Zou, S. Dou, S. Yang, W. Yang, F. Cheng, H. Liang, and H. Jin

this := @this

a := @parameter0

label0 : nop

b := @parameter1

temp$0 = b cmp 0L

if temp$0 == 0 goto label2

goto label1 label2 : nop

label1 : nop return a

temp$1 = a % b

t = temp$1

a = b

b = t

goto label0

a := @parameter0

b := @parameter1

if b == 0 goto label0

goto label1 label0 : nop

label1 : nop return a

temp$0 = a % b

temp$1 = GCD (b, temp$0)

return temp$1

CFG of gcd1.java CFG of gcd2.java

a := @parameter0

b := @parameter1

if b == 0 goto label0

goto label1 label0 : nop

label1 : nop return a

temp$0 = a % b

temp$1 = GCD (b, temp$0)

return temp$1

public static int GCD(int a,

int b) {

 if (b == 0) return a;

 return GCD(b, a % b);

}

2/9=0.22

3/9=0.33

2/9=0.22

2/9=0.22

1/9=0.11

1/9=0.11

if: 0.33

b: 0.33

==: 0.33

0: 0.33

goto: 0.33

label0: 0.33

1/9=0.11

2/9=0.22

2/9=0.22

2/9=0.22

return: 0.11

a: 0.11

return: 0.11

temp$1: 0.11

label0: 0.22

:: 0.22

nop: 0.22

return:

0.11+0.11=0.22

label0:

0.33+0.22=0.55

Program Function Control Flow Graph Degree Centrality

Static Analysis Centrality Analysis

Semantic Tokens

GRU

{sV1, sV2, sV3, …, sVn}

word2vec

Vector

Veclabel0*0.55 …

GRU

Vector Representation

… Vecreturn*0.22 …

Figure 3: Program encoder phase of SCDetector

degree centrality of all tokens in a CFG. We call these tokens with
total degree centrality as semantic tokens.

In brief, the input of centrality analysis is a CFG and the outputs
are tokens with graph details (i.e., centrality), called semantic
tokens.

4.4 Clone Detection
Deep learning generally refers to a series of machine learning
algorithms built on a neural network structure that contains multi-
ple layers of nonlinear transformations to abstract and learn the
representation of data. These methods provide effective solutions
due to their powerful feature learning ability. They have greatly
promoted the progress of image processing, language recognition,
and other fields, and have also attracted wide attention in the field
of natural language processing.

After centrality analysis, the CFG of a method is transformed
into certain semantic tokens. As a matter of fact, these tokens are
indeed words. If we sort these words according to the first letter,
then these words can be regarded as a sentence. Therefore, we
can apply techniques in the field of natural language processing
to encode the sentence into vector representation for efficiently
similarity computation.

Long Short Term Memory (LSTM [56]) and Gated Recurrent Unit
(GRU [8, 47]) are the most widely used deep learning models in
natural language processing because of the high effectiveness on
text processing. Prior studies [57] have validated that GRU can
achieve almost the same performance as LSTM while requires less
training time on processing the same task. Therefore, we prefer
GRU in our deep learning model.

To detect clone pairs, we propose to use a Siamese architecture
neural network [10] which is best suited for similarity comparison
of two objects. Siamese neural network is a class of neural network
architectures that contains two identical subnetworks, whichmeans
that they have the same configuration with the same parameters
and weights. It has been widely applied in many areas, such

G
R

U

G
R

U

G
R

U...

Embedding1
Embedding2

…
Embeddingn

Token1
Token2

…
Tokenn

Sequence = n

Input

100

100

100

50 50 50

G
R

U

G
R

U

G
R

U...

Embedding1
Embedding2

…
Embeddingn

Token1
Token2

…
Tokenn

Sequence = n

Input

100

100

100

50 50 50

Comparator network

Manhattan Distance

VI

VI

Token1*d1

Token2*d2

…

Tokenn*dn

w
o
rd

2
v
e

c

Vec1*d1

Vec2*d2

Vecn*dn

……

GRU

GRU

GRU

……

Vectors
Semantic

Tokens

Two Identical

Subnetworks

Token'1*d'1
Token'2*d'2

…

Token'm*d'm

w
o
rd

2
v
e

c

Vec'm*d'm

……

Vec'1*d'1

Vec'2*d'2

GRU

……

GRU

GRU

probability
of input 1 & 2

are a clone pair

input 1

input 2

Comparator

network

(Distance)

Figure 4: Siamese architecture of SCDetector

as paraphrase scoring, where the inputs are two sentences and
the output is a score of how similar they are. One important
characteristic of using Siamese neural network is that the data
set can be enlarged by using pairs of inputs instead of single ones.
Given n samples of a class, there will be 𝑛 ∗ (𝑛 − 1)/2 positive pairs
and many negative pairs. Another advantage of Siamese network
is that sharing weights across subnetworks making it require fewer
parameters to train for than a plain architecture with the same
number of layers.

Figure 4 presents the Siamese architecture neural network used
in SCDetector. The two identical subnetworks are two GRU neural
networks sharing the same weights. The inputs of a GRU network
are certain semantic tokens (i.e., tokens with total degree centrality)
obtained by centrality analysis. We first train embeddings of
tokens using word2vec [38] to convert a token into a fix-length
vector whose dimension is set to be 100. After multiplying by
the corresponding total degree centrality, the semantic vectors
are then fed into two identical GRU subnetworks. The purpose
of a one-layer GRU subnet is to learn the mapping from the

SCDetector: Software Functional Clone Detection Based on
Semantic Tokens Analysis ASE ’20, September 21–25, 2020, Virtual Event, Australia

variable-length sequence space of 100-dimensional vectors to 50-
dimensional. Finally, a comparator network takes inputs of these
two subnetworks’ outputs to compute the distance. In practice, the
distance measure can be adopted from several different measures,
such as Manhattan distance and Cosine distance. In the paper, we
leverage Cosine distance as our distance measure while others can
use other measures. Moreover, the loss function used in these
two subnetworks to penalize the incorrect classification is cross-
entropy. The Siamese network is trained using Root Mean Square
Prop (RMSProp) with a learning rate of 0.0001. The output of the
trained Siamese network is the probability that two input methods
are a clone pair. We claim that two methods are a pair of clones if
the value is above 0.5.

5 EXPERIMENTS
In this section, we aim to answer the following research questions:

• RQ1: What is the effectiveness of SCDetector on detecting
different types of code clones?

• RQ2: How the use of semantic tokens and Siamese network
contribute to the effectiveness of SCDetector on detecting
semantic code clones?

• RQ3: What is the time performance of SCDetector compared to
other state-of-the-art clone detectors?

5.1 Experimental Datasets
We conduct our evaluations on two datasets: Google Code Jam
[1] and BigCloneBench [2]. Programs in Google Code Jam [1] are
collected from an online programming competition held by Google.
In our experiment, we use the same dataset collected by [58], which
consists of 1,669 projects from 12 different competition problems.
As discussed in [58], projects for solving the same problem are
functionally similar while those for different problems are dissimilar.
Moreover, very few projects within a competition problem are
syntactically similar. Therefore, we can assume that code clone
pairs in the same problem are most likely to be semantic clones (i.e.,
Type-4 clones). The total number of similar and dissimilar method
pairs are 275,570 and 1,116,376, respectively.

The second dataset used in our experiment is BigCloneBench
[2] dataset, which composes of over 6,000,000 tagged clone pairs
from 25,000 systems. The code granularity of clone pairs in
BigCloneBench [2] is also function-level, and each clone pair is
manually assigned a corresponding clone type. Because of the
ambiguous boundary between Type-3 and Type-4, these two clone
types are further divided into three subcategories by a similarity
score measured by line-level and token-level after Type-1 and
Type-2 normalizations, as follows: i) Strongly Type-3 (ST3) with
a similarity between [0.7, 1.0), ii) Moderately Type-3 (MT3) with a
similarity between [0.5, 0.7), and iii)Weakly Type-3/Type-4 (WT3/T4)
with a similarity between [0.0, 0.5).

5.2 Experimental Settings
For static analysis, we leverage a java optimization framework (i.e.,
Soot [3]) to generate the CFG of each method. Before obtaining the
graph representation, we first need to compile the java source code
into the corresponding .class. Then Soot is able to generate the CFG

Table 2: Descriptions of used metrics in our experiments
Metrics Abbr Definition

True Positive TP #samples correctly classified as
clone pairs

True Negative TN #samples correctly classified as
dissimilar pairs

False Positive FP #samples incorrectly classified
as clone pairs

False Negative FN #samples incorrectly classified
as dissimilar pairs

Precision P TP/(TP+FP)
Recall R TP/(TP+FN)

F-measure F1 2*P*R/(P+R)

from the .class. In Google Code Jam dataset, we find that several
programs report compilation errors such as ‘no such file or directory’.
In order to correctly compile these programs, we then manually
check them and find that the functionality of these programs is to
process and analyze the data in an input file. After creating a file
with the corresponding name in a program, we are able to generate
the CFG. For BigCloneBench [2], because it does not provide the
dependency libraries for most of the source code files, we select
these successfully compiled files as our final dataset. The total
number of final clone pairs is 280,390 including 8,139 Type-1 clones,
3,292 Type-2 clones, 3,469 Strongly Type-3 clones, 7,606 Moderately
Type-3 clones, and 256,857 Weakly Type-3/Type-4 clones. Because
of the lack of false tagged clone pairs in our BigCloneBench dataset,
we randomly choose 280,000 dissimilar pairs from Google Code Jam
dataset to complete the training and testing phase. For centrality
analysis, we use a python library, networkx [5] to extract the degree
centrality of all basic blocks in a CFG. Moreover, the Siamese neural
network is implemented with PyTorch [6].

There has been proposed many approaches to detect code clones
such as Iman [31], Rochelle [15], Toshihiro [27], Lingxiao [25],
Abdullah [44], Raghavan [34], Jens [32], and Min [50]. However,
most of them are not open-source. Therefore, We only compare
SCDetector with the following state-of-the-art clone detection
approaches:

• SourcererCC [43]: a state-of-the-art token-based clone
detection tool.

• Deckard [24]: a popular AST-based clone detector.
• RtvNN [53]: a RNN-based clone detector that operates on
source code tokens and ASTs.

• ASTNN [57]: a state-of-the-art deep learning-based func-
tional clone detector that applies GRU on ASTs.

We run all experiments on a server with 8 cores of CPU and a
GTX 1080 GPU. For both datasets, we first randomly divide them
into ten subsets, then the seven subsets are used to train a model,
the other two subsets are used to validate, and the last subset is
used to test. We totally conduct five times and report the average
results in our evaluations. Moreover, the widely used metrics to
measure the detection performance are illustrated in Table 2.

5.3 RQ1: Overall Effectiveness
5.3.1 Results on Google Code Jam. As mentioned before, projects
in Google Code Jam for solving the same problem are functionally
similar, and very few projects within a competition problem are

ASE ’20, September 21–25, 2020, Virtual Event, Australia Y. Wu, D. Zou, S. Dou, S. Yang, W. Yang, F. Cheng, H. Liang, and H. Jin

syntactically similar. Therefore, code clone pairs in the same
problem are most likely to be semantic clones (i.e., Type-4 clones).
In the paper, we assume that Google Code Jam dataset is a
semantic code clone dataset and conduct experiments to examine
the effectiveness of SCDetector on semantic clones detection.

Since the dataset used in this evaluation is the same as in [58],
we directly adopt the results of Deckard [24] and RtvNN [53] as
reported in [58]. Table 3 shows the detection results of SourcererCC
[43],Deckard [24], RtvNN [53], and SCDetector. We ignore the result
of ASTNN [57] because it takes a lot of time and some errors occur
when processing code pairs in Google Code Jam dataset.

Table 3: Results on Google Code Jam dataset
Recall Precision F1

SourcererCC 0.11 0.43 0.17
Deckard 0.44 0.45 0.44
RtvNN 0.90 0.20 0.33

SCDetector 0.87 0.81 0.82

SourcererCC achieves low recall and precision. It is reasonable
that SourcererCC only considers the overlap similarity of tokens
between twomethods. As discussed in section 2, given twomethods
M1 and M2, the overlap similarity S(M1, M2) is calculated as the
ratio between the number of same tokens shared byM1 andM2 and
the maximum number of tokens in M1 and M2. Therefore, it can
not handle semantic clones because of the lack of consideration of
program semantics.

Deckard clusters the characteristic vectors of each AST subtree
using predefined rules of twomethods to detect clones. However, we
find that more than half of the code clone pairs for solving the same
competition problem have diverse parser tree structures, resulting
in low precision and recall when detecting clones in Google Code
Jam dataset.

RtvNN is able to achieve the highest recall but very low precision.
After we manually check the detected pairs, we find that almost all
the code pairs (i.e., similar pairs and dissimilar pairs) are detected as
clones. It is because two functionally dissimilar methods may share
syntactically similar components (i.e., IO operations) while RtvNN
can not handle these issues. As discussed in [58], the distances
between most methods calculated by RtvNN are in the range of [2.0,
2.8]. By lowering the distance threshold, the precision of RtvNN can
be increased to 90%, however, its recall also drops quickly (down to
less than 10%). As a result, it can only achieve 0.325 F1 score at the
highest.

In conclusion, SCDetector is able to handle most of semantic
code clones in Google Code Jam dataset compared to SourcererCC,
Deckard, and RtvNN.

5.3.2 Results on BigCloneBench. On the one hand, prior work
has validated that graph-based clone detectors can handle certain
semantic clones. On the other hand, experimental results in a recent
study (i.e., ASTNN [57]) have verified thatASTNN [57] is superior to
program dependency graph-based (PDG-based) methods. Therefore,
we only conduct comparative experiments to ASTNN instead of
other PDG-based methods [32, 34, 50] in this evaluation.

Table 4 and 5 present the evaluation results of SourcererCC,
Deckard , RtvNN, ASTNN, and SCDetector. SCDetector outperforms

Table 4: F1 for each clone type in BigCloneBench
T1 T2 ST3 MT3 WT3/T4

SourcererCC 1.00 1.00 0.65 0.20 0.02
Deckard 0.73 0.71 0.54 0.21 0.02
RtvNN 1.00 0.97 0.60 0.03 0.00
ASTNN 1.00 1.00 0.99 0.98 0.92

SCDetector 1.00 1.00 0.99 0.99 0.97

all the other detectors for both recall and precision. The F1 scores
are encouraging as they show that SCDetector is able to handle
different clone types. For example, when detecting Weakly Type-
3/Type-4 clones, the F1 scores of SourcererCC, Deckard, RtvNN, and
ASTNN are 2%, 2%, 0%, and 92% while SCDetector is able to maintain
97% of F1.

Table 5: Results on BigCloneBench dataset
Recall Precision F1

SourcererCC 0.07 0.98 0.14
Deckard 0.06 0.93 0.12
RtvNN 0.01 0.95 0.01
ASTNN 0.94 0.92 0.93

SCDetector 0.97 0.98 0.98

As a matter of fact, the recall, precision, and F1 scores of
SCDetector are higher than those on Google Code Jam dataset.
To find out the reason why SCDetector performs better on Big-
CloneBench dataset, we manually examine several Type-4 clone
pairs from BigCloneBench dataset and Google Code Jam dataset,
respectively. The inspection results show that many of clone pairs
in BigCloneBench share similar code structure while only differ on
the sequence of the invoked API calls because these clone pairs are
intentionally constructed by several experts. However, programs in
Google Code Jam dataset are all implemented by different students
or other programmers from scratch. Therefore, they are more
difficult to be detected as a clone pair in Google Code Jam dataset
compared to BigCloneBench dataset.

In conclusion, SCDetector has the ability to detect different types
of code clones.

5.4 RQ2: Semantic Tokens and Siamese
Network

In order to check the effectiveness of semantic tokens and Siamese
network on detecting semantic clones, we conduct several single
factor experiments. In the first experiment, we take inputs of the
original tokens obtained from the source code of a method by lexical
analysis into a GRU encoder. Given two methods, the outputs of
the GRU encoder are two vectors. After obtaining the similarity
(i.e., normalization) of two vectors by analyzing the Cosine distance
between them, we claim that the two methods are a clone pair
when the similarity is greater than 70%. In our second experiment,
the original tokens are fed into a Siamese network including two
identical GRU subnetworks. The output of the Siamese network
is the probability that two input methods are a clone pair. Two
methods are detected as a clone pair if the probability is larger than
0.5. In our final experiment, we implement SCDetector, which means
that methods are first transformed into certain semantic tokens
(i.e., tokens with the total degree centrality) and then fed into a
Siamese GRU network to train and test. Similarly, if the probability

SCDetector: Software Functional Clone Detection Based on
Semantic Tokens Analysis ASE ’20, September 21–25, 2020, Virtual Event, Australia

is larger than 0.5, these twomethods are treated as a clone pair. GRU
networks used in these three experiments are the same networks.

Table 6: Results on Google Code Jam dataset
Recall Precision F1

GRU-OriginalTokens 0.29 0.25 0.27
Siamese-GRU-OriginalTokens 0.72 0.55 0.53
Siamese-GRU-SemanticTokens

(SCDetector) 0.87 0.81 0.82

Table 6 presents the detection results including recall, precision,
and F1 of our three single factor experiments on Google Code Jam
dataset. Such results indicate that SCDetector is able to perform best
because of the preservation of graph semantics (i.e., CFG) and the
utilization of a Siamese network. For instance, when we only input
the original tokens obtained from the source code of a method by
lexical analysis into a GRU encoder to detect clones, the F1 is only
27%. However, the F1 is able to maintain 53% when we adopt a
Siamese network to further process the original tokens. We find
that the improvements are mainly because the Siamese network can
adjust the differences between functional similar methods. Given
two methods, the Siamese network first maps the input pair to the
same feature space. If the pair is a clone pair, the distance between
them will be adjusted to be smaller as possible with training. On the
contrary, if it is not a clone pair, the distance will be adjusted larger
and larger. As a matter of fact, clones in Google Code Jam dataset
are implemented by different programmers from scratch, thus these
semantic clones are almost syntactically different. If we only use
a GRU network to encode a method into a vector representation
and then compute the similarity to identify clones, it is generally
difficult to detect such clones since they are almost syntactically
different. However, when we apply a Siamese network to train and
detect clones, the distance of these semantic clone pairs will be
adjusted to become smaller as the training progresses, making it
possible to detect such clones.

Additionally, if we first transform the graph details into semantic
tokens, and then feed these semantic tokens into a Siamese GRU
network to train and detect clones, the F1 is able to increase to
82%. This happens mainly due to the consideration of graph details.
As discussed in Section 2, we present a clone pair which is to
calculate the greatest common divisor of two integers. They belong
to semantic clone since they implement the same functionality
with syntactically dissimilar code. When we compute the overlap
similarity by using original tokens, the pair can not be detected by
SourcererCC. This is because these two methods are implemented
in a completely different way, thus it is difficult to be detected
if we only consider the original tokens. Figure 1 shows the two
CFGs and we can see that these two graphs are structurally similar
since they are designed to achieve the same functionality. In other
words, semantic clones may share some similar subgraphs when we
distill the semantics into a graph representation. Therefore, when
we attach the graph details to tokens, these semantic tokens can
be more effective than using original tokens on semantic clone
detection.

In conclusion, the attachment of graph details to tokens and the
adoption of a Siamese network are both effective on detecting code
clones.

� � � � � �

� 	
 �

� �
� �

� � � �

� � �
 �

�
 � �

� � � � � � � � � 	 	
 � � � � � � � � � � � � � � � � 	
 � � � � � � �
�

� � � �

� � � �

� � � �

� � � �

� � � � �

� � � � �

� � � � �

� � � � �

��
�

	�
�	

�
�
��

�
�	

��
�	

��
�

��

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � �

Figure 5: Time performance of SourcererCC,Deckard,RtvNN,
ASTNN, and SCDetector

5.5 RQ3: Scalability
In this part, we pay attention to the runtime performance of
SCDetector and four comparative systems. In order to test the
scalability of these clone detectors, we randomly select 1,000,000
code pairs from Google Code Jam dataset as our test objects. We
run all tools on these randomly selected code pairs three times and
report the average runtime. For deep learning-based methods, the
complete procedure consists of model training and model testing.
For example, the clone detection procedure of ASTNN consists
of GRU training and GRU testing while SCDetector composes of
Siamese network training and Siamese network testing. Therefore,
in Figure 5, we present the training time and prediction time of
RtvNN, ASTNN, and SCDetector separately.

For SourcererCC and Deckard, they do not need to conduct
the training phase so the training runtime overheads are both
zero. In addition, SourcererCC takes the least time to detect clones
because it is a pure token-based clone detector. Compared to RtvNN,
SCDetector takes less time to train while requires more time to
detect code clones. However, from the experimental results in Table
3, 4, and 5, we can see that the ability of RtvNN on semantic clone
detection is very low. Moreover, as for ASTNN, results in Figure 5
report that SCDetector is more scalable than ASTNN not only on
training phase but also on testing phase. The training time and
testing time of ASTNN are 16,096 seconds and 2,894 seconds while
SCDetector only needs to take 3,076 seconds (i.e., 2,937 seconds for
training and 139 seconds for testing) to complete the whole clone
detection. It is reasonable because the number of hidden layers in
SCDetector is only one which requires less time to train and test.

SCDetector aims to balance the ability of token-based and graph-
based techniques to detect semantic clones. As for token-based
methods, SourcererCC is the most scalable tool that can scale to
very big code and we have presented the runtime overhead in
Figure 5. As for graph-based approaches, we select one state-of-the-
art traditional graph-based clone detection tool namely CCSharp
[50] to compare the scalability. CCSharp aims to solve the problem
of PDG-based tools’ high time cost. It adopts two strategies (i.e.,
PDG’s structure modification and characteristic vector filtering) to

ASE ’20, September 21–25, 2020, Virtual Event, Australia Y. Wu, D. Zou, S. Dou, S. Yang, W. Yang, F. Cheng, H. Liang, and H. Jin

decrease the overall computing quantity. CCSharp is not open-
source and we can not test it on Google Code Jam dataset.
However, they present the scale of their dataset and report the
time performance in their paper. Table 7 shows the details of two
datasets including the total lines of code (LOC), the total number
of methods, and the time performance. Obviously, our randomly
selected 1 million pairs are larger than the dataset in CCSharp.
CCSharp does not need to train, thus the training time is zero. In
reality, the training phase of SCDetector is the most time-consuming
process, however, it is a one-time offline phase. Once the model is
trained, it can be reused to compute the code similarity between
two given methods. Compared to CCSharp, the prediction time of
SCDetector is extremely less than CCSharp. The runtime overhead
on detecting clones is 1,995.9 seconds for CCSharp while is 139
seconds for SCDetector when given a trained model. In other words,
given a trained model, SCDetector is 14 times faster than CCSharp.

Table 7: The scale of datasets used in CCSharp and our
evaluation

Dataset LOC #methods Training
Time

Prediction
Time

PostgreSQL in
CCSharp [50] 86,096 1,134 0 1,995.9

Google Code Jam
(1 million pairs) 98,117 1,669 2,937 139

In summary, because of the consideration of graph details and
the adoption of deep learning, SCDetector requires more time to
detect clones compared to a token-based method (i.e., SourcererCC).
However, compared to a graph-based method (i.e., CCSharp),
SCDetector is 14 times faster due to the transformation of graph
details.

6 DISCUSSIONS
Differences from the most similar systems. The most similar
related methods to SCDetector are Oreo [42] and Centroid [12].
Oreo also applies a Siamese network to detect clones, however,
the inputs of its Siamese network are 24 method-level software
metrics while are certain semantic tokens in SCDetector. Moreover,
since SCDetector takes inputs of semantic tokens, we leverage
two identical one-layer GRU subnetworks to measure the distance
between them. As for Oreo, the Siamese network consists of two
four-layer DNN subnetworks, which are different from SCDetector.
Centroid aims to detect application clones on Android markets, it
uses a geometry characteristic, called centroid, of CFGs to measure
the similarity of methods in two apps. The graph representation
of Centroid is the same as SCDetector, that is, a CFG of a method.
In physics, especially when analyzing forces on a physical object,
people usually use the center of mass (i.e., centroid) to represent an
object. When two objects are identical, their centroids are also
the same. In SCDetector, we regard the CFG of a method as a
social network and apply social-network-centrality analysis to
extract the degree centrality of all basic blocks. Although the
graph representations of Centroid and SCDetector are the same,
the perspective of graph analysis is completely different, that is,
the physical analysis of Centroid and the social network analysis of
SCDetector.

Why SCDetector outperforms the other approaches. The rea-
sons are mainly two-fold. First, SCDetector considers the program
semantics by transforming the CFG of a method into corresponding
semantic tokens. These tokens are used to measure code similarity
of different methods. However, traditional token-based techniques
(e.g., CCFinder [28] and SourcererCC [43]) have no ability to handle
semantic clones since they only care about syntactic level’s code
features rather than semantic level’s details because of the high
time cost of the semantic analysis process. Second, we apply a
Siamese network in SCDetector to train and detect code clones.
Siamese network is best suited for similarity comparison of two
objects. Given two methods, it first maps the input pair to the same
feature space. If they are not a clone pair, the distance between
them will be adjusted larger and larger as the training progresses.
On the contrary, if the pair is a clone pair, the distance will be
adjusted to become smaller with training, making it possible to
detect semantic clones. Through our experimental results, we can
see that the Siamese network can indeed improve the detection
effectiveness. However, as for RtvNN [53] and ASTNN [57], after
obtaining the vector representations, they compute the similarity
directly, making them perform worse than SCDetector.

7 LIMITATIONS
First, the key insight of SCDetector is to transform the CFG of
a method into tokens with graph details. Therefore, we need to
obtain the graph representation first by static analysis. Because
the experimental datasets are implemented in Java, we leverage
a java optimization framework, namely Soot [3] to complete our
static analysis phase. However, Soot [3] requires to successfully
compile the given codes first and then the CFG can be extracted.
It is the reason why we can not use all the files in BigCloneBench
dataset to commence our evaluations. In our future work, we plan
to implement a static analysis tool or leverage other static analysis
tools (e.g., WALA [7]) to generate the CFG of methods from source
code directly.

Second, SCDetector extracts the CFG of a method and detects
clone bymeasuring the similarity of methods. Therefore, SCDetector
can only detect method-level code clones and can not handle clones
in other code granularity units (e.g., line-level). Moreover, copying
a method and then pasting with large number of edits can cause
false negatives by SCDetector since the CFGs of the original method
and the pasted method are significantly different. Such clones are
considered as large-gap clones in [51]. We plan to combine other
network properties with centrality to mitigate the issue.

Third, SCDetector is based on the degree centrality of tokens and
relies on the common tokens between two programs. Although
the extraction of a CFG from a method source code by Soot can
normalize several tokens, SCDetector may cause false negatives
when the same functionality is implemented using different APIs
and different graph structures. We plan to normalize the source
code first and then conduct static analysis to generate abstracted
CFGs for more effective comparison.

Fourth, we generate semantic tokens by analyzing the degree
centrality of all basic blocks in a CFG since the extraction of
degree centrality is the most efficient among several different
centrality measures [54]. However, degree centrality reflects the

SCDetector: Software Functional Clone Detection Based on
Semantic Tokens Analysis ASE ’20, September 21–25, 2020, Virtual Event, Australia

relative number of connections of a node in a CFG and is limited
in representing the graph context. We plan to use more different
centrality measures to find the most suitable centrality that can
balance the effectiveness and the efficiency on code clone detection.

Fifth, since the input of our Siamese network in SCDetector
is semantic tokens, SCDetector may cause false positives when
methods realize different functionalities based on some unique
tokens while having a very similar structure. The most critical
operations of these methods are different, resulting in completely
different semantics. SCDetector can not handle this type of code
clones. We plan to combine the attention [49] with the centrality
of all tokens to mitigate the situation.

Sixth, the degree centrality can quantify the importance of
tokens in a CFG. In SCDetector, the purpose of degree centrality
extraction is to maintain the graph details to achieve a semantic
code comparison. High degree centrality does not indicate high
impact on our final comparison results. In our GRU network, the
inputs of semantic tokens are simply sorted according to the first
letter. We plan to analyze the tokens in the source code first to
obtain more accurate orders of all tokens.

8 RELATEDWORK
In this part, we introduce studies related to code clone detection,
which can be classified into five main categories, as follows: the
text-based, the token-based, the tree-based, the graph-based, and
the metrics-based methods.

For the text-based methods [14, 26, 40], the similarity between
two code snippets are measured in the form of text or strings. [26]
designs a fingerprinting technique to find out code clones. [14]
presents a language-independent method to detect similar codes by
simply line-based string matching. However, these two techniques
do not support Type-3 clone detection. In order to detect more
types of clones, Nicad [40] introduces a two-stage approach which
consists of i) identification and normalization of potential clones
using flexible pretty-printing and ii) similarity computation by
simply text-line comparison using longest common subsequence
algorithm. Although Nicad can detect several Type-3 clones, it has
no ability to handle Type-4 clones since it ignores the program
semantics of given code fragments.

For the token-based techniques [20, 28, 35, 43, 51], tokens are
firstly obtained from program code by lexical analysis. CCFinder
[28] extracts a token sequence from the input code and applies
several rule-based transformations to convert the token sequence
into a regular form for detecting Type-1 and Type-2 clones. In
order to support Type-3 clone detection, SourcererCC [43] has been
designed. It captures the tokens’ overlap similarity among different
methods to detect near-miss Type-3 clones. SourcererCC [43] is
the most scalable code clone detector which can scale to 250M
line code clone detection. However, similar to text-based methods,
token-based approaches can not handle Type-4 clones either.

For the tree-based tools [24, 52, 57], Abstract Syntax Tree (AST) is
used as the code representation to detect code clones. The main idea
of Deckard [24] is to compute characteristic vectors within ASTs
and apply Locality Sensitive Hashing (LSH) to cluster similar vectors
for clone detection. CDLH [52] first transforms ASTs into binary
trees and then adopts Tree-LSTM [46] on these trees to encode them

as vector representations. Finally, these vectors are used to measure
the similarity among different codes. Unlike CDLH [52], ASTNN
[57] splits each large AST into a sequence of small statement trees.
After encoding these statement trees into vectors, a bidirectional
RNN model is used to produce the final vector representation of a
code fragment to discover semantic code clones. These tree-based
tools are able to detect semantic clones, however, they suffer from
low scalability because of the large execution times.

For the graph-based methods [12, 32, 34, 50, 58], program
semantics are firstly distilled into different graph representations,
such as program dependency graph and control flow graph. [32]
and [34] both extract the program dependency graphs of code
fragments and identify similar codes by digging out isomorphic
subgraphs to represent code clones. In an effort to improve the
runtime performance of [32] and [34], CCSharp [50] adopts two
strategies to mitigate the overall computing cost: graph structure
modification and characteristic vector filtering. However, it still
suffers from low scalability on large-scale code clone detection due
to the complexity of graph isomorphism and heavy-weight time
consumption of graph matching.

For the metrics-based approaches [9, 37, 39, 42], metrics can
be obtained from tree or graph representations of source code or
directly from source code. Both [9] and [37] extract metrics from
AST to represent the source code and uses them to identify code
clones. In addition, [39] uses different categories of metrics (e.g.,
classes, coupling, and hierarchical structure) extracted from source
code to detect clones. These methods leverage features from code
to measure the semantic similarity of two code fragments.

9 CONCLUSION
In this paper, we propose a novel method to measure the similarity
of semantic codes, namely SCDetector. SCDetector is a combination
of token-based and graph-based approach. Given a method source
code, we first generate the CFG and then apply centrality analysis to
transform the graph into certain semantic tokens (i.e., tokens with
graph details). Finally, these semantic tokens are fed into a Siamese
network to train a model and use it to detect code clone pairs. We
evaluate SCDetector on two widely used datasets and experimental
results show that SCDetector is superior to other four state-of-the-
art clone detectors (i.e., SourcererCC [43], Deckard [24], RtvNN [53],
and ASTNN [57]). Moreover, the time cost of SCDetector is 14 times
less than a traditional graph-based method (i.e., CCSharp [50]).

ACKNOWLEDGEMENTS
We would thank the anonymous reviewers for their insightful
comments to improve the quality of the paper. This work is
supported by the National Science Foundation of China under Grant
No. 61672249, by the Shenzhen Fundamental Research Program
under Grant No. JCYJ20170413114215614, by the Guangdong
Provincial Science and Technology Plan Project under Grant No.
2017B010124001 and the Key-Area Research and Development
Program of Guangdong Province under Grant No. 2019B010139001.

References
[1] 2017. Google Code Jam. https://code.google.com/codejam/past-contests.

https://code.google.com/codejam/past-contests

ASE ’20, September 21–25, 2020, Virtual Event, Australia Y. Wu, D. Zou, S. Dou, S. Yang, W. Yang, F. Cheng, H. Liang, and H. Jin

[2] 2020. BigCloneBench. https://github.com/clonebench/BigCloneBench.
[3] 2020. A Java optimization framework (Soot). https://github.com/Sable/soot.
[4] 2020. Platform for C/C++ Code Analysis (Joern). https://joern.io.
[5] 2020. Software for complex networks (Networkx). http://networkx.github.io.
[6] 2020. Tensors and Dynamic neural networks in Python with strong GPU

acceleration (PyTorch). https://pytorch.org.
[7] 2020. T.J. Watson Libraries for Analysis (WALA). http://wala.sourceforge.net/w

iki/index.php/Main_Page.
[8] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural

machine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[9] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lague, and Kostas
Kontogiannis. 1999. Measuring clone based reengineering opportunities. In
Proceedings of the 6th International Software Metrics Symposium (ISMS’99). 292–
303.

[10] Pierre Baldi and Yves Chauvin. 1993. Neural networks for fingerprint recognition.
Neural Computation 5, 3 (1993), 402–418.

[11] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo.
2007. Comparison and evaluation of clone detection tools. IEEE Transactions on
Software Engineering 33, 9 (2007), 577–591.

[12] Kai Chen, Peng Liu, and Yingjun Zhang. 2014. Achieving accuracy and scalability
simultaneously in detecting application clones on android markets. In Proceedings
of the 36th International Conference on Software Engineering (ICSE’14). 175–186.

[13] Nigel Coles. 2001. It’s not what you know—It’s who you know that counts.
Analysing serious crime groups as social networks. British Journal of Criminology
41, 4 (2001), 580–594.

[14] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. 1999. A language
independent approach for detecting duplicated code. In Proceedings of the 1999
International Conference on Software Maintenance (ICSM’99). 109–118.

[15] Rochelle Elva and GT. Leavens. 2012. Jsctracker: A semantic clone detection tool
for java code. Technical Report. University of Central Florida.

[16] Katherine Faust. 1997. Centrality in affiliation networks. Social Networks 19, 2
(1997), 157–191.

[17] LC. Freeman. 1977. A set of measures of centrality based on betweenness.
Sociometry 40, 1 (1977), 35–41.

[18] LC. Freeman. 1978. Centrality in social networks conceptual clarification. Social
Networks 1, 3 (1978), 215–239.

[19] DM. German, Massimiliano Di Penta, Yann-Gael Gueheneuc, and Giuliano
Antoniol. 2009. Code siblings: Technical and legal implications of copying code
between applications. In Proceedings of the 6th International Working Conference
on Mining Software Repositories (MSR’09). 81–90.

[20] Nils Göde and Rainer Koschke. 2009. Incremental clone detection. In Proceedings
of the 2009 European Conference on Software Maintenance and Reengineering
(ECSMR’09). 219–228.

[21] Roger Guimera, Stefano Mossa, Adrian Turtschi, and LA Nunes Amaral. 2005.
The worldwide air transportation network: Anomalous centrality, community
structure, and cities’ global roles. the National Academy of Sciences 102, 22 (2005),
7794–7799.

[22] Tomoya Ishihara, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki, and Shinji
Kusumoto. 2012. Inter-project functional clone detection toward building
libraries: an empirical study on 13,000 projects. In Proceedings of the 19th Working
Conference on Reverse Engineering (WCRE’12). 387–391.

[23] Hawoong Jeong, SP. Mason, AL. Barabási, and ZN. Oltvai. 2001. Lethality and
centrality in protein networks. Nature 411, 6833 (2001), 41–42.

[24] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
Deckard: Scalable and accurate tree-based detection of code clones. In Proceedings
of the 29th International Conference on Software Engineering (ICSE’07). 96–105.

[25] Lingxiao Jiang and Zhendong Su. 2009. Automatic mining of functionally
equivalent code fragments via random testing. In Proceedings of the 18th
International Symposium on Software Testing and Analysis (ISSTA’09). 81–92.

[26] J Howard Johnson. 1994. Substring matching for clone detection and change
tracking. In Proceedings of the 1994 International Conference on Software
Maintenance (ICSM’94). 120–126.

[27] Toshihiro Kamiya. 2013. Agec: An execution-semantic clone detection tool.
In Proceedings of the 21st International Conference on Program Comprehension
(ICPC’13). 227–229.

[28] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A
multilinguistic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering 28, 7 (2002), 654–670.

[29] Leo Katz. 1953. A new status index derived from sociometric analysis.
Psychometrika 18, 1 (1953), 39–43.

[30] Iman Keivanloo, Juergen Rilling, and Philippe Charland. 2011. Internet-scale
real-time code clone search via multi-level indexing. In Proceedings of the 18th
Working Conference on Reverse Engineering (WCRE’11). 23–27.

[31] Iman Keivanloo, CK. Roy, and Juergen Rilling. 2012. Sebyte: A semantic clone
detection tool for intermediate languages. In Proceedings of the 20th International
Conference on Program Comprehension (ICPC’12). 247–249.

[32] Raghavan Komondoor and Susan Horwitz. 2001. Using slicing to identify
duplication in source code. In Proceedings of the 2001 International Static Analysis
Symposium (ISAS’01). 40–56.

[33] Rainer Koschke. 2012. Large-scale inter-system clone detection using suffix trees.
In Proceedings of the 16th European Conference on Software Maintenance and
Reengineering (ECSME’12). 309–318.

[34] Jens Krinke. 2001. Identifying similar code with program dependence graphs.
In Proceedings of the 8th Working Conference on Reverse Engineering (WCRE’01).
301–309.

[35] Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder. 2017.
CClearner: A deep learning-based clone detection approach. In Proceedings of the
2017 International Conference on Software Maintenance and Evolution (ICSME’17).
249–260.

[36] Xiaoming Liu, Johan Bollen, ML. Nelson, and Herbert Van de Sompel. 2005. Co-
authorship networks in the digital library research community. Information
Processing & Management 41, 6 (2005), 1462–1480.

[37] Jean Mayrand, Claude Leblanc, and Ettore Merlo. 1996. Experiment on the
automatic detection of function clones in a software system using metrics.
In Proceedings of the 1996 International Conference on Software Maintenance
(ICSM’96). 244–253.

[38] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[39] JF. Patenaude, Ettore Merlo, Michel Dagenais, and Bruno Laguë. 1999. Extending
software quality assessment techniques to java systems. In Proceedings of the 7th
International Workshop on Program Comprehension (IWPC’99). 49–56.

[40] CK. Roy and JR. Cordy. 2008. NICAD: Accurate detection of near-miss intentional
clones using flexible pretty-printing and code normalization. In Proceedings of
the 2008 International Conference on Program Comprehension (ICPC’08). 172–181.

[41] Chanchal Kumar Roy and JR. Cordy. 2007. A survey on software clone detection
research. Queen’s School of Computing TR 541, 115 (2007), 64–68.

[42] Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Pierre Baldi, and Cristina V
Lopes. 2018. Oreo: Detection of clones in the twilight zone. In Proceedings of
the 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (FSE’18). 354–365.

[43] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, CK. Roy, and CV. Lopes. 2016.
SourcererCC: Scaling code clone detection to big code. In Proceedings of the 38th
International Conference on Software Engineering (ICSE’16). 1157–1168.

[44] Abdullah Sheneamer and Jugal Kalita. 2016. Semantic clone detection using
machine learning. In Proceedings of the 15th International Conference on Machine
Learning and Applications (ICMLA’16). 1024–1028.

[45] Jeffrey Svajlenko, JF. Islam, Iman Keivanloo, CK. Roy, and Mohammad Mamun
Mia. 2014. Towards a big data curated benchmark of inter-project code clones.
In Proceedings of the 2014 International Conference on Software Maintenance and
Evolution (ICSME’14). 476–480.

[46] Kai Sheng Tai, Richard Socher, and CD. Manning. 2015. Improved semantic
representations from tree-structured long short-term memory networks. arXiv
preprint arXiv:1503.00075 (2015).

[47] Duyu Tang, Bing Qin, and Ting Liu. 2015. Document modeling with gated
recurrent neural network for sentiment classification. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing (CMNLP’15).
1422–1432.

[48] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2018. Deep learning similarities from different
representations of source code. In Proceedings of the 15th International Conference
on Mining Software Repositories (MSR’18). 542–553.

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, AN.
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need.
In Proceddings of the 2017 Conference on Neural Information Processing Systems
(NIPS’17). 5998–6008.

[50] Min Wang, Pengcheng Wang, and Yun Xu. 2017. CCSharp: An efficient three-
phase code clone detector using modified pdgs. In Proceedings of the 24th Asia-
Pacific Software Engineering Conference (APSEC’17). 100–109.

[51] Pengcheng Wang, Jeffrey Svajlenko, Yanzhao Wu, Yun Xu, and CK. Roy. 2018.
CCAligner: A token based large-gap clone detector. In Proceedings of the 40th
International Conference on Software Engineering (ICSE’18). 1066–1077.

[52] Huihui Wei and Ming Li. 2017. Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information in source code.
In Proceedings of the 2017 International Joint Conferences on Artificial Intelligence
(IJCAI’17). 3034–3040.

[53] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. In Proceedings of
the 31st International Conference on Automated Software Engineering (ASE’16).
87–98.

[54] Yueming Wu, Xiaodi Li, Deqing Zou, Wei Yang, Xin Zhang, and Hai Jin. 2019.
MalScan: Fastmarket-widemobilemalware scanning by social-network centrality
analysis. In Proceedings of the 34th International Conference on Automated Software
Engineering (ASE’19). 139–150.

https://github.com/clonebench/BigCloneBench
https://github.com/Sable/soot
https://joern.io
http://networkx.github.io
https://pytorch.org
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page

SCDetector: Software Functional Clone Detection Based on
Semantic Tokens Analysis ASE ’20, September 21–25, 2020, Virtual Event, Australia

[55] Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie, and William Enck.
2015. Appcontext: Differentiating malicious and benign mobile app behaviors
using context. In Proceedings of the 37th International Conference on Software
Engineering (ICSE’15). 303–313.

[56] Wojciech Zaremba and Ilya Sutskever. 2014. Learning to execute. arXiv preprint
arXiv:1410.4615 (2014).

[57] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A novel neural source code representation based on abstract syntax

tree. In Proceedings of the 41st International Conference on Software Engineering
(ICSE’19). 783–794.

[58] Gang Zhao and Jeff Huang. 2018. Deepsim: Deep learning code functional
similarity. In Proceedings of the 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(FSE’18). 141–151.

	Abstract
	1 INTRODUCTION
	2 MOTIVATION
	3 DEFINITIONS
	3.1 Clone Type
	3.2 Code Granularity
	3.3 Centrality

	4 SYSTEM ARCHITECTURE
	4.1 System Overview
	4.2 Static Analysis
	4.3 Centrality Analysis
	4.4 Clone Detection

	5 EXPERIMENTS
	5.1 Experimental Datasets
	5.2 Experimental Settings
	5.3 RQ1: Overall Effectiveness
	5.4 RQ2: Semantic Tokens and Siamese Network
	5.5 RQ3: Scalability

	6 DISCUSSIONS
	7 LIMITATIONS
	8 RELATED WORK
	9 CONCLUSION
	References

