Detecting Semantic Code Clones by Building AST-based Markov
Chains Model

Yueming Wu*
Huazhong University of Science and Technology
China
wuyueming21@gmail.com

Deqing Zou" ¥
Huazhong University of Science and Technology
China
deqingzou@hust.edu.cn

ABSTRACT

Code clone detection aims to find functionally similar code frag-
ments, which is becoming more and more important in the field
of software engineering. Many code clone detection methods have
been proposed, among which tree-based methods are able to handle
semantic code clones. However, these methods are difficult to scale
to big code due to the complexity of tree structures. In this paper,
we design Amain, a scalable tree-based semantic code clone detec-
tor by building Markov chains models. Specifically, we propose a
novel method to transform the original complex tree into simple
Markov chains and measure the distance of all states in these chains.
After obtaining all distance values, we feed them into a machine
learning classifier to train a code clone detector. To examine the
effectiveness of Amain, we evaluate it on two widely used datasets
namely Google Code Jam and BigCloneBench. Experimental results
show that Amain is superior to nine state-of-the-art code clone
detection tools (i.e., SourcererCC, RtvNN, Deckard, ASTNN, TBCNN,
CDLH, FCCA, DeepSim, and SCDetector).

CCS Concepts

« Software and its engineering — Software maintenance tools.

Keywords
Semantic Code Clones, Abstract Syntax Tree, Markov Chain

“Hubei Engineering Research Center on Big Data Security, School of Cyber Science
and Engineering, HUST, Wuhan, 430074, China

f National Engineering Research Center for Big Data Technology and System, Services
Computing Technology and System Lab, HUST, Wuhan, 430074, China

#Deqing Zou is the corresponding author

SCluster and Grid Computing Lab, School of Computer Science and Technology, HUST,
Wuhan, 430074, China

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE °22, October 1014, 2022, Rochester, MI, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9475-8/22/10...$15.00
https://doi.org/10.1145/3551349.3560426

Siyue Feng" '
Huazhong University of Science and Technology
China
fengsiyue@hust.edu.cn

Hai Jin'S$
Huazhong University of Science and Technology
China
hjin@hust.edu.cn

ACM Reference Format:

Yueming Wu, Siyue Feng, Deqing Zou, and Hai Jin. 2022. Detecting Se-
mantic Code Clones by Building AST-based Markov Chains Model. In 37th
IEEE/ACM International Conference on Automated Software Engineering (ASE
’22), October 10-14, 2022, Rochester, MI, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3551349.3560426

1 INTRODUCTION

On one hand, the continuous development of the software field
makes the scale of software code larger and larger. On the other
hand, since code cloning can save developers’ time and effort, devel-
opers are inclined to clone code with similar functionalities rather
than implement them from scratch. In fact, code cloning brings
convenience but also increases maintenance costs. For example, if
there are vulnerable codes in the source code, their code clones can
lead to vulnerability propagation, requiring maintainers to perform
vulnerability scanning on more projects to ensure software secu-
rity. To mitigate the situation, code clone detection has become an
active area of research and is increasingly important to software
engineers.

There have been proposed many code clone detection methods.
For example, CCFinder [20] first extracts token sequences for pro-
gram code and then develops transformation rules to transform the
token sequences, which can be used to detect Type-1 and Type-2
clones. SourcererCC [34] first applies lexical analysis to obtain the
tokens and then compares the overlapping parts of these tokens
to detect Type-3 clones. However, because they do not take into
account the semantics of the program, they are not able to detect
Type-4 clones. To tackle the problem, researchers propose to extract
the intermediate representations of the program to maintain its
semantics. For example, some methods [21, 22, 41, 49, 50] trans-
form the program details into a graph representation (e.g., program
dependency graph) and perform graph analysis to achieve accurate
semantic code clone detection. However, graph analysis is time-
consuming which makes it hard to scale to big code. To mitigate the
issue, other approaches [17, 18, 24, 43, 48] prefer to obtain the tree
representation (e.g., abstract syntax tree) and apply tree matching
to detect semantic code clones. However, although tree parsing is
more lightweight than graph analysis, the tree structures are still
complex. For example, Figure 2(a) shows the abstract syntax tree
corresponding to the boxed part of the original in Figure 1. As we
can see from the figure, a simple two lines of code can possess a

https://doi.org/10.1145/3551349.3560426
https://doi.org/10.1145/3551349.3560426

ASE 22, October 10-14, 2022, Rochester, MI, USA

complex subtree with 26 nodes. When a method has more lines of
code, the corresponding tree will be more complex, resulting in a
high overhead for tree analysis. Such high overhead suggests that
they are not suitable for daily large-scale code clone scanning. As a
result, we need to devise a method that can effectively reduce the
high overhead imposed by tree analysis.

In this paper, we design a novel scalable tree-based semantic code
clone detector to assist large-scale code clone detection. Specifically,
we mainly address two challenges:

o Challenge 1: How to parse the original complex tree into simple
subtrees while maintaining the tree details?

o Challenge 2: How to design a succinct yet effective code clone
detection process to deal with semantic code clones?

To address the first challenge, we build a Markov chains model
to represent the complex abstract syntax tree (AST). Markov chains
are often used in the field of probability and statistics to describe
the probability of transitioning from one state to another. In our
approach, we consider the AST as a state transfer graph in a Markov
chain, and the pointing from parent to child nodes as a transfer from
one state to another. In this way, the tree structure that represents
the program logic is transformed into certain transfers between
different states. The transfer probability from one state to another
state carries the tree details of the program. Based on the built
model, we can achieve scalable tree analysis while preserving the
program details.

To solve the second challenge, we compute different distance
values between all states and construct the corresponding feature
vectors to train a code clone detector. Specifically, we select four
widely used distance measures (i.e., Cosine distance, Euclidean dis-
tance, Manhattan distance, and Chebyshev distance) to achieve com-
prehensive distance computation of the same state in different
programs. After collecting the distance scores of all states, we use
them to train a machine learning classifier for code clone detection.
Based on the trained classifier, we can achieve simple and effective
semantic code clone prediction.

We implement a prototype system, Amain, and evaluate it on
two widely used datasets namely Google Code Jam [1] and Big-
CloneBench [2, 36]. Our experiments show that Amain can achieve
better detection performance than nine state-of-the-art code clone
detection systems including two token-based methods (i.e., Sourcer-
erCC [34] and RtvNN [44]), four tree-based methods (i.e., Deckard
[17], ASTNN [48], TBCNN [26], and CDLH [43]), and three graph-
based methods (i.e., SCDetector [46], DeepSim [49], and FCCA [14]).
In addition, we also compare the scalability of Amain with these
nine systems. Experimental results report that although Amain
takes more time than token-based approaches (e.g., SourcererCC
[34]), it is 15 times faster than another state-of-the-art tree-based
approach (i.e, ASTNN [48]) in the training phase and 160 times
faster in the testing phase.

In summary, this paper makes the following contributions:

o We propose a novel method to convert the complex AST into
simple Markov chains and extract features by measuring
distances from the generated transfer probability matrix.

e We design a prototype system namely Amain! by building
a Markov chains model and training a machine learning

!https://github.com/CGCL-codes/Amain.

Yueming Wu, Siyue Feng, Deqing Zou, and Hai Jin

classifier. The built model and learned classifier enable us to
achieve scalable yet accurate semantic code clone detection.

e We perform comparative evaluations with nine systems on
Google Code Jam [1] and BigCloneBench [2, 36] datasets.
Experimental results show that Amain has the best detection
performance over SourcererCC [34], RtvNN [44], Deckard
[17], ASTNN [48], TBCNN [26], CDLH [43], SCDetector [46],
DeepSim [49], and FCCA [14].

2 MOTIVATION

To illustrate how our approach is proposed and how semantic
clones are detected, we use a simple but clear example. The original
method and the Type-4 method in Figure 1 are a semantic clone
pair that implements the functionality of computing the factorial
of a number with different syntax. Since the two methods differ
almost only in the boxed part and the complete AST is relatively
large, we only calculate the similarity of the code in the boxed part.

private long factorial(long n){
private long factorial(long n){ long s = 1;
Jongsum=1; Cintj=1 |
for(inti=Li<=n; 9L while<=n){ |
. B i ; 1
retumsum; i 3 |
Y/ original reLtLﬂ'n"s;’ L
Y Type-4

Figure 1: A semantic code clone pair

SourcererCC [34] is a current state-of-the-art token-based clone
detector that considers only the lexical information of the meth-
ods. When calculating the similarity of two methods, SourcererCC
divides the number of shared tokens of the two methods by the
maximum of the number of tokens of the two methods to obtain
the overlapping similarity. For the two methods in Figure 1, we find
that the number of tokens in the boxed part are 20 and 22, respec-
tively. After analyzing the number of shared tokens (i.e., 13), we
can calculate the overlapping similarity as 13/22 = 0.59. However,
the default similarity threshold of SourcererCC is 0.7, and only code
pairs with similarities exceeding the threshold can be identified as
clone pairs. In other words, SourcererCC will flag the two methods
as a non-clone pair.

To find a way to determine the two methods as a clone pair, we
consider extracting their ASTs. Figure 2 shows the subtrees of the
code fragments framed in Figure 1, respectively. We can see that
the two code fragments share a similar tree structure although they
are syntactically dissimilar. For example, the subtrees in the boxes
in Figure 2 are almost identical, differing only in the leaf nodes,
which represent the tokens of the code. But once we use the type of
the token to represent the node (i.e., the word in red indicates the
type of the token), the subtrees can be identical. To better describe
the tree details, we replace the leaf nodes (i.e., tokens) with their
corresponding types and present the number of edges between all
nodes in Figure 2. After our statistical analysis, we find that the
number of unique nodes in Figure 2(1) and Figure 2(2) are 14 and 13,
respectively. Besides, there are 11 nodes that are the same between
them. To characterize their tree details, we use a 14 * 14 matrix to
represent Figure 2(1) and a 13 * 13 matrix to represent Figure 2(2),
where the element n at position [i, j] of the matrix represents that

Detecting Semantic Code Clones by Building AST-based Markov Chains Model

For

Statement

Block
Statement

ForControl

Variable Member Binary Statement |
Reference || Operation Expression |
<= -
Operator’ [Asmgnment}j
[t i AESSS————
- ["Basic |[Variable f Member || Member |
! Type || Declarator | [ldentifier| | Reference || Reference Member
[R 1 i {i :;[= Reference
| . 1 — - Y
j| Basic I [identifier| [identifier| [Operator| [sum |
| Type 1 | Identifier
i L]
. Decimal | !
} Identifier| | Integer || 1)
L J

g

BSMRBOSE BTVDr A L

|

|

| y

1 int

i Basic
i Type

ASE ’22, October 10-14, 2022, Rochester, MI, USA

Block
Statement

i
i Statement

[t | | Exprestion
|| Member |[Member Expression Member
! 7 \ Reference | | Reference ! Reference
I || Decimal| | | n Asslgﬁmenl
Identifier| | Integer I [1dentifier] [Identifier Operator
e 4 +

Binary

Operation Identifier

=] Member
Operator | | Reference

["\ Member
Reference

2) Identifier

(=

O | DI FS FC VDn _BSMRBOSE BTVDrA L O | DI WSLVDn

Block Statement ~ BS Trl_O___9__6___1___9__6___0__@__6___0___91i 0 0 O0|-——+ 10000 <«——— BS irrl_O___g___O__ _2___g___0__ _O___g___O___O__ gﬂ” 0 o0
Member Reference MR i 0 000O0OOOOT1S®5OQ0I0 0|=——*> 09995 «——— MR i 0000O0O0O0O0T1G6 0100
Binary Operation BO i 02000O0O0O0OI1IO0TO0 | 0 0 0|=—-—+ 10000 «—-—-— BO i 04000O0O0OO0OZ2QO00O0 | 0 0
Statement Expression SE [0 0 0 0 0 0 1 0 0 0 O 0 0 0]--—»07071 «——— SE j01 000010000Il0O0
Basic Type BT [(j0O OO 010O0O0O0O0OTO lo 0 0|-——»10000«——~ BT j0O000100000O0l0O
Variable Declarator VDr[j0 0 0 0 0 0 0 1 0 1 0 lo 0 0|-—-» 10000 «——— VDr j00000001010l0oo0
Assignment All02 000000100 lo 0 0|-——»07m46+——— A jO1 100000100 lo o
Literal L {f0Oo0O0O0O0OOOO@ OO 190 0 0f-—=»10000<—-— L i000000O00O0O0GOT 1!0 0
Operator ofto 0 0000O0O0TO0OTG O O!O 0 0|-——»00000<«——— O iO 00 O0O0OODOT OO O!O 0
Identifier 1 110 000O0O0OO0OOTO OO :O 0 0|===+00000<——~— | I 000O0OOOOOO OO OO :O 0
Decimal Integer DI !_O_O_O_g_()_O_O_O_()_E_OJO 0 O0|=——»00000<«——— DI LO_O_(J_E_O_O_O_O_Q_O_OJO 0
For Statement FS 10000O0O0OOOOOOT1O0 While Statement WS 101000O0O0O0O0OO0OTO0OTODO
For Control FC 011 00O0O0O0O0O0OUO OO0 0 1|LocalVariableDeclaration LVDn 000O0O110O0O0O0O0OO0OSF@O

Variable Declarationvbn| 0 0 0 0 0 1 1 0 0 0 0 0 O O .

Figure 2: The AST subtree of the original method and the Type-4 method in Figure 1 and their corresponding edge matrices

there are n edges of the i, node to the j;, node. For example, the
second row of the first matrix in Figure 2 represents that there is
an edge from MemberReference to Operator and there are five edges
from MemberReference to Identifier in Figure 2(1).

For these two matrices, we observe that since 11 nodes are the
same among them, most of the data in the matrix describe the
number of edges between the same nodes. To make these data
clearer, we frame them with a box. This small matrix describes
the distribution of the number of edges between the 11 nodes.
When we use a row of the small matrix as a unit to calculate the
similarity of two small matrices, we find that the cosine similarity
of different rows is not the same. Although their average similarity
(ie., (1+0.9995+1+0.7071+1+1+0.7746+1+0+0+0)/11=0.68) is below
0.7, most of the rows are above 0.7. If we can assign higher weights
to more similar rows, there is a good chance that the final similarity
will be higher than 0.7.

Therefore, based on the observation, we build a novel technique
to model all nodes in an AST and train a classifier that can assign
suitable weights for different nodes to detect semantic clones.

3 CLONE TYPES

Code cloning can be classified into four types according to the
degree of similarity. In our paper, we use the following definitions
of code cloning types [7, 31]:

o Type-1 (textual similarity): Identical code fragments, ex-
cept for different white-space, layout, and comments.

e Type-2 (lexical similarity): Identical code fragments, ex-
cept for differences in identifier names and lexical values, in
addition to the differences in Type-1 clones.

e Type-3 (syntactic similarity): Syntactically similar code
snippets that differ at the statement level. In addition to
Type-1 and Type-2 clone differences, the fragments have
statements added, modified, and/or removed with respect to
each other.

¢ Type-4 (semantically similarity): Syntactically dissimilar
code fragments that implement the same functionality.

4 SYSTEM

In this section, we introduce our proposed tree-based semantic
code clone detector Amain. To deal with the time-consuming tree
matching problem, we regard the nodes of an AST as different states
and build a Markov chains model to transform the complex tree
into simple state transitions. After collecting the distance vectors
of all states between ASTs, we can train a classifier that can assign
suitable weights for different states to achieve succinct and effective
semantic code clone detection.

4.1 Overview

As described in Figure 3, Amain is mainly comprised of four phases:
AST Generation, State Matrix Construction, Feature Extraction, and
Classification.

o AST Generation: The purpose of this phase is to apply static
analysis to generate the corresponding AST. The input of
this phase is a method and the output is an AST.

o State Matrix Construction: The purpose of this phase is to
transform the AST into a Markov chain-based state matrix.
The input of this phase is an AST and the output is a state
transfer matrix.

ASE 22, October 10-14, 2022, Rochester, MI, USA

Yueming Wu, Siyue Feng, Deqing Zou, and Hai Jin

Input Amain: An AST-based Semantic Code Clone Detector Output

Program, -——. AST State Matrix | |
gram Generation Construction | !

Program, -—— AST State Matrix |
gramm Generation Construction | |

—

Feature » ification =L (Clone)
Extraction Classification ’<‘*1 0 (Not Clong) !

Figure 3: System architecture of Amain

o Feature Extraction: The purpose of this phase is to calculate
the distance vectors (i.e., features) of two state transfer ma-
trices. The input of this phase is two state transfer matrices
and the output is a feature vector.

o Classification: The purpose of this phase is to determine
whether two methods are semantically similar or not. The
input of this phase is a feature vector and the output reports
the detection results.

4.2 AST Generation

Amain’s purpose is to efficiently and effectively detect semantic
code clones by converting the AST into the form of a matrix using
the principle of the Markov chain. Therefore, we need to conduct
static analysis to extract the AST. Since the programming language
of our experimental dataset is Java, we use Javalang [4] to complete
our static analysis.

4.3 State Matrix Construction

For the obtained AST, instead of using conventional heavyweight
tree matching approaches to detect code clones, we convert the
AST into a Markov chain-based state matrix and use it to achieve
scalable code clone analysis. The generation of Markov chains
relies on the assumption that the probability of the current state
transitioning to the next state depends only on the state before it.
Such an assumption drastically diminishes the sophistication of the
model, and as a result Markov chain is widely used in many models,
such as recurrent neural networks [45] and hidden markov models
[8].

To transform an AST into its corresponding state matrix, we
need to first define its states within the AST. As shown in Figure
2, we find that there are two categories of nodes in the AST, one
being non-leaf nodes and the other being leaf nodes. The non-leaf
nodes represent different code syntax types in a method while the
leaf nodes of an AST are the source code tokens in a method. For
the non-leaf nodes in ASTs, the number is much smaller than the
number of tokens since they represent different code syntax types
in a method. To achieve a determinate result, we choose the whole
dataset of BigCloneBench (BCB) [2] which consists of 250M lines
of code as our analysis data. Specifically, we extract the ASTs of
all methods and analyze the code syntax types from these trees.
Through the analysis report, we obtain a total of 57 code syntax
types. For the leaf nodes (i.e., tokens) in ASTs, the exact number
is unclear. To make these tokens correspond to a fixed number
of states, we consider replacing them with their token types. For
example, the token “long” can be replaced by its type “BasicType”.
Similar to analyzing non-leaf nodes, we also choose the whole
dataset of BCB [2] to commence our token types collection. After

our statistical analysis, we find that 14 types appear in most of ASTs.
In fact, the proportion of these 14 types accounts for more than
99.5% of all nodes. Therefore, we choose these 14 types as the final
token types and add a Null type to represent other types. In final,
we collect a total of 722 states which consists of 57 code syntax
types and 15 token types. Figure 2 shows the part of AST obtained
by parsing the original method in Figure 1, and the red parts are
leaf nodes represented by token types.

Assignment

= MemberRe MemberRe s:::tep !
Operator ference ference !
n i Operator
Identifier Identifier
Subtree Markov chain
Al M.-- 0 A M - o)
Ao 0 2 --- 1 A |0 O 067 --- 033
step2 | |0 0 O -+ Of|step3 1O O O - O
> M|0020 0™ mlo1 0 - 0
o|j0 00O O O o0 0 O 0
State Transfer Transfer Probability
Matrix Matrix

Figure 4: The construction process of transfer probability
matrix

After defining 72 states in an AST, we build a Markov chain
model to transform the AST into a transfer probability matrix using
the three steps indicated in Figure 4. More specifically, relationships
between parent and child nodes are considered as state transitions
in a Markov chain. By counting the information of two nodes con-
nected by an edge in an AST, the probability of transferring one
state to another can be derived. For example, the first part in Figure
4 is a subtree in Figure 2(1), and the subtree has five edges, that is,
five sets of state transitions. They can be represented as a Markov
chain as shown in the second part of Figure 4. For example, the
state MemberReference is transferred to the state Identifier twice.
We use A for Assignment, M for MemberReference, 1 for Identifier,
O for Operator, and the resulting state transition matrix is shown
in the third part of Figure 4. The value of row A and column M

’Due to the limited space, we show the details of these 72 types on our website:
https://github.com/CGCL-codes/Amain.

Detecting Semantic Code Clones by Building AST-based Markov Chains Model

I 0 0.667 0.333 [€Calculate distance—V— 0 0.667 --- 0333_
02 0 0 |€Calculate distancep| Ol 0 09
l L 1 0 0 _”4—Ca\cu\ate distance-J»| 1 0 e 0

Figure 5: Measure the distance of two matrices to construct
the feature vector

is two, which means state Assignment has two transfers to state
MemberReference.

Accordingly, for the whole tree, we define a 72 % 72 state transfer
matrix, where the value of matrix|[i][j] indicates the number of
times that the child node of the i;j, state in the AST is the j,, state.
The value of matrix[i][j] is increased by one whenever the child
node of the i, state is the j;j, state. After obtaining the state transfer
matrix, it is transformed into a transfer probability matrix. If the
state transfer matrix is M; and the transfer probability matrix is
My, then M, is calculated as:

Mo] 1] = L]

= 7 [[K] W

The transfer probability matrix of the subtree in the first part of
Figure 4 is shown in the fourth part of Figure 4. Moreover, since the
15 token types represent non-leafs nodes in ASTs, their out-degree
values are all zero. In other words, they have no subsequent state
changes. Therefore, the 72 * 72 state transfer matrix can be changed
to a 57 * 72 matrix to save storage space and runtime overhead.

4.4 Feature Extraction

The purpose of this stage is to collect the distance vectors of two
transfer probability matrices. Figure 5 shows the procedure for
measuring the distance of the matrices of two methods. For two
transfer probability matrices, we compute the distance of their
corresponding states (i.e., rows) one by one. The vectors of the first
row (i.e., orange part) of the two matrices are taken separately for
the distance calculation. After obtaining the distance of the first row
(i.e., state), we then take the vectors of the second rows to collect
the distance of the second state. Since there are 57 rows altogether,
57 distance values are obtained. These 57 values constitute a 57-
dimensional vector, which is called the distance vector of the two
transfer probability matrices.

To measure the distance of two vectors, we select four widely
used distance computation techniques which are Cosine distance,
Euclidean distance, Manhattan distance, and Chebyshev distance.
These four algorithms have been applied in many areas such as
information retrieval, text mining, and data mining [39]. Due to
their high effectiveness, we also choose them as our distance com-
putation approaches.

e Cosine distance evaluates the distance of two vectors by cal-
culating the cosine of the angle between them. The formula
is

= AiB;

/ 2 2
2;l:IAi zl(llei

o Euclidean distance is the true distance between two points
in m-dimensional space. The Euclidean distance of a vector
is the natural length of the vector, i.e., the distance from the

disteos(A,B) =1 —cos(0) =1— (2)

ASE ’22, October 10-14, 2022, Rochester, MI, USA

Cosine Euclidean Manhattan Chebyshev
distance vector distance vector distance vector distance vector

.z]
Concatenate distance vector

Figure 6: The construction of concatenate distance vector

point to the origin. The formula is

disteyc (A, B) = (3

e Manhattan distance is the sum of the projected distances
of a line segment formed by two points in Euclidean space
on a fixed rectangular coordinate axis. The formula is

n
distman (A, B) =) |A; = By|)
i=1

e Chebyshev distance is a measure in vector space in which
the distance between two points is defined as the maximum
value of the difference between their coordinates. The for-

mula is
1

n »
DA —B#’) 5)
i=1

To achieve more comprehensive experiments, after obtaining
four single distance vectors, we concatenate them as a new vector
namely concatenate distance vector. The construction process is
shown in Figure 6. The dimension of four single distance vectors is
57 while is 57 * 4 = 228 for concatenate distance vector.

4.5 Classification

In our final phase, we focus on training a code clone detector by
using machine learning techniques. Specifically, we select several
commonly used machine learning methods for classification (i.e., k-
nearest neighbor (KNN), random forest (RF), and decision tree (DT)).
After feature extraction, we can obtain the distance vectors for all
code pairs in the training set. The distance vectors and labels (i.e.,
one for clone pairs and zero for non-clone pairs) are fed into a
machine learning classifier for training, and the resulting model
is saved. Two methods to be detected are processed in the three
phases described above, and their distance vector is then fed into
the model to obtain an output of zero or one. One and zero indicate
that they are clone and non-clone, respectively.

dist.pe (A, B) = plim

5 EXPERIMENTS
In this section, we mainly answer the following research questions:
o RQI: What is the detection effectiveness of Amain with different
parameters?
e RQ2: Can Amain outperform other code clone detectors?
o RQ3: What is the runtime overhead of Amain on detecting code
clones?
e RQ4: Why can Amain detect semantic code clones?

5.1 Experimental Dataset

We perform evaluations of our method on two datasets: Google Code
Jam (GCJ) [1] and BigCloneBench (BCB) [2], where the GC]J dataset

ASE 22, October 10-14, 2022, Rochester, MI, USA

is the same as the one used by [49]. The programs in this dataset are
from the online programming competition held by Google. The pro-
grams in each competition problem are written by various program-
mers, and encompass 1,669 projects from 12 separate competition
problems. Projects solving different problems are not analogous,
while projects solving the same competing problem are inherently
semantically similar and almost syntactically different because they
come from distinct programmers. Therefore, we assume that the
code pairs in the identical problem are semantic clones (i.e., Type-4
clones) of each other, while the code pairs from different problems
are non-clones. In this way, we can obtain 275,570 semantic clone
pairs and 1,116,376 non-clone pairs. To make our dataset more bal-
anced, we randomly select 270,000 pairs from 1,116,376 non-clone
pairs to commence our experiments.

Table 1: The numbers and the proportions of our used
datasets

BCB
Type Number | Proportion ca

T1 48,116 17.82% -
T2 4,234 1.57% -
Clone Pairs ST3 21,395 7.92% -
MT3 86,341 31.98% -

WT3/T4 | 109,914 40.71% 275,570

Total 270,000 100.00% 275,570

Non-clone Pairs 270,000 100.00% 270,000

For the second dataset, BCB [2], which consists of more than
eight million labeled clone pairs from 25,000 projects. Due to the
unclear boundary between Type-3 and Type-4, these two clone
types are further divided into three subcategories by a similarity
score measured by line-level and token-level code normalizations,
as follows: i) Strongly Type-3 (ST3), where the similarity is between
70-100%, ii) Moderately Type-3 (MT3), where the similarity is be-
tween 50-70%, and iii) Weakly Type-3/Type-4 (WT3/T4), where the
similarity is between 0-50%. Since the number of non-clone code
pairs in BCB is 270,000, we also randomly select a total of 270,000
clone pairs from the eight million clone pairs to perform our train-
ing and testing phase. The clone pairs include 48,116 T1 pairs, 4,234
T2 pairs, 21,395 ST3 pairs, 86,341 MT3, and 109,914 WT3/T4 pairs.
The descriptions of our datasets are shown in Table 1.

5.2 Experimental Settings

Since file-level and program-level code clone detection are too
coarse to detect most clones and line-level may detect numerous
meaningless clone pairs, we choose a method as our processing
granularity because it realizes a specific functionality that fits our
need to detect functionally similar clones. Because the program-
ming language of our experimental datasets is Java, we use a Python
library namely Javalang [4] to parse the Java method to extract
ASTs. Moreover, we apply another Python library namely Sklearn
[3] to implement KNN, RF, and DT classification algorithms.

To ensure the comprehensiveness of our evaluations, we select
representative work from each of the code intermediate representa-
tions for comparative experiments. Specifically, we compare Amain
with two token-based methods (i.e., SourcererCC [34] and RtvNN
[44]), four tree-based methods (i.e., Deckard [17], ASTNN [48],

Yueming Wu, Siyue Feng, Deqing Zou, and Hai Jin

TBCNN [26], and CDLH [43]), and three graph-based methods (i.e.,
SCDetector [46], DeepSim [49], and FCCA [14]).

e SourcererCC [34] : an advanced traditional token-based
clone detection tool.

e RtvNN [44] : an advanced token-based clone detection tool
by using a recurrent neural network.

e Deckard [17] : an advanced traditional AST-based clone
detection tool.

e ASTNN [48] : an advanced AST-based clone detection tool
by using a gate recurrent unit network.

e TBCNN [26] : an advanced AST-based clone detection tool
by using a convolutional neural network.

e CDLH [43] : an advanced AST-based clone detection tool by
using a long short-term memory network.

e FCCA [14] : an advanced graph-based clone detection tool
by using hybrid code representations.

o DeepSim [49] : an advanced graph-based clone detection
tool by using a deep neural network.

e SCDetector [46] : an advanced graph-based clone detection
tool by using a Siamese network.

For the selection of parameters of these tools, we choose the
parameters they claim to perform best in their papers.> We run
all experiments on a server with 8 cores of CPU and a GTX 1080
GPU. We use ten-fold cross-validation for training and testing on
the dataset, where all the data are divided into ten parts, each part
serving as the testing set, and the rest as the training set. The F1,
precision, and recall of each testing phase are recorded. Precision is
defined as P = TP/(TP+FP).Recall is defined as R = TP/(TP+FN).
F1lis defined as F1 = 2% P%R/(P+R). Among them, true positive (TP)
represents the number of samples correctly classified as clone pairs,
false positive (FP) represents the number of samples incorrectly
classified as clone pairs, and false negative (FN) represents the
number of samples incorrectly classified as non-clone pairs.

5.3 RQ1: Comparison of Different Methods

To measure the performance of various distance calculation meth-
ods and machine learning algorithms, we implement experiments
on the GCJ dataset and the BCB dataset. As aforementioned, we
choose four different distance calculation methods (i.e., Cosine dis-
tance, Euclidean distance, Manhattan distance, and Chebyshev dis-
tance) and construct another new distance vector (i.e., concatenate
distance vector) to commence our experiments. After obtaining all
feature vectors, we select different machine learning algorithms
(i.e., KNN, RF, and DT) for training and testing. For K in KNN, we
choose one and three since they are the most widely used. For RF,
we experiment with different numbers of depth parameters and find
that 64 is a better parameter. For DT, we use the default parameters
in the Sklearn library.

Through the results in Figure 7, we can derive two conclusions.
One is that Amain can maintain the best detection performance
when we use concatenate distance vectors to train an RF machine
learning classifier. RF algorithm is essentially an improvement on
the DT algorithm by combining several decision trees. The classifi-
cation power of a single tree may be negligible, but after randomly

3Due to the limited space, the details of these parameters can be found on our website:
https://github.com/CGCL-codes/Amain.

Detecting Semantic Code Clones by Building AST-based Markov Chains Model

0.925 T
7] INN 5
ANNENY &
B8 RF B &
0.900 +{-=1DT ::: {::
T Min-Max| & ;zg :::
Xl o o
K PN
0.875 1 & R KX
.875 == < X %
29| R ol D?)
3 %] KK %] K
o &l B K
S B BNE
c K) AR
$ 0.850 £ i o kX
g % e % &
K 39 K &I
o3 kY & &
— K & % B |-
L K R [ol 2208
0.825 R B roon &
el R 1 X X
K 39 B | %
K & & K I
k4 8 | K B |
0.800 o {:2 o B
& & & b
& B & &
& oY Bl !
R | Pl %] K|
K & & | %
0.775 = . " .
Cosine Euclidean Manhattan Concatenati

ASE ’22, October 10-14, 2022, Rochester, MI, USA

T
77 INN
0.980 S 3NN
55 RF
o DT
0.970 ||| T Min-Max
) % i z}
9]
CCDO.QGO % R
& F i
g i [
So0950 i N
—
L % %
0940 /N = N H
09301 4N & ﬂ a
Cosne | Euclidean | Manhatan | Chebyshev | Concatenate

Figure 7: F1 score on GCJ and BCB datasets

generating a multitude number of decision trees, a test sample can
statistically select the most probable classification from the clas-
sification results of each tree. Therefore, the experimental results
using RF algorithm are better. The differences between the results of
the five distance methods are slight, but the results of concatenate
distance are marginally superior to the others. This is because four
single distance calculation methods measure the distance of two
vectors from only one perspective. However, a concatenate distance
vector is constructed from these four single distance vectors, which
may contain more comprehensive details of two vectors.

Another conclusion is that the ten F1 scores of ten-fold cross-
validations do not differ much. For example, the maximum and
minimum values of the RF algorithm with the concatenate distance
differ by only 0.0025 on the BCB dataset and by only 0.0048 on the
GCJ dataset. Thus, the average value can give a good indication of
the detection effectiveness of each distance calculation method and
machine learning algorithm. Therefore, in the overall effectiveness
experiments in the next subsection, we only use the average value
of the metrics to represent the detection effectiveness.

5.4 RQ2: Overall Effectiveness

From the previous subsection, it is evident that the best detection
results are obtained by using the concatenate distance calculation
method in the feature extraction phase and RF machine learning
algorithm in the classification phase. Therefore, we use them for
the overall effectiveness experiments.

5.4.1 Results on Google Code Jam. First, we perform evaluations
on the GCJ dataset. As we mentioned previously, code pairs from
the identical competing problem on the GCJ dataset are inherently
semantically similar and are nearly impossible to be syntactically
similar. Therefore, we regard all similar code pairs as semantic
clones (i.e., Type-4 clones) and run experiments on these pairs to
evaluate the effectiveness of Amain in detecting semantic clones.
The evaluation results of SourcererCC [34], RtvNN [44], Deckard
[17], ASTNN [48], TBCNN [26], CDLH [43], SCDetector [46], Deep-
Sim [49], FCCA [14], and Amain are presented in Table 2.

Table 2: Results of clone detection on GCJ and BCB datasets

G(CJ BCB

R P F1 R P F1
SourcererCC | 0.11 | 0.43 | 0.17 | 0.07 | 0.98 | 0.14
RtvNN 0.90 | 0.20 | 0.33 | 0.01 | 0.95 | 0.01
SCDetector | 0.87 | 0.81 | 0.82 | 0.92 | 0.97 | 0.94
DeepSim 0.82 | 0.71 | 0.76 | 0.98 | 0.97 | 0.98
FCCA 0.90 | 0.95 | 0.92 | 0.92 | 0.98 | 0.95
Deckard 0.44 | 0.45 | 0.44 | 0.06 | 0.93 | 0.12
ASTNN 0.87 | 095 | 091 | 0.94 | 0.92 | 0.93

Method

Group

Token-based

Graph-based

Tree-based | 1o\ | 089 | 091 | 0.90 | 0.81 | 0.90 | 0.85

CDLH 0.70 | 0.46 | 055 | 0.74 | 0.92 | 0.82

Our Amain 0.91 | 093 | 0.92 | 0.97 | 0.99 | 0.98
method

Token-based approaches: SourcererCC has both poor recall
and precision. This is because SourcererCC only takes into account
the overlapping similarity of tokens between two methods. Given
two methods M1 and M2, the overlapping similarity S(M1, M2) is
the ratio of the number of identical tokens shared by M1 and M2
to the number of larger tokens in M1 and M2. Due to the lack of
consideration of program semantics, SourcererCC cannot handle
semantic clones and thus has low recall and precision. RtvNN has
high recall but low precision. This means that RtvNN can detect
almost all code pairs as clones. This is because RtvNN relies only on
a simple distance metric to measure the similarity of a pair of code
pairs. As described in [49], the distance between most methods is in
the range of [2.0, 2.8] using RtvNN for computation. The precision of
RtvNN can be increased to 90% by lowering the distance threshold,
it will also bring a rapid decline in the recall to below 10%. Hence,
it has a low F1 score.

Tree-based approaches: The detection performance of Deckard
and CDLH is not so good. The reason is that Deckard detects clones
by clustering the eigenvectors of each subtree using predefined
rules for both functions. However, more than half of the code pairs
do not have the same tree structure, resulting in a low recall and
precision of detection in the dataset. CDLH uses an AST-based long

ASE 22, October 10-14, 2022, Rochester, MI, USA

short-term memory network to learn the representation of hash
functions, structural information, and code fragments. As it only
considers lexical and syntactic code features, it does not have good
detection results. The other two tree-based methods ASTNN and
TBCNN have relatively good ability. This is because ASTNN uses a
bottom to top (i.e., leaf node to root node) aggregation for AST to
detect clones. Thus it is better than the same AST-based method
Deckard which only clusters the features at the root of the tree.
However, the operation of segmentation of the AST by ASTNN
may result in some semantics loss, which leads to a marginally
lower recall. TBCNN captures the structural features of the AST
by sliding convolutional kernels and therefore has good detection
results. However, the convolutional layer has difficulty in capturing
long-range contextual information if the AST is deep or has many
nodes. Also, the operation of treating the AST as a binary tree
aggravates the problem of long-term dependency on the original
semantics of the source code. Therefore, the detection result of
TBCNN is not the best.

Graph-based approaches: For DeepSim, it abstracts the vari-
ables and basic blocks of code and the relationships between them
into a binary matrix, which is then fed into a deep learning model
to detect clones. Since it considers the semantics of a method, it
can achieve ideal performance on semantic clone detection. For
SCDetector, it assigns semantic details to tokens by analyzing the
centrality of each basic block in the CFG, thus it is dependent on
the common tokens between two methods, leading to several false
negatives when the same functionality is implemented using dif-
ferent APIs and different graph structures. FCCA extracts different
representations of code, including unstructured representations
(i.e., tokens) and structured representations (i.e., AST and CFG),
and feeds the them into a deep learning model with an attention
mechanism to detect clones. The comprehensive hybrid code repre-
sentation enables FCCA to detect most semantic code clones.

In summary, SourcererCC, Deckard, and RtvNN do not have the
ability to handle semantic clones. Meanwhile, compared to CDLH,
ASTNN, TBCNN, SCDetector, DeepSim, and FCCA, Amain can handle
more semantic code clones on GCJ dataset.

Table 3: Amain’s Recall, Precision, and F1 in detecting each
type of clone on BCB

Metrics T1 T2 | ST3 | MT3 | WT3/T4
Recall 1.00 | 1.00 | 1.00 0.99 0.92
Precision | 1.00 | 1.00 | 1.00 | 0.99 0.98
F1 1.00 | 1.00 | 1.00 0.99 0.95

5.4.2 Results on BigCloneBench. We then compare Amain with
our comparative tools on the BCB dataset. The detection results are
presented in Table 2. From the table, we can see that Amain outper-
forms all other detectors in terms of precision and F1 score. Such
results suggest that Amain is extremely well equipped to detect
code clones. Moreover, we also observe that most clone detection
tools have better detection results on BCB than GCJ. It is reason-
able because the clone pairs in BCB are deliberately constructed
by experts. Many clone pairs share a similar code structure, with
only a few differences such as the order of API calls. However, the
programs in the GCJ dataset are all implemented by different pro-
grammers, resulting in more complex and different code structures.

Yueming Wu, Siyue Feng, Deqing Zou, and Hai Jin

For SourcererCC, Deckard, and RtvNN, they both have low recall and
high precision. This is because these tools detect two code segments
as clones only when they are extremely similar. Therefore, they are
only able to detect syntactic code clones on BCB, but not semantic
clones.

Next, we analyze the recall, precision, and F1 for each type and
compare them with other code clone detection techniques. Table
3 shows the corresponding results. It can be seen that Amain can
achieve more than 99% scores for all three metrics in detecting T1,
T2, ST3, and MT3. When detecting WT3/T4, the F1 reaches a score
of 95%, the precision reaches 98%, and the recall reaches 92%. Such
results indicate that Amain has the ability to detect semantic code
clones.

Table 4: F1 for each clone type on BCB

Group Method T1 T2 | ST3 | MT3 | WT3

SourcererCC | 1.00 | 1.00 | 0.65 0.20 0.02

Token-based RtvNN 1.00 | 0.97 0.6 0.03 0.00

SCDetector 1.00 | 1..00 | 0.97 0.97 0.94
DeepSim 0.99 | 099 | 0.99 0.98 0.95
FCCA 1.00 | 1.00 | 0.99 0.97 0.95

Graph-based

Deckard 0.73 | 0.71 | 0.54 0.21 0.02
ASTNN 1.00 | 1.00 | 0.99 0.98 0.92

Tree-based TBCNN 1.00 | 1.00 | 093 | 080 | 0.6
CDLH 1.00 | 1.00 | 094 | 088 | 0.82
Our method Amain 1.00 | 1.00 | 1.00 0.99 0.95

Table 4 shows the evaluation results of Amain and other compar-
ative tools in detecting five types of code clones. From the results,
we see that Amain outperforms all other clone detectors in detect-
ing all types of code clones. Especially when detecting WT3/T4,
the F1 scores of SourcererCC, Deckard, RtvNN, ASTNN, TBCNN, and
CDLH are 2%, 2%, 0%, 92%, 86%, and 82%, respectively, while Amain
can maintain an F1 score of 95%. Such results demonstrate the supe-
riority of Amain in detecting WT3/T4 code clones. For SCDetector,
DeepSim, FCCA, and ASTNN, they can also achieve ideal perfor-
mance in detecting WT3/T4 code clones. However, they all use deep
neural networks to train classifiers, meaning that they require GPUs
to accomplish their training phases. For Amain, we apply simple
machine learning models to train our classifier. Therefore, CPUs are
enough for us. In other words, Amain requires less computational
resources than SCDetector, DeepSim, FCCA, and ASTNN.

5.5 RQ3: Scalability

In this part, we focus on evaluating the scalability of Amain and
our nine comparative systems. Specifically, we first randomly select
one million code pairs from the GCJ dataset as the analysis targets.
Then we run Amain and comparative tools on these pairs ten times
and record their runtime overhead. From the results in our previous
subsection, we know that Amain can maintain the best detection
performance when extracting concatenate distance vectors and
using RF to train a classifier. So we record the training and testing
runtime overheads when using concatenate distance vectors to
train an RF model. In particular, our training overhead includes
the runtime of data preprocessing, analysis, and model training.
Table 5 describes the average runtime overhead of ten runs of each
tool and the fluctuation of the overhead caused by the impact of

Detecting Semantic Code Clones by Building AST-based Markov Chains Model

the physical environment (e.g., CPU usage). Through the results
in Table 5, it can be seen that even if we run the same tool on the
same machine, the cost of each run can be different. This is mainly
because the usage status of the same machine at different times
may be different. Overall, this inaccuracy is around 7%. To mitigate
this issue, we run each tool ten times and choose its average as the
final runtime overhead.

Table 5: Time performance on analyzing one million code
pairs

ASE ’22, October 10-14, 2022, Rochester, MI, USA

top 20 features: StatementExpression, ArrayCreator, ArraySelector,
and BlockStatement. Such results suggest that these four types of
nodes in ASTs are the most important for distinguishing whether
code pairs are semantic clones or not.

Table 6: Top 20 features of Amain in detecting semantic code
clones

Group Method Training Prediction
SourcererCC - 16s+1s
Token-based | "p NN 5,2065+364s 355425
SCDetector 2,937s+205s 139s+9s
Graph-based DeepSim 13,5455+948s 34s+2s
FCCA 56,7695+3,973s 91s+6s
Deckard - 72s+4s

Tree-based ASTNN 16,096s+1,126s | 2,8945+202s
TBCNN 41,168s+2,881s 86s+6s
CDLH 45,317s+3,172s 90s+6
Our method Amain 1,017s+71s 18s+1s

For SourcererCC and Deckard, they do not have training phases,
thus their training runtime are both zero. For other tools (i.e., RtvNN,
SCDetector, DeepSim, FCCA, ASTNN, TBCNN, and CDLH), they are
all deep learning-based approaches which require GPUs to assist
their training phases. As shown in Table 5, we can see that even
if they use GPUs for training and testing, their average runtime
overheads are higher than that of Amain, which only uses CPUs
for training and testing. Such results indicate that Amain is more
scalable than RtvNN, SCDetector, DeepSim, FCCA, ASTNN, TBCNN,
and CDLH. For another recent state-of-the-art AST-based code
clone detector (i.e., ASTNN), results in Table 5 show that ASTNN
takes an average of 16,096 seconds to train and 2,894 seconds to
test, whereas Amain takes only 1,035 seconds (i.e., 1,017 seconds
for training and 18 seconds for testing) to complete code clone
detection of one million code pairs. In other words, the training
runtime of Amain is 15.8 (i.e., 16,096/1,017 = 15.8) times faster
than that of ASTNN. Similarly, Amain’s prediction runtime is also
shorter than ASTNN’s. When given a trained model, the runtime
overhead of ASTNN to detect clones is 2,894 seconds, while Amain
only requires 18 seconds. Overall, it can be said that Amain is 18.3
(ie., (16,096 +2,894) /(1,017 + 18) = 18.3) times faster than ASTNN.

In summary, Amain is not as fast as SourcererCC due to the
consideration of tree details. However, because of the use of a
machine learning algorithm and a Markov chains model to convert
ASTs into matrices, Amain is more scalable than RtvNN, SCDetector,
DeepSim, FCCA, ASTNN, TBCNN, and CDLH.

5.6 RQ4: Interpretability

To illustrate how Amain detects semantic clones, we first train an RF
model on GCJ dataset. Since RF algorithm is interpretable, we collect
the importance of all features used in Amain. After ranking these
228 features by their weights computed by our RF technique, we
figure out which features are more important in detecting semantic
clones. Due to the limited space, we only show the top 20 features in
Table 6. Observing the table, we find that four features recur in the

Rank Feature Name Weight
1 StatementExpression_cosine 0.029142
2 ArrayCreator_euclidean 0.026448
3 ArraySelector_euclidean 0.025292
4 BlockStatement_manhattan 0.024604
5 ArrayCreator_chebyshev 0.022709
6 ArraySelector_chebyshev 0.021914
7 ArraySelector_manhattan 0.021804
8 ArrayCreator_manhattan 0.021659
9 ArrayCreator_cosine 0.021011

10 StatementExpression_chebyshev | 0.020044
11 StatementExpression_manhattan | 0.019399
12 StatementExpression_euclidean | 0.019094
13 BlockStatement_euclidean 0.018799
14 BlockStatement_cosine 0.017125
15 VariableDeclarator_cosine 0.016667
16 MemberReference_cosine 0.015774
17 BinaryOperation_cosine 0.015754
18 ArraySelector_cosine 0.015429
19 BinaryOperation_manhattan 0.014952
20 BlockStatement_chebyshev 0.014904

For StatementExpression, it is always connected to the type of
statement. For example, code “int i=1" of the original code in Fig-
ure 1 is an assignment statement, so in the corresponding subtree in
Figure 2, the StatementExpression node connects to the Assignment
node. Another node type that is often connected behind the State-
mentExpression is MethodInvocation, which indicates the invocation
of a method. Method invocations are often strongly associated with
program semantics. Therefore, different node types connected by
StatementExpression can reflect different semantic information of
the code and thus have high importance.

ArrayCreator represents a declaration of an array, such as “new
int[3]”. ArraySelector represents a selection of array elements,
such as “alindex]”. ArrayCreator connects nodes that reflect the
type and size of an array, and ArraySelector connects nodes that
reflect the selection of array elements. Both array-related node
types reflect the details about array, and implementing the same
functionality may require a similar data structure. Therefore, the
relevant information of the array is also important to maintain code
semantics.

BlockStatement is usually after SwitchStatementCase, ForState-
ment, IfStatement, WhileStatement, MethodDeclaration, and other
node types that can control whether the following statements are
executed or not. The edges containing the BlockStatement node are
likely to reflect the control information of the program, and the
control flow is a reflection of the program semantics. The Block-
Statement node type is followed by various statement types, such as
the most common StatementExpression, or ReturnStatement, IfState-
ment, ContinueStatement, LocalVariableDeclaration, etc. The node
type following BlockStatement abstracts the statements contained

ASE 22, October 10-14, 2022, Rochester, MI, USA

0.94

0.92
0.90
0.88

8 0.86

& 0844

i

L 082
0.80
0.78
0.76

0.74

0 40 80 1]20 1é0 200 240
The Number of Selected Features

Figure 8: F1 scores of Amain when selecting different num-

bers of features

within a statement block. Different statement types represent differ-
ent program details, and different program details imply different
semantics. It is probably for this reason that the BlockStatement
node type has high importance.

To obtain a more intuitive view of how these features work, we
sort each element of the concatenate distance vector by the impor-
tance of its corresponding feature. Then we take the top n (n from 1
to 228) features in turn and record the F1 scores for different lengths
of the vector using a ten-fold cross-validation method. Through the
results in Figure 8, we find that an F1 score of 0.7461 can be achieved
using only one feature (i.e., StatementExpression_cosine) for classifi-
cation. Besides, with the continuous increase of important features,
the detection performance becomes increasingly effective. As the
number of features gradually increases from 1 to 50, the improve-
ment of F1 score is very significant, and the increase of F1 score
is relatively slow from 50 to 100. When the number of features
increases to around 100, Amain can almost achieve the best results,
and the F1 is 0.92. This indicates that the top 100 important features
have been able to detect semantic clones well. In the future, we
plan to use different feature selection algorithms to find the most
suitable feature combination for better detection performance.

6 DISCUSSION

6.1 Threats to Validity

Code pairs in the BCB dataset are labeled by several experts, and
not all data belong to semantic code clones. Therefore, BCB may
not be representative of the entire open-source projects. To mitigate
the threat, we choose another open-source dataset which consists
of 1,669 projects from 12 separate competition problems held by
Google. To obtain fixed-length states from ASTs, we select a total
of 15 token types to commence our experiments. The selection of
these types may cause some inaccuracies since the total number
of token types parsed by Javalang is not clear. To mitigate the
situation, we perform statistical analysis on the whole BCB dataset
to select the types with a high number of occurrences and add
a Null type to represent the remaining types. The calculation of
runtime overheads of Amain and its comparative tools may also

Yueming Wu, Siyue Feng, Deqing Zou, and Hai Jin

cause some inaccuracies due to the different machine statuses such
as CPU usage. We mitigate the threat by conducting evaluations
ten times and reporting the average runtime overhead in our paper.

6.2 Discussion

6.2.1 Why does Amain perform better? First, Amain maintains the
program details by generating the AST of a method, which enables
it to detect Type-4 with a high degree of precision. Second, the use of
Markov chains in Amain converts the complex ASTs into matrices
that are convenient to store and manipulate, while preserving the
tree details of the code and eliminating sophisticated tree matching.
Third, compared to SourcererCC [34] which computes the similarity
directly after parsing the program, Amain represents the similarity
of two codes by measuring the distance between two matrices, and
then puts the distance vector into a machine learning classifier for
training and testing, which significantly improves the efficiency
and accuracy of Amain.

6.2.2 Programming language generalizability. In this paper, we
mainly focus on Java code clone detection. In reality, our approach
can extend to other programming languages with small modifi-
cations. For instance, we can leverage pycparser [5] as the lexical
analysis tool to extract the AST of C source code, then the same
Markov chains model building and machine learning classifier train-
ing can be adopted to detect C code clones.

6.2.3 Future work. In our paper, we select four distance calculation

methods to measure the distance between two matrices and four
machine learning algorithms to train code clone classifiers. Experi-
mental results show that the use of different distance calculation
methods and different machine learning algorithms can achieve
different detection effectiveness. In our future work, we plan to
select more distance calculation methods and machine learning
algorithms to find a more suitable combination for achieving better
detection performance. Since most code clone detection tools are
not open source, we only select nine comparative systems. We will
conduct a detailed comparative analysis on more systems in the
future. From results in Figure 8, we observe that the top 100 im-
portant features may be enough for Amain to detect semantic code
clones. In our future work, we would like to apply different feature
selection techniques to figure out the most suitable combination of
these features. In this way, Amain may achieve more scalable and
effective semantic code clone detection.

7 RELATED WORK

In this section, we concentrate on the current research associated
with clone code detection. The existing clone code detection meth-
ods are mainly classified into text-based, token-based, tree-based,
graph-based, and metric-based tools.

For text-based clone detection techniques [10, 16, 19, 29, 32, 47],
these techniques convert no or little source code and compare two
code segments by treating the source code as a series of lines or
strings. Johnson [19] detects clones by fingerprint matching method.
[10] detects clones by treating lines of code as strings and then using
string matching methods for similarity estimation. Therefore, this
method can only find extremely similar code clones and does not
have the ability to detect semantic clones. [32] detects potential
clones by matching the code text using an algorithm of the longest

Detecting Semantic Code Clones by Building AST-based Markov Chains Model

common subsequence. These methods do not consider the logic
of the code fragment and the semantics of the program, but only
consider the code as a simple string and perform the detection of
code clones by string matching. Therefore, only clones with high
text similarity can be detected, and it is almost impossible to find
Type-3 and Type-4 code clones.

For token-based clone detection techniques [11, 12, 15, 20, 23,
34, 42], these methods convert the target source code into a token
sequence by lexical analysis of the program code, and then detect
code clones by scanning the token sequences and finding duplicate
token subsequences. [11] creates a map by comparing additions and
deletions between two clones, and then detects clones. CCFinder
[20] first extracts the token sequence from the program code and
then develops transformation rules to convert the token sequence,
which can be used to detect Type-1 and Type-2 clones. CClearner
[23] is the first fully token-based clone detector that extracts to-
kens from clone and non-clone pairs to train a classifier, which
is then used to detect clones in the codebase. SourcererCC [34]
detects clones by comparing marked overlaps, which is good at
detecting format conversions and renaming, and it is well scalable.
CCAligner [42] is the best tool to detect the performance of large
gap clones. It is capable of detecting Type-1, Type-2, and Type-3
clones by performing similarity calculations using novel electron
mismatch indices and asymmetric similarity coefficients. However,
the token-based approach cannot handle Type-4 clones. CPPCD
[15] is a CP-based potential clone detector by generating Clone
Probability (CP) values and CP distribution maps for developers to
determine whether two methods are a clone.

For tree-based clone detection techniques [9, 17, 18, 24, 28, 43, 48],
these methods parse the program into a parse tree or abstract syntax
tree. The clone is then detected by tree matching. Deckard [17] uses
Locality Sensitive Hashing (LSH) to detect clones by clustering the
similar vectors obtained by computing AST for any language with
grammatical regulations. CDLH [43] first normalizes the abstract
syntax tree to transform it into a binary tree, and then encodes
the representation of the tree to form vectors using Tree-LSTM
[38]. ASTNN [48] divides the abstract syntax tree into several sub-
trees by predefined rules, then encodes each subtree separately to
form vectors, and integrates the subtree vectors into a final vector
representation using a bidirectional RNN model. [24] is the first
method that uses AST-path for clone detection. It represents each
code fragment by a set of AST-paths, and then puts these paths into
a compare-aggregate model to learn a vector representation, and
detects whether a pair of codes is cloned by detecting the similarity
of a pair of vectors.

For graph-based clone detection techniques [21, 22, 41, 46, 49, 50],
programs are represented as different graph representations, such
as Program Dependency Graph (PDG) and Control Flow Graph (CFG).
Most techniques detect clones by subgraph matching, e.g. [22] and
[21] use subgraph matching to identify similar code fragments.
However, the subgraph matching approach usually has a large time
overhead, so CCSharp [41] proposes two methods to reduce the
overhead, which is a modification of the graph structure and filter-
ing of the feature vectors. [49] converts the code similarity problem
into a binary classification problem to deal with code cloning. It con-
verts the code control flow and data flow in the graph into semantic
high-dimensional sparse matrices, and then puts the transformed

ASE ’22, October 10-14, 2022, Rochester, MI, USA

binary feature vector into a deep learning model to measure the
functional similarity of the codes. It can efficiently detect code
clones that are syntactically extremely different but functionally
similar. SCDetector [46] treats the control flow graph as a social
network, extracts centrality for each block to form semantic tokens
with the scalability of a token-based approach and the accuracy
of a graph-based approach, and it can detect Type-4 clones with
extremely high accuracy.

For metric-based clone detection techniques [6, 13, 25, 27, 30, 33,
35, 37, 40], these methods use the properties of the code to measure
the similarity of two code fragments. The metrics are sometimes
obtained from a tree or graph representation of the source code, and
sometimes directly from the source code. For example, both [6] and
[25] use AST as a code feature to identify code clones. [27] detects
clones with respect to different classes of metrics (e.g., classes,
couplings, and hierarchies) obtained directly from the source code.

Text-based and token-based methods are the fastest, but they
do not take into account the program semantics and cannot detect
semantic code clones (Type-4 clones). Graph-based methods can
detect semantic clones, but building graph models of programs
generally requires compilation and many clones are small fragments
that cannot be compiled successfully. Tree-based approaches are
increasingly used because they do not require compilation and can
preserve the program details. However, the AST generated by a
few lines of code can be very complex, resulting in high analysis
overhead and low efficiency. In our paper, we build a Markov chains
model to transform the complex tree analysis into simple state
transitions. After obtaining the distance vector between all states,
we train a classifier by using some traditional machine learning
algorithms. The use of Markov chains model and machine learning
model enable Amain to achieve scalable and effective semantic code
clone detection.

8 CONCLUSION

In this paper, we propose Amain, a novel AST-based method for
detecting semantic code clones. To avoid heavy-weight tree match-
ing, Amain transforms the complex AST into simple Markov chains
and build a model to achieve efficient code clone scanning. We
evaluate Amain on two widespread datasets, BigCloneBench [2, 36]
and Google Code Jam [1]. Our experiments show that Amain out-
performs nine state-of-the-art code clone detection systems (i.e.,
SourcererCC [34], RtvNN [44], Deckard [17], ASTNN [48], TBCNN
[26], CDLH [43], SCDetector [46], DeepSim [49], and FCCA [14]).
Compared to another current state-of-the-art AST-based code clone
detector ASTNN, Amain is about 18.3 times faster in analyzing code
clones.

ACKNOWLEDGEMENTS

We would thank the anonymous reviewers for their insightful com-
ments to improve the quality of the paper. This work is supported
by the Key Program of National Science Foundation of China under
Grant No. U1936211 and Hubei Province Key R&D Technology
Special Innovation Project under Grant No. 2021BAA032.

REFERENCES

[1] 2017. Google Code Jam. https://code.google.com/codejam/past-contests.
[2] 2022. BigCloneBench. https://github.com/clonebench/BigCloneBench.

https://code.google.com/codejam/past-contests
https://github.com/clonebench/BigCloneBench

ASE

=
&

[9

=

[10

[11

[12]

[13]

[14

[15

[16]

[17

(18]

[19]

[20

[21]

[22

[23

[24]

[25]

[26

[27]

’22, October 10-14, 2022, Rochester, MI, USA

2022. An open source machine learning library that supports supervised and
unsupervised learning. (scikit-learn). https://scikit-learn.org/stable/.

2022. A pure Python library for working with Java source code, provies a lexer
and parser targeting Java 8. (Javalang). https://pypi.org/project/javalang/.

2022. pycparser is a complete parser of the C language. https://pypi.python.org/
pypi/pycparser/.

Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lague, and Kostas
Kontogiannis. 1999. Measuring clone based reengineering opportunities. In
Proceedings of the 6th International Software Metrics Symposium (ISMS’99). 292—
303.

Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo.
2007. Comparison and evaluation of clone detection tools. IEEE Transactions on
Software Engineering 33, 9 (2007), 577-591.

Yoshua Bengio, Renato De Mori, Giovanni Flammia, and Ralf Kompe. 1992. Global
optimization of a neural network-hidden Markov model hybrid. IEEE Transactions
on Neural Networks 3, 2 (1992), 252-9.

Sergej Chodarev, Emilia Pietrikova, and Jan Kollar. 2015. Haskell clone detec-
tion using pattern comparing algorithm. In Proceedings of the 13th International
Conference on Engineering of Modern Electric Systems (EMES’15). 1-4.

Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. 1999. A language in-
dependent approach for detecting duplicated code. In Proceedings of the 1999
International Conference on Software Maintenance (ICSM’99). 109-118.

Nils Gode and Rainer Koschke. 2009. Incremental clone detection. In Proceedings
of the 2009 European Conference on Software Maintenance and Reengineering
(ECSMR’09). 219-228.

Yaroslav Golubev, Viktor Poletansky, Nikita Povarov, and Timofey Bryksin. 2021.
Multi-threshold token-based code clone detection. In Proceedings of the 28th
IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER’21). 496-500.

Syed Mohd Fazalul Haque, V. Srikanth, and E. Sreenivasa Reddy. 2016. Generic
code cloning method for detection of clone code in software development. In
Proceedings of the 2016 International Conference on Data Mining and Advanced
Computing (SAPIENCE’16). 340-344.

Wei Hua, Yulei Sui, Yao Wan, Guangzhong Liu, and Guandong Xu. 2021. FCCA:
Hybrid code representation for functional clone detection using attention net-
works. IEEE Transactions on Reliability 70, 1 (2021), 304-318.

Yu-Liang Hung and Shingo Takada. 2020. CPPCD: A token-based approach to
detecting potential clones. In Proceedings of the 14th IEEE International Workshop
on Software Clones (IWSC’20). 26-32.

Shruti Jadon. 2016. Code clones detection using machine learning technique:
support vector machine. In Proceedings of the 2016 IEEE International Conference
on Computing, Communication and Automation (ICCCA’16). 299-303.

Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
Deckard: Scalable and accurate tree-based detection of code clones. In Proceedings
of the 29th International Conference on Software Engineering (ICSE’07). 96-105.
Young-Bin Jo, Jihyun Lee, and Cheol-Jung Yoo. 2021. Two-Pass technique for clone
detection and type classification using tree-based convolution neural network.
Applied Sciences 11, 14 (2021), 1-18.

J. Howard Johnson. 1994. Substring matching for clone detection and change
tracking. In Proceedings of the 1994 International Conference on Software Mainte-
nance (ICSM’94). 120-126.

Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A
multilinguistic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering 28, 7 (2002), 654-670.
Raghavan Komondoor and Susan Horwitz. 2001. Using slicing to identify du-
plication in source code. In Proceedings of the 2001 International Static Analysis
Symposium (ISAS’01). 40-56.

Jens Krinke. 2001. Identifying similar code with program dependence graphs.
In Proceedings of the 8th Working Conference on Reverse Engineering (WCRE’01).
301-309.

Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder. 2017.
CClearner: A deep learning-based clone detection approach. In Proceedings of the
2017 International Conference on Software Maintenance and Evolution (ICSME’17).
249-260.

Hongliang Liang and Lu Ai. 2021. AST-path based compare-aggregate network
for code clone detection. In Proceedings of the 2021 International Joint Conference
on Neural Networks (IJCNN’21). 1-8.

Jean Mayrand, Claude Leblanc, and Ettore Merlo. 1996. Experiment on the
automatic detection of function clones in a software system using metrics. In Pro-
ceedings of the 1996 International Conference on Software Maintenance (ICSM’96).
244-253.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional neural net-
works over tree structures for programming language processing. In Proceedings
of the 30th AAAI Conference on Artificial Intelligence (AAAI'16). 1287-1293.

J. F. Patenaude, Ettore Merlo, Michel Dagenais, and Bruno Lagué. 1999. Extending
software quality assessment techniques to java systems. In Proceedings of the 7th
International Workshop on Program Comprehension (IWPC’99). 49-56.

(28]

[29

[30

[33

(34

[35]

[37

[38

[39

[41

[42

[43

[44

[45

[46

[47

[49]

[50

Yueming Wu, Siyue Feng, Deqing Zou, and Hai Jin

Jayadeep Pati, Babloo Kumar, Devesh Manjhi, and Kaushal Kumar Shukla. 2017. A
comparison among ARIMA, BP-NN, and MOGA-NN for software clone evolution
prediction. IEEE ACCESS 5, 1 (2017), 11841-11851.

Chaiyong Ragkhitwetsagul and Jens Krinke. 2017. Using compilation/decompi-
lation to enhance clone detection. In Proceedings of the 11th IEEE International
Workshop on Software Clones (IWSC’17). 1-7.

Chaiyong Ragkhitwetsagul, Jens Krinke, and Bruno Marnette. 2018. A picture
is worth a thousand words: Code clone detection based on image similarity. In
Proceedings of the 12th IEEE International Workshop on Software Clones (IWSC’18).
44-50.

Chanchal Kumar Roy and James Cordy. 2007. A survey on software clone
detection research. Queen’s School of Computing TR 541, 115 (2007), 64-68.
Chanchal Kumar Roy and James Cordy. 2008. NICAD: Accurate detection of near-
miss intentional clones using flexible pretty-printing and code normalization.
In Proceedings of the 2008 International Conference on Program Comprehension
(ICPC’08). 172-181.

Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Pierre Baldi, and Cristina V.
Lopes. 2018. Oreo: Detection of clones in the twilight zone. In Proceedings of
the 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (FSE’18). 354-365.
Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.
Lopes. 2016. SourcererCC: Scaling code clone detection to big code. In Proceedings
of the 38th International Conference on Software Engineering (ICSE’16). 1157-1168.
M. Sudhamani and Lalitha Rangarajan. 2016. Code clone detection based on order
and content of control statements. In Proceedings of the 2nd IEEE International
Conference on Contemporary Computing and Informatics (ICCCI’16). 59-64.
Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo, Chanchal K. Roy, and Moham-
mad Mamun Mia. 2014. Towards a big data curated benchmark of inter-project
code clones. In Proceedings of the 2014 International Conference on Software Main-
tenance and Evolution (ICSME’14). 476-480.

Jeffrey Svajlenko and Chanchal K. Roy. 2017. Fast and flexible large-scale clone
detection with cloneWorks. In Proceedings of the IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE’17). 27-30.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved
semantic representations from tree-structured long short-term memory networks.
arXiv preprint arXiv:1503.00075 (2015).

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. 2005. Data mining cluster
analysis: Basic concepts and algorithms. Introduction to Data Mining 487, 1 (2005),
487-568.

Masateru Tsunoda, Yasutaka Kamei, and Atsushi Sawada. 2016. Assessing the
differences of clone detection methods used in the fault-prone module prediction.
In Proceedings of the 23rd IEEE International Conference on Software Analysis,
Evolution, and Reengineering (SANER’16). 15-16.

Min Wang, Pengcheng Wang, and Yun Xu. 2017. CCSharp: An efficient three-
phase code clone detector using modified PDGs. In Proceedings of the 24th Asia-
Pacific Software Engineering Conference (APSEC’17). 100-109.

Pengcheng Wang, Jeffrey Svajlenko, Yanzhao Wu, Yun Xu, and Chanchal K. Roy.
2018. CCAligner: A token based large-gap clone detector. In Proceedings of the
40th International Conference on Software Engineering (ICSE’18). 1066-1077.
Huihui Wei and Ming Li. 2017. Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information in source code.
In Proceedings of the 2017 International Joint Conferences on Artificial Intelligence
(IJCAT’17). 3034-3040.

Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. In Proceedings of
the 31st International Conference on Automated Software Engineering (ASE’16).
87-98.

Holger Wigstrom. 1974. A model of a neural network with recurrent inhibition.
Kybernetik 16, 2 (1974), 103-12.

Yueming Wu, Deqing Zou, Shihan Dou, Siru Yang, Wei Yang, Feng Cheng, Hong
Liang, and Hai Jin. 2020. SCDetector: Software functional clone detection based
on semantic tokens analysis. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE’20). 1000-1012.

Dongjin Yu, Jie Wang, Qing Wu, Jiazha Yang, Jiaojiao Wang, Wei Yang, and Wei
Yan. 2017. Detecting Java code clones with multi-granularities based on byte-
code. In Proceedings of the 41st IEEE Annual Computer Software and Applications
Conference (COMPSAC’17). 317-326.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A novel neural source code representation based on abstract syntax
tree. In Proceedings of the 41st International Conference on Software Engineering
(ICSE’19). 783-794.

Gang Zhao and Jeff Huang. 2018. Deepsim: Deep learning code functional
similarity. In Proceedings of the 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(FSE’18). 141-151.

Yue Zou, Bihuan Ban, Yinxing Xue, and Yun Xu. 2020. CCGraph: A PDG-based
code clone detector with approximate graph matching. In Proceedings of the 35th
International Conference on Automated Software Engineering (ASE’20). 931-942.

https://scikit-learn.org/stable/
https://pypi.org/project/javalang/
https://pypi.python.org/pypi/pycparser/
https://pypi.python.org/pypi/pycparser/

	ABSTRACT
	1 INTRODUCTION
	2 MOTIVATION
	3 CLONE TYPES
	4 SYSTEM
	4.1 Overview
	4.2 AST Generation
	4.3 State Matrix Construction
	4.4 Feature Extraction
	4.5 Classification

	5 EXPERIMENTS
	5.1 Experimental Dataset
	5.2 Experimental Settings
	5.3 RQ1: Comparison of Different Methods
	5.4 RQ2: Overall Effectiveness
	5.5 RQ3: Scalability
	5.6 RQ4: Interpretability

	6 DISCUSSION
	6.1 Threats to Validity
	6.2 Discussion

	7 RELATED WORK
	8 CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

