
TreeCen: Building Tree Graph for Scalable Semantic Code Clone
Detection

Yutao Hu∗†
Huazhong University of Science and

Technology
China

yutaohu@hust.edu.cn

Deqing Zou∗†
Huazhong University of Science and

Technology
China

deqingzou@hust.edu.cn

Junru Peng
Xidian University

China
pengjunru0716@outlook.com

Yueming Wu‡
Nanyang Technological University

Singapore
wuyueming21@gmail.com

Junjie Shan
KTH Royal Institute of Technology

Sweden
jshan@kth.se

Hai Jin†§
Huazhong University of Science and

Technology
China

hjin@hust.edu.cn

ABSTRACT
Code clone detection is an important research problem that has at-
tracted wide attention in software engineering. Manymethods have
been proposed for detecting code clone, among which text-based
and token-based approaches are scalable but lack consideration
of code semantics, thus resulting in the inability to detect seman-
tic code clones. Methods based on intermediate representations
of codes can solve the problem of semantic code clone detection.
However, graph-based methods are not practicable due to code
compilation, and existing tree-based approaches are limited by the
scale of trees for scalable code clone detection.

In this paper, we propose TreeCen, a scalable tree-based code
clone detector, which satisfies scalability while detecting seman-
tic clones effectively. Given the source code of a method, we first
extract its abstract syntax tree (AST) based on static analysis and
transform it into a simple graph representation (i.e., tree graph) ac-
cording to the node type, rather than using traditional heavyweight
tree matching. We then treat the tree graph as a social network
and adopt centrality analysis on each node to maintain the tree
details. By this, the original complex tree can be converted into a
72-dimensional vector while containing comprehensive structural
information of the AST. Finally, these vectors are fed into a ma-
chine learning model to train a detector and use it to find code
clones. We conduct comparative evaluations on effectiveness and

∗Hubei Engineering Research Center on Big Data Security, School of Cyber Science
and Engineering, HUST, Wuhan, 430074, China
†National Engineering Research Center for Big Data Technology and System, Services
Computing Technology and System Lab, HUST, Wuhan, 430074, China
‡Yueming Wu is the corresponding author
§Cluster and Grid Computing Lab, School of Computer Science and Technology, HUST,
Wuhan, 430074, China

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3556927

scalability. The experimental results show that TreeCen maintains
the best performance of the other six state-of-the-art methods (i.e.,
SourcererCC, RtvNN, DeepSim, SCDetector, Deckard, and ASTNN)
with F1 scores of 0.99 and 0.95 on BigCloneBench and Google Code
Jam datasets, respectively. In terms of scalability, TreeCen is about
79 times faster than the other state-of-the-art tree-based semantic
code clone detector (ASTNN), about 13 times faster than the fastest
graph-based approach (SCDetector), and even about 22 times faster
than the one-time trained token-based detector (RtvNN).

CCS Concepts
• Software and its engineering→ Softwaremaintenance tools.

ACM Reference Format:
Yutao Hu, Deqing Zou, Junru Peng, Yueming Wu, Junjie Shan, and Hai
Jin. 2022. TreeCen: Building Tree Graph for Scalable Semantic Code Clone
Detection. In 37th IEEE/ACM International Conference on Automated Software
Engineering (ASE ’22), October 10–14, 2022, Rochester, MI, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3551349.3556927

1 INTRODUCTION
Code clone detection is an important research domain in software
engineering. A cloned code is a code fragment that is identical or
similar to another snippet. Generally, clones are classified into four
types (i.e., Type 1-4 clones) depending on the degree of code simi-
larity. The first three types of clones (i.e., Type 1-3 clones) are code
pairs with syntactic similarity, generally introduced by developers
copying code. These clone types are easily detected as the code
pair with high similarity. The last type of clone (i.e., Type-4 clone)
is semantically similar to other code fragments, which may result
from the developer referring to code with similar functionality
while programming. Semantic clones have an implicit similarity.
Therefore, clone detection for them is a complex research problem
to solve.

Many methods have been proposed to detect code clones, cate-
gorized into two dominant groups according to the detection effect:
scalable clone detection and semantic clone detection. For scalable
clone detection, the main methods are text-based and token-based
[49], [32], [21], [28], [27], [43], which directly transform code frag-
ments into text or token sequences and then perform similarity

https://doi.org/10.1145/3551349.3556927
https://doi.org/10.1145/3551349.3556927

ASE ’22, October 10–14, 2022, Rochester, MI, USA Yutao Hu, Deqing Zou, Junru Peng, Yueming Wu, Junjie Shan, and Hai Jin

comparison. Although these methods require a short execution
time for clone detection, they cannot cope with the detection of
semantic clones due to the lack of consideration of code semantic
information. In order to detect semantic clones effectively, some
detection methods based on the intermediate representation of the
code have been proposed [55], [54], [56], [50]. Related works have
proven that graph-based and tree-based detection methods can
detect semantic clones, but the existing methods are not applicable
for scalable detection. For graph-based approaches, both program
dependency graphs (PDGs) and control flow graphs (CFGs) have com-
plex structures, leading to a significant runtime overhead for graph
similarity comparison. Moreover, generating accurate graph repre-
sentations requires code compilation, resulting in limited detection
of some code fragments (e.g., individual functions, code segments).
To make clone detection more scalable, some researchers have pro-
posed tree-based clone detection schemes that effectively avoid the
difficulties of compiling code. However, a major limitation of the
existing tree-based methods is that the structure of tree representa-
tion is also highly complex, resulting in a high time overhead when
comparing similarities. For example, there are 40 nodes in the AST
generated for a mere 4-line code fragment, as shown in Figure 3.

In this paper, we intend to mitigate the high runtime overhead
of tree-based approaches and propose a novel scalable tree-based
semantic code clone detector. Specifically, we face one main chal-
lenge:

• How to transform a complex tree into a simple representation
form while preserving the tree structure information?

To address this challenge, we first transform the AST of a method
by node type into a simpler graph representation, namely tree graph.
After obtaining the tree graph, we regard it as a social network
and apply social network-based centrality analysis to dig out the
centrality of each node. Centrality analysis was first proposed in
social network analysis, whose original purpose was to measure
the importance of a person within a network. Empirical studies [13,
14, 18] have validated that centrality analysis can retain network
structural properties and has been used in many different areas
[16, 25, 34]. After performing centrality analysis on the tree graph,
we can obtain a fixed-length vector. In this way, the complex AST
is transformed into a 72-dimensional vector while maintaining the
tree details. By analyzing succinct vectors, we can achieve scalable
semantic code clone detection.

We implement a simple yet effective system, TreeCen, and evalu-
ate its detection accuracy and scalability on two popular benchmark
datasets, termed Google Code Jam (GCJ) [4] and BigCloneBench
(BCB) [1]. We also compare TreeCen with six state-of-the-art code
clone detection methods including two token-based approaches
(i.e., SourcererCC [45] and RtvNN [53]), two graph-based tools (i.e.,
DeepSim [56] and SCDetector [54]), and two tree-based detectors
(i.e., Deckard [26] and ASTNN [55]). The experimental results show
that TreeCen outperforms the above comparative systems. In detail,
the most effective comparison tool on the BCB dataset is DeepSim,
reaching an F1 score of 0.98, and the best one on the GCJ dataset
is ASTNN, with an F1 score of 0.91. In fact, TreeCen improves the
F1 scores to 0.99 and 0.95 on two benchmark datasets, respectively.
TreeCen also achieves excellent performance in terms of time over-
head. Specifically, TreeCen takes 239.2s to detect one million code

pairs, which is at least 79 times faster than another tree-based se-
mantic code clone detector (i.e., ASTNN), about 13 times faster than
the fastest graph-based approach (i.e., SCDetector), and even about
22 times faster than the one-time trained token-based detector (i.e.,
RtvNN). Such results indicate that TreeCen is suitable for large-scale
code clone detection.

Contributions. In summary, our paper makes the following
contributions:

• We propose a novel approach to simplify an AST into a sim-
ple graph representation according to the node types and
adopt centrality analysis to covert it into a fixed-length vec-
tor. The transformation helps to avoid high-cost tree compar-
ison while preserving comprehensive structural information
of the AST.

• We design and implement a simple yet effective system,
TreeCen 1, which is a tree-based detector with both semantic
clone detection capability and scalability.

• We conduct extensive evaluations in terms of effectiveness
and scalability. The experimental results show that TreeCen
is superior to the other six state-of-the-art methods (i.e.,
SourcererCC [45], RtvNN [53], DeepSim [56], SCDetector [54],
Deckard [26], and ASTNN [55]).

Paper Outline. Section 2 presents the preliminary study on
several centrality measures of code clones. Section 3 introduces
the related definitions. Section 4 describes the system architecture
of TreeCen. Section 5 reports the experimental results. Section 6
discusses the future work. Section 7 presents the related work.
Section 8 concludes the present paper.

2 PRELIMINARY STUDY
Centrality measures have been widely used in social network anal-
ysis, which is adopted to evaluate the importance of nodes in a
network. Many research works in other fields have also been pro-
posed and demonstrated that centrality measures could effectively
reveal the structure of a graph or network [25], [34], [16].

For code analysis, the AST is a common and essential code inter-
mediate representation that reflects syntactic and semantic infor-
mation. Since ASTs can be obtained without compilation compared
to PDGs or CFGs, AST-based approaches are more scalable for code
clone detection tasks. For code cloning, similar codes should have a
more similar AST structure, while codes with different functionali-
ties should have a more distinctive AST. However, there has been
no work to demonstrate whether centrality analysis can effectively
reveal the structural features of trees, as the centrality measures
can only be analyzed for graphs and cannot be directly adapted
to tree analysis. To this end, we perform a preliminary study to
investigate the below questions:

• Can AST be converted into a simpler graph representation?
• Can the centrality measures effectively reflect the structural
information of the ASTs, thus showing high similarity for
clone code pairs and low similarity for code pairs with different
functionality?

To answer the proposed questions, we conduct a preliminary
study on clone and non-clone code pairs in the BCB dataset. Since

1https://github.com/CGCL-codes/TreeCen

TreeCen: Building Tree Graph for Scalable Semantic Code Clone Detection ASE ’22, October 10–14, 2022, Rochester, MI, USA

the number of non-clone pairs in it exceeds 1,000,000 while the
number of clone pairs is only 270,000, we investigate all clone pairs
and 270,000 randomly selected non-clone pairs in the BCB dataset
to ensure the fairness of the test.

E i g e n V e c t o r C l o s e n e s s B e t w e e n n e s s D e g r e e

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Co
sin

e S
im

ilar
ity

Sc
ore

 C l o n e
 N o n - c l o n e

Figure 1: The cosine similarity distributions of several cen-
trality measures of clone and non-clone code pairs

Given a code fragment, we first perform static analysis to extract
the AST. To simplify the AST into a graph representation, we set
each node type of the AST as a node in the graph, and then assign
edges and edgeweights between the nodes in the graph based on the
edge relationships in the AST. After obtaining the graph, we select
four popular centrality measures (i.e., EigenVector Centrality [13],
Closeness Centrality [14], Betweenness Centrality [18], and Degree
Centrality [19]) to generate centrality vectors. Finally, we calculate
the cosine similarities of these centrality vectors and check whether
centrality can show the inherent differences between clone and
non-clone code pairs. In particular, the more similar the code pair is,
the more the cosine similarity converges to 1. Conversely, the more
different the code pair is, the more the cosine similarity converges
to 0. As we can see from the box line plots in Figure 1, there are
significant differences between clones and non-clone codes. The
box plots for clone codes (orange ones) clearly are closer to 1 than
for non-clone code pairs (blue ones). Therefore, the investigation
results can answer the two above questions. In other words, an AST
can be simplified into a graph representation, and the centrality
analysis can reflect the structural information of the AST, which
shows a significant discrepancy in the similarity between clone and
non-clone code pairs.

Inspired by these insights, we propose a novel approach to trans-
form complex ASTs into graphs (i.e., tree graphs) and perform cen-
trality analysis on the tree graphs to obtain briefer code representa-
tion vectors for scalable code clone detection.

3 DEFINITION
In this paper, we adopt the definitions of code clones and clone
types, following the previous work [42], [14].

Type-1 Clone (Textual Similarity): These code clones are iden-
tical code fragments, excluding spaces, blank lines, and comments.

Type-2 Clone (Lexical Similarity): The code in this category
is identical code fragments except for some renamed unique identi-
fiers (i.e., function name, class name, variables).

Type-3 Clone (Syntactic Similarity): Code fragments that are
syntactically similar differ only at statement- level. These fragments
have statements added, modified, or deleted from each other.

Type-4 Clone (Semantic Similarity): This clone type indicates
syntactically dissimilar fragments that implement the same func-
tionality. Type-1, Type-2, and Type-3 clones demonstrate textual
similarity, whereas Type-4 clones represent functional similarity.

Code Fragment: According to the granularity, a continuous
segment of source code can be divided into Token level, Statement
level, Function level, File level, and Program level. In this paper, we
aim to conduct code clone detection at function level.

4 SYSTEM
In this section, we introduce our proposed clone detector, namely
TreeCen (Tree-based code clone detector by using Centrality).

Clone
Detection

Feature
Extraction

AST
Abstraction

AST
Extraction

AST1

AST2 Tree Graph2

Centrality
Vector1

Centrality
Vector2

Tree Graph1
ML-based
Detector

Detection
Result

Method1

Method2

Figure 2: System overview of TreeCen

4.1 System Overview
The framework of TreeCen is shown in Figure 2. TreeCen consists
of four main phases: AST Extraction, AST Abstraction, Feature Ex-
traction, and Clone Detection.

• AST Extraction: This phase aims to extract the AST for a
method based on static analysis, whose input is the source
code, and the output is an AST.

• AST Abstraction: This phase is designed to simplify the
AST while preserving its structural information. The input
is an AST, and the output is a tree graph for the AST, where
each node represents a node type in the AST, and each edge
conveys an edge relationship in the AST.

• Feature Extraction: In this phase, we assign centrality to
each node within the tree graph generated in the AST ab-
straction phase. The output is centrality vectors containing
concrete features about the AST.

• Clone Detection: Given the centrality vector of a pair of
codes, we concatenate them into one vector and then feed
it into a machine learning model to train the detector after
annotating the corresponding labels (clone or non-clone).

4.2 AST Extraction
This paper devotes to building a detector for scalable semantic
code clones. To make a trade-off between scalability and semantic

ASE ’22, October 10–14, 2022, Rochester, MI, USA Yutao Hu, Deqing Zou, Junru Peng, Yueming Wu, Junjie Shan, and Hai Jin

private int fib(int x) {
 if (x == 0) return 0;
 if (x == 1) return 1;
 return fib(x - 1) + fib(x - 2);

}

Source Code of a Method

MethodDeclaration

IfStatement
ReturnStatement

IfStatement

BinaryOperation ReturnStatement

Member-
ReferenceOperator

==

Operator

==

Identifier

x

Identifier

x

Decimal
Integer

0

Decimal
Integer

0

Literal

Decimal
Integer

0

Decimal
Integer

0

Literal

BinaryOperation ReturnStatement

Member-
ReferenceOperator

==

Operator

==

Identifier

x

Identifier

x

Decimal
Integer

1

Decimal
Integer

1

Literal

Decimal
Integer

1

Decimal
Integer

1

Literal

BinaryOperation

Operator

+

Operator

+

MethodInvocation MethodInvocation

Identifier

fib

Identifier

fib
BinaryOperation

Member-
Reference

Operator

-

Operator

-

Identifier

x

Identifier

x
Decimal
Integer

1

Decimal
Integer

1

Literal

Identifier

fib

Identifier

fib
BinaryOperation

Member-
Reference

Operator

-

Operator

-

Identifier

x

Identifier

x
Decimal
Integer

2

Decimal
Integer

2

Literal

AST of the Source Code
MethodDeclaration

IfStatement
ReturnStatement

IfStatement

BinaryOperation ReturnStatement

Member-
ReferenceOperator

==

Identifier

x

Decimal
Integer

0

Literal

Decimal
Integer

0

Literal

BinaryOperation ReturnStatement

Member-
ReferenceOperator

==

Identifier

x

Decimal
Integer

1

Literal

Decimal
Integer

1

Literal

BinaryOperation

Operator

+

MethodInvocation MethodInvocation

Identifier

fib
BinaryOperation

Member-
Reference

Operator

-

Identifier

x
Decimal
Integer

1

Literal

Identifier

fib
BinaryOperation

Member-
Reference

Operator

-

Identifier

x
Decimal
Integer

2

Literal

AST of the Source Code

Me3
[0.06,

If
0.08,

Me1
0.04,

Bi
0.24,

Me2
0.11,

Re
0.07,

Li
0.17,

Op
0.07,

Id
0.08,

De
0.08,

...

..]
Me3
[0.06,

If
0.08,

Me1
0.04,

Bi
0.24,

Me2
0.11,

Re
0.07,

Li
0.17,

Op
0.07,

Id
0.08,

De
0.08,

...

..]

Feature Extraction for
the Tree Graph

Me3
[0.06,

If
0.08,

Me1
0.04,

Bi
0.24,

Me2
0.11,

Re
0.07,

Li
0.17,

Op
0.07,

Id
0.08,

De
0.08,

...

..]

Feature Extraction for
the Tree Graph

Member-
Reference

4

IfStatement
Return-

Statement

Literal

Decimal-
Integer

Binary-
Operation

Operator

Method-
Declaration

Identifier

2

2 24

5

2

2

6

2 1

4

4

Method-
Invocation

Tree Graph for the AST

Member-
Reference

4

IfStatement
Return-

Statement

Literal

Decimal-
Integer

Binary-
Operation

Operator

Method-
Declaration

Identifier

2

2 24

5

2

2

6

2 1

4

4

Method-
Invocation

Tree Graph for the AST

Clone Detection

ML-based
Detector

Detection Results

Clone Detection

ML-based
Detector

Detection Results

4

6 5

12

6

175

3

6

8

4

6 5

12

6

175

3

6

8

Figure 3: A detailed example for TreeCen

preservation, we adopt the AST as an intermediate representation
of code. In terms of scalability, generating an accurate AST does
not require compilation compared to other intermediate represen-
tations of code (e.g., PDG and CFG). Therefore, it is adaptive to
code fragments of all granularity written in all languages. As for
semantics preservation, some works have proven that AST can
reflect code semantics effectively for semantic clone detection [55].

We first perform static analysis to parse the source code and
extract its corresponding tree representation. Then, we conduct the
experiments on two common and standard clone detection datasets,
namely BCB [1] and GCJ [4], written in Java. Therefore, we utilize
javalang to perform static analysis on the source code to obtain
ASTs. In terms of other languages, such as C/C++, we suggest that
other code parsing tools such as Joern [6] can be applied. To describe
the workflow of TreeCen more clearly, we have shown a detailed
example in Figure 3.

4.3 AST Abstraction
In this phase, we abstract the AST extracted from the previous
subsection to simplify the AST for scalable clone detection. The
AST is a tree structure consisting of token nodes, type nodes, and
edges. Specifically, token nodes are the leaf nodes of the AST (the

double-layered rectangles in Figure 3) containing node types and
corresponding code. The other nodes are type nodes (the single-
layer rectangles in Figure 3), indicating the type of this node (e.g.,
ReturnStatement, Literal). The semantic and syntactic informa-
tion of an AST is mainly captured in these node types and edges.

To abstract the AST, we compress the node types and edge re-
lationships of ASTs into a tighter data structure, which helps to
preserve comprehensive code information for scalable clone detec-
tion. To this end, we analyze all code fragments in the BCB dataset,
more than 250 million lines of code (MLOC), and then count the
node types of all their ASTs, finally finding 57 types of type nodes.
For token nodes, the statistical results show that 14 types (occupying
99.5% of all token nodes) appear in most ASTs and the other types
rarely appear (only 0.5%). Therefore, we safely assume these 14
types cover a majority of the subject systems and determine them.
Meanwhile, we set a null type to represent the other types. In brief,
in this paper, we consider that AST has 57 types of type nodes and
15 types of token nodes, for a total of 72 node types.

Based on the above observation, we design an undirected graph
to represent the abstraction of AST, termed tree graph. In particular,
each node type in the AST is regarded as a node in the tree graph,
and the parent-to-child node relationship in the AST is considered
an edge between the parent type and child node type in the tree

TreeCen: Building Tree Graph for Scalable Semantic Code Clone Detection ASE ’22, October 10–14, 2022, Rochester, MI, USA

graph. Furthermore, the weight of an edge in the tree graph depends
on the number of edge occurrences between the corresponding node
types in the AST.

For example, as shown in Figure 3, there are 10 nodes in the tree
graph , which correspond to the 10 node types appearing in the AST,
including three types of token nodes and seven types of type nodes.
Moreover, the edge between node type MemberReference (light red
single-layer rectangle) and node type Identifier (orange double-
layer rectangle) appears four times in the AST. Therefore, we con-
struct an edge between the Identifier node to MemberReference
node in the tree graph and assign four as the weight for this edge,
as presented in Figure 3.

In short, we simplify the AST to a graph representation (i.e., tree
graph) consisting of at most 72 nodes in this subsection. Therefore,
TreeCen can perform scalable code clone detection with the help of
the tree graph.

4.4 Feature Extraction
In the feature extraction phase, we aim to further extract the cen-
trality features of the nodes in the tree graph generated from the
previous phase. In other words, the tree graph is transformed into a
feature vector representation that reflects the semantics and syntax
of the code. Several centrality methods have been proposed in the
field of social networks [19], [29], [18], [13], [37], and we present
the definitions of six of them briefly.

Degree Centrality [19] assigns an importance score based simply
on the number of links held by each node. It is normalized by
dividing by the maximum possible degree in a graph 𝑁 − 1, where
𝑁 denotes the number of nodes within the graph, 𝑑𝑒𝑔(𝑣) is the
degree of node 𝑣 .

𝐶𝑑 (𝑣) =
𝑑𝑒𝑔(𝑣)
𝑁 − 1

(1)

Katz Centrality [29] computes the relative influence of a node
within a graph by measuring the number of the immediate neigh-
bors and also all other nodes in the graph that connect to the node
under consideration through these immediate neighbors. If𝐶𝑘𝑎𝑡𝑧 (𝑖)
denotes Katz Centrality of a node 𝑖 , where the element at location
(𝑖, 𝑗) of the adjacency matrix 𝐴 raised to the power 𝑘 (i.e., 𝐴𝑘) re-
flects the total number of 𝑘 degree connections between nodes 𝑖
and 𝑗 . The 𝛼 denotes an attenuation factor, then mathematically:

𝐶𝑘 (𝑖) =
∑∞
𝑘=1

∑∞
𝑗=1𝛼

𝑘 (𝐴𝑘) 𝑗𝑖 (2)

Betweenness Centrality [18] characterizes the importance of a
node in terms of the number of shortest paths through it. The
Betweenness Centrality of a node 𝑣 is given by below expression,
where 𝛿𝑠𝑡 is the number of shortest paths from node 𝑠 to node 𝑡
and 𝛿𝑠𝑡 (𝑣) is the number of those paths that pass through 𝑣 .

𝐶𝑏 (𝑣) =
∑
𝑠≠𝑣≠𝑡

𝛿𝑠𝑡 (𝑣)
𝛿𝑠𝑡

(3)

EigenVector Centrality [13] considers that the importance of a
node depends on the number of its neighboring nodes and the im-
portance of its neighboring nodes. Assuming that 𝑥𝑖 represents the
importance of node 𝑖 in a graph with 𝑛 nodes. 𝑐 is a proportionality
constant, and 𝑎𝑖 𝑗 = 1 if and only if 𝑖 is connected to 𝑗 , otherwise it
is 0.

𝐶𝑒 (𝑁𝑖) = 𝑥𝑖 = 𝑐
∑𝑛

𝑗=1𝑎𝑖 𝑗𝑥 𝑗 (4)

Closeness Centrality [14] measures how easy it is for a node to
reach other nodes, which is the reciprocal of the average of the
distances to all other nodes. The formula is as follow, where 𝑑𝑖𝑠 (𝑖, 𝑗)
denotes the distance from node 𝑖 to node 𝑗 and 𝑛 is the number of
nodes in the graph.

𝐶𝑐 =
1∑𝑛

𝑗=1𝑑𝑖𝑠 (𝑖, 𝑗)
(5)

Harmonic Centrality [37] is designed to compute Closeness Cen-
trality for disconnected graphs. Therefore, the portion of the Har-
monic Centrality formula is consistent with the formula of the
Closeness Centrality.

𝐶ℎ =
∑𝑛

𝑗=1
1

𝑑𝑖𝑠 (𝑖, 𝑗) (6)

Additionally, to measure the importance of a vertex in a graph
by combining multiple centrality measures, we construct two other
kinds of integrated centrality measures (i.e., Mean Centrality and
Concatenate Centrality).Mean Centrality vector is a 72-dimensional
vector obtained by summing the above six single centrality vectors
and averaging them by place.

𝐶𝑚𝑒𝑎𝑛 =
1
6
(𝐶𝑑 +𝐶𝑘 +𝐶𝑏 +𝐶𝑒 +𝐶𝑐 +𝐶ℎ) (7)

Concatenate Centrality vector is a 432-dimensional vector (72∗6)
generated by concatenating each single centrality vector. Mathemat-
ically, 𝑛 denotes the dimension of the vector derived by individual
centrality measure.

𝐶𝑐𝑜𝑛𝑐𝑎𝑡 = [𝐶𝑑 ,𝐶𝑘 ,𝐶𝑏 ,𝐶𝑒 ,𝐶𝑐 ,𝐶ℎ] ∈ R𝑛×6 (8)

Since Degree Centrality is the simplest computation of the cen-
trality measures, it is chosen as the sample in Figure 3. Given the
tree graph, we compute theDegree Centrality for each of the 72 types
of nodes in turn. For example, there are 72 degrees in the tree graph,
of which six are derived from the Identifier node (the circle with
the orange border), eight connecting to the MemberReference (the
light red circle), and four for MethodInvocation (the light blue
circle), respectively. Therefore, the degree of Identifier is six.
According to the Degree Centrality formula, the Identifier node’s
Degree Centrality can be calculated as 0.08. In addition, if there is
no node of that type, the corresponding position of the vector is set
to zero. After the feature extraction, we obtain a 72-dimensional
centrality vector.

4.5 Clone Detection
Our last phase is clone detection, i.e., identifying a code pair as
clone or non-clone. To this end, we choose five candidate machine
learning algorithms. They are 1-Nearest Neighbor (1-NN), 3-Nearest
Neighbor (3-NN), Decision Tree (DT), Random Forest (RF), and Logis-
tic Regression (LR). First, there are two centrality vectors,𝑉1 and𝑉2,
generated by two code fragments in a code pair, and we concatenate
them to obtain a vector representation𝑉 of that code pair, as shown
in the following equation.

𝑉 = 𝑉1 ⊕ 𝑉2 (9)

ASE ’22, October 10–14, 2022, Rochester, MI, USA Yutao Hu, Deqing Zou, Junru Peng, Yueming Wu, Junjie Shan, and Hai Jin

Then we annotate the vector 𝑉 of the code pair according to
whether it is a clone or a non-clone pair. After dividing the la-
beled dataset into a training and test set, we perform 10-fold cross-
validation based on the five machine learning models above. The
input of this part is the centrality vector of a concatenated pair
of codes, and the output is the result of clone detection (clone or
non-clone).

5 EXPERIMENTS
In this section, our experiments are centered on answering the
following Research Questions (RQs):

• RQ1: What is the overall performance of TreeCen on code clone
detection?

• RQ2: What is the detection performance of TreeCen compared
to other state-of-the-art approaches?

• RQ3: What is the time performance of TreeCen compared to
other state-of-the-art clone detectors?

5.1 Dataset Description
We evaluate TreeCen on two widely used datasets, i.e., Google Code
Jam (GCJ) [4] and BigCloneBench (BCB) [1]. The GCJ dataset comes
from a programming competition held by Google Inc. We used the
GCJ dataset collected by DeepSim [56], containing 1,669 projects
from 12 competition problems. Since programs from the same com-
petition problem aim to solve the same problem, all programs under
a problem can be viewed almost as semantic clones (i.e., Type-4
clones). In contrast, programs from different problems are consid-
ered non-clones.

Table 1: The summary of BCB and GCJ

Type BCB GCJ

Clone Pairs

T1 48,116 -
T2 4,234 -
ST3 21,395 -
MT3 86,341 -
T4 109,914 275,570

Non-clone Pairs 270,000 275,570

The BCB dataset is provided by Svajle et al. [46], which is man-
ually assigned a clone type for each pair of functions. The BCB
dataset composes of over 8,000,000 tagged clone pairs covering
all clone types. In addition, it further divides Type-3 clones into
Strongly Type-3 (ST3),Moderately Type-3 (MT3), andWeakly Type-3
(WT3). However, the total number of code pairs obtained from the
download database is slightly different from that reported in [47].
We filter out the cloned code pairs with less than five code lines.
Finally, 270,000 cloned code pairs have remained, and 270,000 false
tagged clone pairs are randomly selected to complete the training
and testing. The detailed number of samples of the above datasets
is shown in Table 1.

5.2 Experimental Settings
5.2.1 Implementation. We run all experiments on a standard server
with 128GB RAM and 16 cores of CPU. For the above datasets,
we adopt 10-fold cross-validation to train and evaluate TreeCen.

Specifically, we divide the dataset into 10 subsets, and each time
we pick one subset as the test set and the remaining nine subsets
as the training set. We repeat this 10 times, each time choosing a
different test subset. The results reported below are the average of
these 10 times.

In the AST Extraction phase, we utilize a pure Python library,
javalang [5], to parse Java source code and generate the AST for
each method without compilation. In the AST Abstraction and Fea-
ture Extraction phases, we leverage a Python package, networkx [7],
to construct the tree graph for the AST and then extract the multiple
centrality vectors for them. In the clone detection phase, we use
a Python package, sklearn [10], to implement machine learning
models (i.e., 1-NN, 3-NN, DT, RF, and LR).

5.2.2 Comparisions. We compare TreeCen with existing state-of-
the-art code clone detection approaches. To ensure the comprehen-
siveness of the evaluation, we select representative work from each
of the code intermediate representations for comparative experi-
ments.

Token-Based Approach: These detection approaches are scalable,
but hard to detect Type-4 clones.

• SourcererCC [45] detects clones by calculating the overlap
similarity of tokens between two methods.

• RtvNN [53] is a RNN-based clone detection method for
tokens.

Tree-Based Approach: These methods are able to detect semantic
clones, especially MT3 clones.

• Deckard [26] is a popular detector by clustering the similar
subtrees of ASTs.

• ASTNN [55] is based on deep learning that applies GRU to
ASTs.

Graph-Based Approach: These tools are able to detect semantics
clones yet suffer from a large execution time.

• SCDetector [54] trains a Siamese architecture neural net-
work based on CFG.

• DeepSim [56] extracts data flow and control flow of code to
train a DNN-based detection model.

5.2.3 Metrics. Since the code clone detection is a binary classifica-
tion task, we adopt widely used metrics to measure its performance.
The descriptions of our used metrics are as follows:

• True Positive (TP): the number of samples correctly classified
as clone pairs.

• True Negative (TN): the number of samples correctly classi-
fied as non-clone pairs.

• False Positive (FP): the number of samples incorrectly classi-
fied as clone pairs.

• False Negative (FN): the number of samples incorrectly clas-
sified as non-clone pairs.

• Precision=TP/(TP+FP). The correct rate of detection.
• Recall=TP/(TP+FN). The percentage of clone pairs that are
successfully detected.

• F1=2∗Precision∗Recall/(Precision+Recall). A comprehensive
metric of detection.

TreeCen: Building Tree Graph for Scalable Semantic Code Clone Detection ASE ’22, October 10–14, 2022, Rochester, MI, USA

H a r m o n i c
E i g e n V e c t o r

C l o s e n e s s
B e t w e e n n e s s D e g r e e K a t z M e a n

C o n c a t e n
a t e

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0
F1

 Sc
ore

 on
 GC

J D
ata

set
 1 N N
 3 N N
 D T
 R F
 L R

H a r m o n i c
E i g e n V e c t o r

C l o s e n e s s
B e t w e e n n e s s D e g r e e K a t z M e a n

C o n c a t e n
a t e0 . 8 5 0

0 . 8 7 5

0 . 9 0 0

0 . 9 2 5

0 . 9 5 0

0 . 9 7 5

1 . 0 0 0

F1
 Sc

ore
 on

 BC
B D

ata
set

 1 N N
 3 N N
 D T
 R F
 L R

Figure 4: F1 scores of TreeCen on GCJ and BCB datasets

5.3 RQ1 : Overall Effectiveness
In this subsection, we evaluate how well TreeCen is on code clone
detection. To this end, we conduct experiments on the GCJ dataset
and BCB dataset, as shown in Table 1. In order to evaluate which
machine learning algorithm is more applicable to TreeCen for clone
and non-clone classification tasks, we first employ several machine
learning models (i.e., 1-NN, 3-NN, DT, RF, and LR) for targeted
centrality measures. Figure 4 represents the clone detection results
achieved by TreeCen using above mentioned machine learning al-
gorithms. Specifically, we adopt the F1 score for this experiment
as it is a comprehensive metric for clone detection tasks that can
effectively illustrate detection effectiveness.

As shown in Figure 4, we can see that the DT-based detector
offers the most satisfactory detection performance than that based
on other machine learning models on the GCJ and BCB datasets.
For the GCJ dataset, the DT-based detector achieves an F1 score of
up to 95% or higher for each of the eight centrality measures. As
for the BCB dataset, the DT-based detector also outperforms other
machine learning approaches, with an F1 score above 99.5% for all
the centrality measures. Therefore, we finally choose DT as the
final detector for TreeCen based on the above experimental results.

For the performance of various centrality measures, we can
see that the DT-based classifier does not distinguish much from
the detection results of all centrality measures, with an F1 score
between 95% and 97% in Figure 4. Among them, the Concatenate
Centrality is the most effective, which is able to achieve an F1
score of 96.5% on the GCJ dataset. We consider the reasons for the
good performance of the Concatenate Centrality consisting of all
centrality measures, which means it covers the most comprehensive
code semantics.

The detection with various centrality measures has also achieved
good results on the BCB dataset. The F1 score can achieve between
99.5% and 99.9% with multiple centrality measures, as shown in
Figure 4, whose gaps are also relatively subtle. Additionally, the
F1 score of Concatenate Centrality and Katz Centrality both can

maintain more than 99.8% . In detail, the Katz Centrality measure
performs well since its algorithm considers more node relationships
and thus obtains more detailed information about the graph.

Based on the above analysis, there is a slight discrepancy in
the detection effectiveness of classifiers with different centrality
features. To conduct a more scalable clone detector, we determine
to use the time overhead to specify the final centrality measure.
Obviously, due to the simplicity of the Degree Centrality algorithm,
the time overhead for generating Degree Centrality features is the
shortest among the listed centrality measures. In subsection 5.5, we
provide a statistical and detailed description of the time overhead
of each component, and the results show that the Degree Centrality
measure costs the least amount of time in all processions (i.e., cen-
trality generation, training, and testing). So we adopt the Degree
Centrality measure for TreeCen.

In summary, the detector based on DT achieves the best detection
performance, and the Degree Centrality obtains the lowest time
overhead. Thus, TreeCen adopts DT as the final detector with the
feature vectors generated by the Degree Centrality.

5.4 RQ2 : Effectiveness Comparison with Others
5.4.1 Results on Google Code Jam. We first conduct comparative
experiments with the state-of-the-art clone detectors on the Google
Code Jam (GCJ) dataset. The sample volumes in the GCJ dataset
are shown in Table 1, containing 275,570 clone method pairs and
1,116,376 non-clone method pairs. As described in Section 5.1, we
assume that all the clone pairs in the GCJ dataset are Type-4 clones.
Therefore, conducting experiments on this dataset can effectively
prove the effectiveness of TreeCen for semantic clone detection.

The GCJ dataset is first collected and provided by DeepSim [56],
which performs the same experimental comparisons with Deckard
[26] and RtvNN [53] on this dataset. SCDetector [54] conducts the
experiments on the GCJ dataset as well. To make a fair comparison,
we directly adopt the experimental results provided in [56] and
[54]. Table 2 illustrates the experimental results on the GCJ dataset.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Yutao Hu, Deqing Zou, Junru Peng, Yueming Wu, Junjie Shan, and Hai Jin

Table 2: Results on Google Code Jam

Groups Methods Recall Precision F1

Token-based SourcererCC 0.11 0.43 0.17
RtvNN 0.90 0.20 0.33

Graph-based DeepSim 0.82 0.71 0.76
SCDetector 0.87 0.90 0.89

Tree-based
Deckard 0.44 0.45 0.44
ASTNN 0.87 0.95 0.91
TreeCen 0.95 0.95 0.95

Token-based methods suffer from poor performances on the
GCJ dataset. The reason is that the token-based approaches only
consider the syntactic features of the code and ignore the semantic
features, making it hard to detect semantically similar (Type-4
clones) code pairs. An interesting observation is that RtvNN obtains
high recall but low precision, which means that it detects most of
the code pairs as clone pairs directly. This reflects the drawback of
token-based detectors, where two completely different semantic
codes are considered a clone pair even when they use part of similar
syntactic components (e.g., the common library API, arithmetic
expression).

Graph-based methods obtain more comprehensive code se-
mantic information with the help of PDG or CFG, and therefore
yield good detection results. In this category, DeepSim is designed
based on both data flow and control flow to train a deep neural
networks (DNN) model, while SCDetector achieves better detection
results using control flow only. The reason behind this may be that
the Siamese architecture neural network effectively helps SCDe-
tector improve the detection performance, as mentioned in [54].
However, the recall of SCDetector is only 0.87, which is 8% lower
than that of TreeCen. Likewise, as a detection method using the
centrality analysis, TreeCen employs centrality analysis to highlight
the structural knowledge of the AST further, thus avoiding the false
negatives introduced by SCDetector conducting centrality analysis
on tokens.

Tree-based methods achieve good detection performances on
the GCJ dataset. Both ASTNN and Deckard employ the similar-
ity of subtrees of AST for clone detection. ASTNN works better
than Deckard. Deckard considers the similarity of feature vectors
of parser tree roots rather than semantic information. Neverthe-
less, ASTNN uses bottom-up aggregation of leaf nodes to root
nodes, which considers more comprehensive semantic information
than Deckard. However, both methods underperform compared
to TreeCen, as shown in Table 2. We consider the reason is that
TreeCen does not split AST into subtrees, which avoids some of
the code semantic loss (e.g., if/else branches may be lost in split-
ting subtrees). The experimental results further show that TreeCen
achieves the best detection performance on the semantic clone
dataset, demonstrating that the AST abstraction (i.e., tree graph)
and feature extraction (i.e., centrality analysis) help TreeCen retain
the comprehensive code semantics.

Compared to SourcererCC, RtvNN, DeepSim, SCDetecotr, Deckard,
andASTNN, TreeCen achieves the best detection performance on the
GCJ dataset. Specifically, TreeCen obtains a 4% improvement over

the current state-of-the-art with an F1 score of 95% for semantic
clone detection.

5.4.2 Results on BigCloneBench. Tables 3 and 4 demonstrate the
clone detection results on the BCB dataset. As shown in Table 3,
TreeCen performs significantly better than other clone detectors on
the entire dataset, with both its precision and recall being above 0.99.
The F1 score of 0.99 better demonstrates the excellent performance
of TreeCen for all clone types. In fact, the F1 score of TreeCen is
0.996 reported in our experiments. However, we show 0.99 in Table
3 to avoid ambiguity.

For each type of code clone detection, TreeCen also exceeds most
detectors to detect different types of code clones, as can be ob-
served from Table 4. In particular, it is the best performing detector
when detecting Type-1/Type-3/Type-4 clones. For example, when
detecting semantic clones (i.e., Type-4 clones), the F1 scores of
SourcererCC, RtvNN, DeepSim, SCDetecotr, Deckard, and ASTNN are
0.02, 0.00, 0.97, 0.95, 0.02, 0.92, respectively, while the F1 score of
TreeCen is 0.99.

Table 3: Results on BigCodeBench

Groups Methods Recall Precision F1

Token-based SourcererCC 0.07 0.98 0.14
RtvNN 0.01 0.95 0.01

Graph-based DeepSim 0.98 0.97 0.98
SCDetector 0.92 0.97 0.95

Tree-based
Deckard 0.06 0.93 0.12
ASTNN 0.94 0.92 0.93
TreeCen 0.99 0.99 0.99

Table 4: F1 score for each clone type

Methods T1 T2 T3 MT3 WT3/T4
SourcererCC 1.00 1.00 0.65 0.20 0.02

RtvNN 1.00 0.97 0.60 0.03 0.00
DeepSim 0.99 0.99 0.99 0.99 0.97

SCDetecotr 1.00 1.00 0.97 0.97 0.95
Deckard 0.73 0.71 0.54 0.21 0.02
ASTNN 1.00 1.00 0.99 0.98 0.92
TreeCen 1.00 0.99 1.00 1.00 0.99

However, the detection performance of TreeCen in the Type-
2 clone is not the best. To find the reason for this situation, we
conduct statistics on the number of clone pairs in the BCB dataset,
as listed in Table 1. We notice that the number of Type-2 clones
in the BCB dataset is much smaller than that of other types, only
1.6% of the whole dataset. Therefore, we infer that the insufficient
sample size makes the machine learning model not learn sufficient
features of Type-2 clones, resulting in the final detection results
appearing lower than several other clone types. It is believed that
the performance of TreeCen for detecting Type-2 clones will also
be improved if the number of Type-2 clone pairs increases in the
subsequent work.

To conclude, TreeCen can detect different clone types, especially
for the semantic clones that are difficult to detect. It achieves an

TreeCen: Building Tree Graph for Scalable Semantic Code Clone Detection ASE ’22, October 10–14, 2022, Rochester, MI, USA

0 . 7 0 . 4 0 . 5 0 . 3 0 . 3 0 . 4 0 . 5 3 . 2
H a r m o n i c E i g e n v e c t o r C l o s e n e s s B e t w e e n n e s s D e g r e e K a t z M e a n C o n c a t e n a t e

0
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0

Tim
e P

erf
orm

anc
e (s

eco
nds

)
 C e n t r a l i t y G e n e r a t i o n
 D T T r a i n
 D T T e s t

Figure 5: Time performance for TreeCen

ideal performance on the GCJ and BCB datasets compared to the
clone detectors.

5.5 RQ3 : Scalability Evaluation
5.5.1 Time performance of TreeCen. In this phase, we focus on the
effect of using different centrality measures on the time overhead of
TreeCen. As a preparation for the experiment, we randomly select
one million code pairs from the GCJ dataset. The experimental
results are obtained by averaging the time after running each de-
tector three times, as presented in Table 5 and Figure 5. The time
overhead of TreeCen consists of three main components: centrality
generation, decision tree model training, and testing, as illustrated
in Figure 5. To be specific, the centrality generation consists of the
progress of the AST generation, AST abstraction, and centrality
analysis.

For mixed centrality measures, we find that the time cost is sig-
nificantly higher than that for other individual centrality measures.
It is because the mixed measures generation requires calculating
the multiple individual centrality vectors and then concatenating
or averaging them. Obviously, it requires more time in centrality
generation. In addition, the vector derived from the mixed central-
ity measures is more complex, especially the Concatenate Centrality.
Its feature vector is six times more dimensions than others, leading
to a longer training time.

For individual ones, there is a slight difference in the time over-
head of centrality generation. The Katz Centrality and the Eigen-
Vector Centrality cost the longest time, while the Degree Centrality
needs the least. As introduced in section 4.4 for each centrality
measure, it can be seen that the algorithm of Degree Centrality is
the simplest one that only considers the outgoing and incoming
degrees of nodes. In contrast, Katz and EigenVector Centrality con-
sider more graph node relationships, which we believe is the origin
of the efficiency discrepancy in centrality generation.

In terms of model training time, the Degree Centrality is signifi-
cantly faster than that of EigenVector and Katz Centrality measures.
To explain this phenomenon, we compare the feature vectors de-
rived from Degree Centrality with those generated from EigenVector
Centrality and Katz Centrality. It can be observed that the feature
vectors generated by Degree Centrality are clearly simpler than
those calculated by other centrality measures. Evidently, the dis-
crimination between the simplicity vectors is more obvious, making

it easier for the decision tree to find decision boundaries and thus
shortening the model training time.

In summary, due to the superior performance ofDegree Centrality
in terms of time overhead (i.e., 208.7s of data preprocessing time,
30.2s of model training time, and 0.3s of prediction time), we choose
to adopt Degree Centrality as the centrality measure of TreeCen.

5.5.2 Time performance comparisons. In this part, we pay atten-
tion to the runtime performance of TreeCen and six comparative
detectors. As shown in Table 5, since most tools are designed based
on deep learning or machine learning, we test for time overhead
by training and testing overhead. Specifically, we count the time
for data preprocessing in the training time. Note that the results
presented in Table 5 are derived from testing one million randomly
selected samples from the GCJ dataset.

Table 5: Time performance on GCJ

Groups Methods Training Prediction

Token-based SourcererCC - 30s
RtvNN 5,206s 35s

Graph-based DeepSim 13,545s 34s
SCDetector 2,937s 139s

Tree-based
Deckard - 72s
ASTNN 16,096s 2,894s
TreeCen 238.9s 0.3s

Token-based methods are scalable, as evidenced by the time
overhead of SourcererCC. As a purely token-based detector, Sourcer-
erCC detects code clones by comparing vector similarity composed
of word frequencies. Therefore, it does not require training time.
Although the overall time overhead of SourcererCC is low, it is al-
most impossible to detect semantic clones (with an F1 score of 0.14
on the GCJ dataset), as shown in Table 2. So it is not applicable
for large-scale semantic clones. RtvNN has similar disadvantages
mentioned above and a relatively high time overhead.

Graph-based methods have a higher time overhead due to
excessive consideration of code semantics. First, both DeepSim
and SCDetector are deep learning-based detection methods, which
require a long time to train deep learning models. Second, to ensure
that accurate PDGs and CFGs are available, they need to compile
the code. However, TreeCen does not require compilation for AST
generation and is designed based on machine learning models. So it

ASE ’22, October 10–14, 2022, Rochester, MI, USA Yutao Hu, Deqing Zou, Junru Peng, Yueming Wu, Junjie Shan, and Hai Jin

is at least ten times faster than graph-based deep learning detectors
in terms of training time. That is, the training time of TreeCen is
only 238.9s, while those of DeepSim and SCDetector are 13,545s and
2,937s, respectively. Additionally, predicting by TreeCen takes 100
times less time than the graph-based methods. In short, TreeCen has
much less time overhead than the graph-based approaches while
enabling the detection of semantic clones.

Tree-based methods are efficient for the clone detection task.
Deckard detects clones by clustering similar subtrees, so it has
zero training time. However, as shown in Table 2 and Table 4, it
suffers from poor performance when detecting Type-4 clones. The
detection effect ofASTNN is acceptable, but it takes the longest time
among all the comparative tools. Specifically, ASTNN has a training
time of 16,096s and a testing time of 2,894s, while TreeCen takes only
238.9s for training and 0.3s for testing. The difference of their time
overhead can be attributed to the implementation of classifier. The
classifier used by TreeCen is decision tree, which is faster than that
utilized by ASTNN. Specifically, ASTNN leverages a bi-directional
RNN model with 100 hidden dimensions and bi-directional GRUs.
In addition, ASTNN generates a 128-dimensional vector for each
AST, while the AST feature vector extracted by TreeCen is only
72-dimensional. Obviously, the lower vector dimensionality makes
model training and detection much faster.

In summary, TreeCen has the lowest time overhead (79 times
faster than ASTNN) among the AST-based semantic detectors. The
results of comprehensive experiments and analysis show that our
approach can efficiently detect semantic clone as well as accomplish
scalable clones detection.

6 DISCUSSION
6.1 Differences from SCDetector
The most similar related method to TreeCen is SCDetector [54].
SCDetector applies centrality analysis for CFG to detect clones,
while TreeCen adopts centrality measures for tree graphs generated
from ASTs. First, the difference in the intermediate representations
of the code chosen by TreeCen and SCDetector leads to their dis-
tinctions. Since SCDetector is a CFG-based detector, the code needs
to be compiled before extracting the CFG. Conversely, TreeCen is
based on AST and does not require compilation. Hence TreeCen is
extensible to work with code fragments of arbitrary granularity
(e.g., line of code level). In addition, TreeCen can also be applied to
other languages (e.g., C/C++), as it is practicable to extract ASTs
from source code written in any language.

Second, the centrality measure is applied differently on detec-
tors. SCDetector is based on the degree centrality of tokens and
relies on the common tokens between two programs, leading to the
false negatives when the same functionality is implemented using
different APIs and different graph structures. In contrast, TreeCen
obtains a tree graph by abstracting the AST and then considers
each node in the tree graph (i.e., the node type in the AST) as a
node in the social network and digs out the centrality for it. By this,
TreeCen pays more attention to the structural information of the
code, thus avoiding false negatives caused by different tokens in
code pairs with the same semantics. Therefore, TreeCen achieves
better detection performance than SCDetector.

Finally, SCDetector adopts a Siamese architecture neural network
as the classifier, meaning that training phase requires the use of
GPUs. However, TreeCen leverages a decision tree model for train-
ing the detector, which is a simple yet effective machine learning
model, making TreeCen require a little time and computational re-
sources to train and predict. Therefore, TreeCen is more scalable
than SCDetector.

6.2 Why TreeCen Performs Better
In terms of effectiveness, TreeCen outperforms the other methods
on both experimental benchmark datasets. The reason is that the
tree graph generated by TreeCen can effectively retain the structural
information of the AST, thus reflecting the semantic and syntactic
information of the code. As demonstrated in the preliminary study,
centrality measures are widely used in social network analysis
to determine the important nodes in the graph or network, thus
preserving the network’s structure. Similarly, the application of
centrality measures in AST further highlights the significant nodes
in the AST. Therefore, centrality analysis helps capture the AST’s
tree structure information to distinguish between cloned and non-
cloned code pairs.

In terms of efficiency, TreeCen is 79 times faster than the most
efficient method (i.e., ASTNN) in the same category (tree-based).
Compared with the existing tree-based methods, instead of compar-
ing ASTs directly for similarity, we first simplify the complex ASTs
into tree graphs and then perform centrality analysis. As a result,
the vector we feed to the detector has only 144 dimensions (72∗2),
which is easy for the machine learning model to learn and thus
helps to reduce the training time. TreeCen is more scalable than the
graph-based methods, which need time to compile the code before
generating accurate graph representations. Another contributing
factor is that both graphs and trees have high complexity structures,
so comparing similarities is a heavy overhead problem.

6.3 Future Work
TreeCen is a clone detection method that uses AST as a code rep-
resentation. Specifically, after the AST is refined and transformed
into a novel graph, a centrality feature matrix is generated for the
graph for model training and detection. In total, TreeCen encodes
72 AST node types (57 non-leaf AST nodes and 15 tokenized leaf
nodes) during the transformation into the tree graph. In the follow-
up research, we find that not all the above types of nodes provide
valuable information for the clone detection task. We will continue
to investigate and confirm which node types can be ignored in
the future. To this end, the structure of a tree graph can be further
simplified into a simpler data structure, which might be more ef-
ficient to scale. In addition, Java is an evolving language (with a
new version every six months). New language features are typically
implemented as new AST node types in parsers. To enable TreeCen
to be more extensible to support new language features represented
as new AST node types, we consider leveraging dynamic machine
learning models (e.g., , incremental learning and continue learning)
instead of the current detection model in the future.

TreeCen: Building Tree Graph for Scalable Semantic Code Clone Detection ASE ’22, October 10–14, 2022, Rochester, MI, USA

7 RELATEDWORK
7.1 Semantic Clone Detection
Detecting semantic code clones (Type-4) is a complex research
problem. Recently, some detectors have been proposed that can be
applied for semantic clone detection. Most of these approaches are
implemented based on graphs (i.e., PDGs, CFGs) or trees (i.e., ASTs)
since these code representations can preserve more code semantics.

For the graph-based methods, PDG and CFG are inherently cod-
ing semantic representations, so they can be used to detect semantic
clones effectively. SCDetector [54] is designed to detect semantic
clones by combining the advantage of the token-based and graph-
based methods. FA-AST [50] constructs a novel AST by adding
control flow and data flow edges to make the method consider
the code semantic information. FCCA [23] incorporates multiple
code representations, such as text, AST, and CFG. DeepSim [56]
encodes CFG and Data Dependency Graph (DDG) into a more com-
pact semantic feature matrix and then classifies them using DNN.
FCDetector [17] leverages a joint representation for deep learning
model training.

For tree-based methods, a well-designed approach is able to
detect semantic clones effectively. CDLH [52] leverages a Long
short-term memory (LSTM) model to learn the features of the AST
and uses hash to optimize the similarity of the method. TBCNN
[39] proposes a tree-based convolutional kernel consisting of a set
of subtree feature detectors that slide the entire AST to extract
structural information of the code, with a Convolutional Neural
Networks (CNN) model for code classification. CodeRNN [33] ob-
tains the final code representation vector by a tree from the leaf
nodes to the root node for recurrent neural network (RNN) train-
ing. ASTNN [55] divides a complete AST into a sequence of small
statement trees to feed the deep learning model to overcome the
long-term dependency problem caused by large ASTs. InferCode
[15] decomposes the AST into subtrees and then encodes the nodes
of the subtrees with a modified tree-based convolutional neural
network. HELoC [51] designs a comparative learning network that
allows the network to learn more explicit information about the
AST hierarchy nodes.

However, above approaches require long execution time, lead-
ing to a limit in scalability. On the one hand, although there exist
some means to obtain graphs without compilation, such graphs
are not accurate. Therefore, these detectors still generate graphs
by compiling to ensure the accuracy of detection. But compilation
is inconvenient and infeasible for some code samples and also in-
creases the time overhead. On the other hand, both the graph-based
and tree-based methods suffer from the complex structure of repre-
sentations, resulting in a high overhead for matching. They do not
have a good balance of semantic detection and time overhead, and
those that can detect Type-4 clones require a long model training
time.

7.2 Scalable Clone Detection
Some empirical studies have mentioned the need for large-scale
clone detection [12], [24], [20], [38], [48]. There are several different
techniques to make the clone detector more scalable.

The token-based or text-based methods are always scalable,
whose main idea is to compute the similarity of a pair of code snip-
pets in terms of text or code token sequences. Specifically, these
clone detectors [49], [32], [21], [28], [27], [43] directly converts the
code into text or string, while the token-based approaches employ
lexical analysis on the code to generate token sequences. These
clone detection approaches require a little time to execute, and some
can even achieve cross-language code clone detection. However,
they do not consider the semantic information of the code, which
makes it difficult to cope with the Type-4 clone detection.

Several scalable clone detection methods or tools have been pro-
posed with the GPU computation. Solutions for GPGPU program-
ming include Nvidia’s CUDA [8] and AMD’s CTM [22]. SAGA [31]
proposes an efficient suffix-array based detector with sophisticated
GPU acceleration. [30] make use of GPU for dynamic programming
matching to detect code clones. However, it is a good idea to use
GPUs for clone detection acceleration, and we believe that leverag-
ing GPU acceleration to TreeCen in subsequent work can further
reduce the time overhead.

Some commercial tools and methods for clone detection of code
repositories have also been proposed. The commercial tools such as
BlackDuck [2], Scantist [9], and FOSSID [3] are able to handle clone
code scanning for more than 10 million lines of code, but semantic
clone detection is not yet supported. DCCD [11] and D-ccfinder [35]
conduct the clone detection with a network of computers. Besides,
several works [36], [41], [44], [40] construct publicly available clone
detectors at file granularity for code repositories.

However, those scalable approaches cannot detect semantic
clones limited by their algorithms. Compared with the above meth-
ods, TreeCen is a code clone detector with both semantic clone
detection capability and scalability.

8 CONCLUSION
In this paper, we propose TreeCen, a scalable tree-based semantic
code clone detector. We first extract ASTs based on static analysis
for the source code and transform them into simple graph rep-
resentations (i.e., tree graph) according to the node type, rather
than traditional AST matching. Then we treat the tree graph as a
network and adopt the centrality analysis to convert it into a fix-
length vector. By this, the final vector is only 72-dimensional but
contains complete structural information of the AST. Finally, these
vectors are fed into the machine learning model to detect clones.
The experimental results show that TreeCen outperforms other six
state-of-the-art methods (i.e., SourcererCC, RtvNN, DeepSim, SCDe-
tector, Deckard, and ASTNN). In terms of scalability, TreeCen is 79
times faster than another state-of-the-art tree-based code clone
detector (i.e., ASTNN), 13 times faster than the fastest graph-based
approach (i.e., SCDetector), and even about 22 times faster than the
one-time trained token-based detector (i.e., RtvNN).

ACKNOWLEDGEMENTS
We would thank the anonymous reviewers for their insightful com-
ments to improve the quality of the paper. This work is supported
by the Key Program of National Science Foundation of China under
Grant No. U1936211 and Hubei Province Key R&D Technology
Special Innovation Project under Grant No. 2021BAA032.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Yutao Hu, Deqing Zou, Junru Peng, Yueming Wu, Junjie Shan, and Hai Jin

REFERENCES
[1] 2022. BigCloneBench. https://github.com/clonebench/BigCloneBench.
[2] 2022. Blackducks. https://www.blackducksoftware.com.
[3] 2022. Fossid. https://fossid.com.
[4] 2022. Google Code Jam. https://code.google.com/codejam/contests.html.
[5] 2022. javalang. https://github.com/c2nes/javalang.
[6] 2022. joern. https://joern.io.
[7] 2022. networkx. https://github.com/networkx/networkx.
[8] 2022. Nvidia. https://www.nvidia.com.
[9] 2022. Scantist. https://scantist.com.
[10] 2022. sklearn. https://scikit-learn.org/stable.
[11] Junaid Akram, Zhendong Shi, Majid Mumtaz, and Ping Luo. 2018. DCCD: An

Efficient and Scalable Distributed Code Clone Detection Technique for Big Code..
In Proceedings of the 30th International Conference on Software Engineering and
Knowledge Engineering (SEKE’18). 354–353.

[12] Raihan Al-Ekram, Cory Kapser, Richard Holt, andMichael Godfrey. 2005. Cloning
by accident: An empirical study of source code cloning across software systems. In
Proceedings of the 2005 International Symposium on Empirical Software Engineering
(ISESE’05). 10–30.

[13] A. J. Alvarez-Socorro, G. C. Herrera-Almarza, and L. A. González-Díaz. 2015.
Eigencentrality based on dissimilarity measures reveals central nodes in complex
networks. Scientific Reports 5, 1 (2015), 1–10.

[14] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo.
2007. Comparison and evaluation of clone detection tools. IEEE Transactions on
Software Engineering 33, 9 (2007), 577–591.

[15] Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2021. Infercode: Self-supervised
learning of code representations by predicting subtrees. In Proceedings of the 43rd
International Conference on Software Engineering (ICSE’21). 1186–1197.

[16] Nigel Coles. 2001. It’s not what you know—it’s who you know that counts.
Analysing serious crime groups as social networks. British Journal of Criminology
41, 4 (2001), 580–594.

[17] Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi. [n.d.].
Functional code clone detection with syntax and semantics fusion learning. In
Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA’20). 516–527.

[18] Linton C. Freeman. 1977. A set of measures of centrality based on betweenness.
Sociometry (1977), 35–41.

[19] Linton C. Freeman. 1978. Centrality in social networks conceptual clarification.
Social Networks 1, 3 (1978), 215–239.

[20] Mohammad Gharehyazie, Baishakhi Ray, and Vladimir Filkov. 2017. Some from
here, some from there: Cross-project code reuse in github. In Proceedings of the
14th International Conference on Mining Software Repositories (MSR’17). 291–301.

[21] Nils Göde and Rainer Koschke. 2009. Incremental clone detection. In Proceedings
of the 13th European Conference on Software Maintenance and Reengineering
(CSMR’09). 219–228.

[22] Mark Harris, Shubhabrata Sengupta, and John D Owens. 2007. Parallel prefix
sum (scan) with CUDA. GPU Gems 3, 39 (2007), 851–876.

[23] Wei Hua, Yulei Sui, YaoWan, Guangzhong Liu, and Guandong Xu. 2020. Fcca: Hy-
brid code representation for functional clone detection using attention networks.
IEEE Transactions on Reliability 70, 1 (2020), 304–318.

[24] Tomoya Ishihara, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki, and Shinji
Kusumoto. 2012. Inter-project functional clone detection toward building
libraries-an empirical study on 13,000 projects. In Proceedings of the 19th Working
Conference on Reverse Engineering (WCRE’12). 387–391.

[25] Hawoong Jeong, Sean P. Mason, A.-L. Barabási, and Zoltan N. Oltvai. 2001.
Lethality and centrality in protein networks. Nature 411, 6833 (2001), 41–42.

[26] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
Deckard: Scalable and accurate tree-based detection of code clones. In Proceedings
of the 29th International Conference on Software Engineering (ICSE’07). 96–105.

[27] Toshihiro Kamiya. 2021. CCFinderX: An interactive code clone analysis environ-
ment. In Code Clone Analysis. 31–44.

[28] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A
multilinguistic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering 28, 7 (2002), 654–670.

[29] Leo Katz. 1953. A new status index derived from sociometric analysis. Psychome-
trika 18, 1 (1953), 39–43.

[30] Thierry Lavoie, Michael Eilers-Smith, and Ettore Merlo. 2010. Challenging
cloning related problems with GPU-based algorithms. In Proceedings of the 4th
International Workshop on Software Clones (IWSC’10). 25–32.

[31] Guanhua Li, Yijian Wu, Chanchal K. Roy, Jun Sun, Xin Peng, Nanjie Zhan, Bin
Hu, and Jingyi Ma. 2020. SAGA: Efficient and large-scale detection of near-miss
clones with GPU acceleration. In Proceedings of the 27th International Conference
on Software Analysis, Evolution and Reengineering (SANER’20). 272–283.

[32] Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder. 2017.
CCLearner: A deep learning-based clone detection approach. In Proceedings
of the 2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME’17). 249–260.

[33] Yuding Liang and Kenny Zhu. 2018. Automatic generation of text descriptive
comments for code blocks. In Proceedings of the 32nd AAAI Conference on Artificial
Intelligence (AAAI’18), Vol. 32.

[34] Xiaoming Liu, Johan Bollen, Michael L. Nelson, and Herbert Van de Sompel. 2005.
Co-authorship networks in the digital library research community. Information
Processing & Management 41, 6 (2005), 1462–1480.

[35] Simone Livieri, Yoshiki Higo, Makoto Matushita, and Katsuro Inoue. 2007. Very-
large scale code clone analysis and visualization of open source programs using
distributed CCFinder: D-CCFinder. In Proceedings of the 29th International Con-
ference on Software Engineering (ICSE’07). 106–115.

[36] Cristina V. Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny,
Hitesh Sajnani, and Jan Vitek. 2017. DéjàVu: A map of code duplicates on GitHub.
Proceedings of the 2017 ACM on Programming Languages (OOPSLA’17), 1–28.

[37] Massimo Marchiori and Vito Latora. 2000. Harmony in the small-world. Physica
A: Statistical Mechanics and its Applications 285, 3-4 (2000), 539–546.

[38] Manishankar Mondal, Chanchal K. Roy, and Kevin A. Schneider. 2017. Does
cloned code increase maintenance effort?. In Proceedings of the 11th International
Workshop on Software Clones (IWSC’17). 1–7.

[39] Lili Mou, Ge Li, Zhi Jin, Lu Zhang, and Tao Wang. 2014. TBCNN: A tree-based
convolutional neural network for programming language processing. arXiv
preprint arXiv:1409.5718 (2014).

[40] Manziba Akanda Nishi and Kostadin Damevski. 2018. Scalable code clone de-
tection and search based on adaptive prefix filtering. Journal of Systems and
Software 137 (2018), 130–142.

[41] Joel Ossher, Hitesh Sajnani, and Cristina Lopes. 2011. File cloning in open source
java projects: The good, the bad, and the ugly. In 2011 27th IEEE International
Conference on Software Maintenance (ICSM). IEEE, 283–292.

[42] Chanchal Kumar Roy and James R. Cordy. 2007. A survey on software clone
detection research. Queen’s School of Computing TR 541, 115 (2007), 64–68.

[43] Chanchal K. Roy and James R. Cordy. 2008. NICAD: Accurate detection of near-
miss intentional clones using flexible pretty-printing and code normalization.
In Proceedings of the 16th International Conference on Program Comprehension
(ICPC’08). 172–181.

[44] Hitesh Sajnani, Vaibhav Saini, and Cristina Lopes. 2015. A parallel and efficient
approach to large scale clone detection. Journal of Software: Evolution and Process
27, 6 (2015), 402–429.

[45] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.
Lopes. 2016. Sourcerercc: Scaling code clone detection to big-code. In Proceedings
of the 38th International Conference on Software Engineering (ICSE’16). 1157–1168.

[46] Svajlenko et al. 2021. Bigclonebench. In Code Clone Analysis. 93–105.
[47] Jeffrey Svajlenko and Chanchal K. Roy. 2015. Evaluating clone detection tools

with bigclonebench. In Proceedings of the 2015 IEEE International Conference on
Software Maintenance and Evolution (ICSME’15). 131–140.

[48] Jeffrey Svajlenko and Chanchal K. Roy. 2017. CloneWorks: A fast and flexible
large-scale near-miss clone detection tool. In Proceedings of the 39th International
Conference on Software Engineering (ICSE’17). 177–179.

[49] Pengcheng Wang, Jeffrey Svajlenko, Yanzhao Wu, Yun Xu, and Chanchal K. Roy.
2018. CCAligner: a token based large-gap clone detector. In Proceedings of the
40th International Conference on Software Engineering (ICSE’18). 1066–1077.

[50] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting code clones
with graph neural network and flow-augmented abstract syntax tree. In Pro-
ceedings of the 27th International Conference on Software Analysis, Evolution and
Reengineering (SANER’20). 261–271.

[51] Xiao Wang, Qiong Wu, Hongyu Zhang, Chen Lyu, Xue Jiang, Zhuoran Zheng,
Lei Lyu, and Songlin Hu. 2022. HELoC: Hierarchical Contrastive Learning of
Source Code Representation. arXiv preprint arXiv:2203.14285 (2022).

[52] Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional
Clone Detection by Exploiting Lexical and Syntactical Information in Source
Code.. In Proceedings of the 2017 International Joint Conferences on Artificial
Intelligence (IJCAI’17). 3034–3040.

[53] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. In Proceedings of
the 27th International Conference on Automated Software Engineering (ASE’16).
87–98.

[54] Yueming Wu, Deqing Zou, Shihan Dou, Siru Yang, Wei Yang, Feng Cheng, Hong
Liang, and Hai Jin. 2020. SCDetector: software functional clone detection based
on semantic tokens analysis. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE’20). 821–833.

[55] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A novel neural source code representation based on abstract syntax
tree. In Proceedings of the 41st International Conference on Software Engineering
(ICSE’19). 783–794.

[56] Gang Zhao and Jeff Huang. 2018. Deepsim: Deep learning code functional simi-
larity. In Proceedings of the 26th Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (FSE’18).
141–151.

https://github.com/clonebench/BigCloneBench
https://www.blackducksoftware.com
https://fossid.com
https://code.google.com/codejam/contests.html
https://github.com/c2nes/javalang
https://joern.io
https://github.com/networkx/networkx
https://www.nvidia.com
https://scantist.com
https://scikit-learn.org/stable

	ABSTRACT
	1 INTRODUCTION
	2 PRELIMINARY STUDY
	3 DEFINITION
	4 SYSTEM
	4.1 System Overview
	4.2 AST Extraction
	4.3 AST Abstraction
	4.4 Feature Extraction
	4.5 Clone Detection

	5 EXPERIMENTS
	5.1 Dataset Description
	5.2 Experimental Settings
	5.3 RQ1 : Overall Effectiveness
	5.4 RQ2 : Effectiveness Comparison with Others
	5.5 RQ3 : Scalability Evaluation

	6 DISCUSSION
	6.1 Differences from SCDetector
	6.2 Why TreeCen Performs Better
	6.3 Future Work

	7 RELATED WORK
	7.1 Semantic Clone Detection
	7.2 Scalable Clone Detection

	8 CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

