
The Software Genome Project: Unraveling Software Through
Genetic Principles

Yueming Wu, Chengwei Liu*, Zhengzi Xu, Lyuye Zhang, Yiran Zhang, Zhiling Zhu, Yang Liu
Nanyang Technological University, Singapore

Abstract
Open-source software is crucial to modern development, but its
complexity creates challenges in quality, security, and management.
Current governance approaches excel at collaboration but strug-
gle with decentralized management and security. With the rise
of large language models (LLM)-based software engineering, the
need for a finer-grained understanding of software composition
is more urgent than ever. To address these challenges, inspired by
the Human Genome Project, we treat the software source code as
software DNA and propose the Software Genome Project (SGP),
which is geared towards the secure monitoring and exploitation
of open-source software. By identifying and labeling integrated
and classified code features at a fine-grained level, and effectively
identifying safeguards for functional implementations and non-
functional requirements at different levels of granularity, the SGP
could build a comprehensive set of software genome maps to help
developers and managers gain a deeper understanding of software
complexity and diversity. By dissecting and summarizing functional
and undesirable genes, SGP could help facilitate targeted software
optimization, provide valuable insight and understanding of the
entire software ecosystem, and support critical development tasks
such as open source governance. SGP could also serve as a com-
prehensive dataset with abundant semantic labeling to enhance
the training of LLMs for code. Based on these, we expect SGP to
drive the evolution of software development towards more efficient,
reliable, and sustainable software solutions.
CCS Concepts
• Software and its engineering→ Software design engineer-
ing.
Keywords
Software Genes, Software Composition, OSS Governance.
ACM Reference Format:
Yueming Wu, Chengwei Liu*, Zhengzi Xu, Lyuye Zhang, Yiran Zhang,
Zhiling Zhu, Yang Liu. 2024. The Software Genome Project: Unraveling
Software Through Genetic Principles. In 39th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE ’24), October 27-November
1, 2024, Sacramento, CA, USA. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3691620.3695307

Chengwei Liu is the corresponding author.
Zhiling Zhu is also with Zhejiang University of Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10. . . $15.00
https://doi.org/10.1145/3691620.3695307

1 Introduction
With the pervasive integration of open-source technology, open-
source projects have evolved into fundamental infrastructure in
contemporary software development. The expansive growth of
open-source ecosystems has injected dynamism into the software
landscape [1]. However, the inherent freedom and flexibility of
open-source software, while fostering popularity, also introduce
noteworthy challenges, necessitating robust governance [2]. For
instance, as a paramount concern in real-world open-source de-
velopment, security issues [3], such as vulnerabilities [4], could
be easily introduced during collaborative contributions [5], while
many open-source projects, driven by volunteer contributions, may
lack stringent management practices [6], resulting in varying soft-
ware quality and being susceptible to malicious compromises like
backdoors [7]. Even worse, as the prevalent involvement of large
language models in modern generative software engineering [8–
10], software code could be composed by even more fragmented
and complex code snippets, inadequate professional management
of open-source contributions may lead to even higher risks of soft-
ware supply chain risks [11], such as insufficient support [12], main-
tenance lapses [13], and unclear licenses [14–16], compromising
the sustainability of these projects. Therefore, addressing these
challenges is vital to overcoming obstacles and ensuring effective
utilization of open-source software in modern development.

In response to the aforementioned challenges, we adopt a unique
approach that views software code as analogous to biological DNA
and take a page from the Human Genome Project (HGP)’s playbook,
leading to the inception of the Software Genome Project (SGP). The
HGP [17, 18], launched in the early 1990s, stands as one of the most
remarkable scientific endeavors in history. Its primary aim was
to decode and comprehensively map all the genes of the human
species. This monumental project sought to understand human
biology at the molecular level, offering insights into our genetic
heritage, hereditary diseases, and the fundamental building blocks
of human life. Taking a cue from the HGP, we introduce the SGP
as a parallel initiative focusing on open source software. SGP’s
overarching goal is to achieve a comprehensive genetic mapping of
software, akin to the HGP’s sequencing of the human genome. In
the realm of software, this translates to dissecting and annotating
the complete genetic structure of code, from its most elementary
components to its most intricate functionalities. By extending the
analogy between software code and biological DNA, SGP aspires
to provide profound insights into open source software’s genetic
makeup. Such insights open the door to more effective governance,
maintenance, and security in the world of software development.

The SGP, influenced by the transformative HGP, presents a com-
prehensive approach to revolutionize the open-source software
landscape. Comprising five main phases, it harnesses the insights
from human genetics to comprehend software code intricacies.

https://doi.org/10.1145/3691620.3695307
https://doi.org/10.1145/3691620.3695307
https://doi.org/10.1145/3691620.3695307

① Beginning with the construction of a comprehensive software
genome and intelligence genome, this initiative paves theway for ro-
bust security analyses and defenses. ② After collecting the genome,
we apply detailed annotation to discover software genes, the func-
tionality of genes, and the functionality of intelligence genome. ③
The subsequent phases delve deeper into genome analysis, offering
insights into software gene relationships, families, and evolution. ④
These knowledge is further leveraged to facilitate comprehensive
software composition analysis, akin to genetic testing, and software
maintenance, similar to genetic engineering. ⑤ Ultimately, the SGP
serves as a catalyst for open source governance, fostering real-time
security, compatibility, and compliance in the dynamic world of
open source software. Overall, the SGP, inspired by the concept
of DNA in genetics, undertakes a systematic and comprehensive
approach to enhance open-source software security. By treating
software code as genetic material and adapting genetic principles,
we can revolutionize the understanding, evaluation, and protection
of open-source software.

To pioneer the understanding and derive actionable solutions
of SGP, in this paper, we first introduce the basic concepts of the
Human Genome Project, and based on that, we propose the first
analogy from concepts of software composition from different gran-
ularity to HGP concepts, and derive the similarities and differ-
ences between HGP and SGP, to discuss the actionability, potential
roadmap, and future impact of SGP.
2 Background
In this part, we introduce the concepts in human genome and the
Human Genome Project (HGP). Drawing inspiration from the HGP,
we establish a mapping relationship between DNA and software,
leading to the proposed pathway to the Software Genome Project.
2.1 Central Dogma of Molecular Biology
The Central Dogma of Molecular Biology [19, 20], a fundamental
concept in genetics, describes the flow of genetic informationwithin
a biological system. This process begins with the transcription of
DNA into messenger RNA (mRNA). The mRNA then undergoes
translation to form proteins, which are crucial for various cellular
functions. This directional flow of information – from DNA to RNA
to protein – is pivotal in understanding how genetic information
is expressed in living organisms. In a similar vein, in computer
science, the transformation of source code into executable programs
mirrors aspects of the Central Dogma. Source code, much like DNA,
contains the original instructions or information. Compiler acts
like mRNA, converting this source code into a executable program,
just as mRNA translates genetic information into proteins. This
executable program is what computers execute to perform specific
tasks. Additionally, the replication of source code to create clone
code in software development is analogous to the replication of
DNA in biological systems, where the genetic code is duplicated to
ensure continuity and fidelity of information across generations.
This parallel between the Central Dogma of Molecular Biology
and computer programming highlights a fascinating intersection
of concepts across biology and computer science.

Based on the mapping relationship established by the Central
Dogma of Molecular Biology, we can draw analogies from biology
in three aspects as shwon in Figure 1: source code to DNA, compiler
to mRNA, and executable program to protein. This comprehensive

nucleobase

nucleobase

DNA mRNA

Source Code Compiler

Protein

Executables

Translation

Compilation

Figure 1: Central dogma ofmolecular biology and the process
of source code to executables

approach aims to leverage biological insights for advancing our un-
derstanding and practices in software development and governance.
In this paper, we first primarily focus on the detailed analysis of
source code (software DNA), with the objective of applying insights
from the well-established field of DNA development to enhance
the understanding of software composition.
2.2 Human Genome Project
Based on the genetic concepts, we give a brief description of the
Human Genome Project (HGP) [17, 18] and then clarify the related
terms to software genes. The HGP was a major global scientific
effort initiated in 1987 and formally launched in 1990. It aimed to de-
code the 3 billion base pairs within human chromosomes, creating
a comprehensive map of the human genome, including both coding
and non-coding sequences. This collaborative endeavor, involving
scientists from various nations, culminated in April 2003. The HGP
is often considered as one of the most significant scientific projects
in history, akin to the Manhattan Atomic Bomb Project [21] and the
Apollo Project [22]. The outcomes of the HGP are invaluable, serv-
ing as a foundational resource for medicine, biology, and genetics,
aiding in the study of hereditary diseases, personalized medicine,
pharmaceutical development, and gene-environment interactions.
The basic terms used in Human Genome [23] are as follows:
• Base [24]: A base is a chemical unit that makes up DNA or RNA
molecules. In DNA, there are four types of bases: adenine (A),
cytosine (C), guanine (G), and thymine (T). They form base pairs
(A-T and C-G) and are essential for encoding genetic information.

• Codon [25]: A codon is a sequence of three consecutive bases
in DNA or RNA. It represents the basic unit of the genetic code,
specifying an amino acid in protein synthesis. Codons guide
protein synthesis by determining amino acid sequences, and
there are 64 unique codons, including three stop codons that
terminate protein synthesis.

• DNA Fragment [26]: A DNA fragment is a part of the DNA
molecule that can be a coding region or a non-coding region. A
coding region is a gene that encodes proteins, which is essential
component of an organism’s functions. A non-coding region,
while not directly encoding proteins, can also play a crucial role
in gene regulation and other cellular processes.

• Chromosome [27]: A chromosome is a linear structure made of
DNA and associated proteins. It contains a long DNA molecule,
tightly coiled to ensure orderly genetic information transmission.
They have an organized arrangement of genes and non-coding
regions, ensuring accurate gene expression and inheritance.

2

• Human: A human typically contains 46 chromosomes, organized
into 23 pairs. Males have one pair of sex chromosomes, compris-
ing one X and one Y chromosome (XY), while females have one
pair of X chromosomes (XX).

• Human Genome: The human genome refers to the complete
collection of genetic information within the human body. The
DNA differences between different individuals account for a rel-
atively small portion of the entire human genome. The human
genome is an extensive molecular database, consisting of billions
of base pairs that form the genetic code of human beings.

nucleobase

A C

T G

identify literal

operator if

for …

…

Base Codon Chromosome Human Human Genome

Code Token Code Snippet Module Repository Software Genome

Mapping between DNA and software

A T C G

DNA Fragment

Component

Figure 2: Mapping relationship between DNA and open-
source software

In conclusion, the human genome, in its entirety, is the collec-
tive repository of all genetic information contained within human
beings. This vast genetic archive includes not only the complete set
of genes encoded in DNA, but also extends to non-coding regions,
regulatory elements and additional DNA sequences that are intri-
cately linked to heritable traits and biological functions. In essence,
the genome serves as the genetic blueprint within an organism,
meticulously dictating its growth, development, functionality and
distinctive characteristics. Genes, embedded within the genome,
represent specific fragments of DNA with the essential function
of encoding proteins. Genomic research is emerging as an indis-
pensable endeavour, providing profound insights into the genetic
make-up of organisms, evolution, health and disease. It reveals
the intricate interplay between genes and how they collectively
influence the characteristics and behaviour of an organism.
3 Software Genome Project
Inspired by human genome, we adopt a perspective that treats soft-
ware code as akin to biological DNA. In this part, we first introduce
several terms used in software genome.
• Code Token: A code token is the fundamental building block
of software, similar to how a base is a fundamental unit in DNA.
Code tokens include elements like Identifier, Keywords, and Oper-
ator, and they form the basic syntax of a programming language.

• Code Snippet: A code snippet is a sequence of code tokens, just
as a codon is a sequence of three consecutive bases. Code snippets
represent a basic unit of the software’s functionality, specifying
a specific operation or function in the program.

• Component: A component in software is a larger unit that com-
prises multiple code snippets. It can include functionalities such
as functions, classes, or files. Components can be either coding re-
gions, which directly contribute to the software’s functionalities,
or non-coding regions that support software maintenance.

• Module: A module in software is an organized structure that
contains multiple components for organizing and isolating func-
tionalities. Modules aim to enhance code organization, promote

Newborn Screening 4.1 SCA-Component Analysis

Paternity Testing 4.2 SCA-Clone Detection

Genetic Traceability 4.3 SCA-Dependency Analysis

Diagnostic Testing 4.4 SCA-Vulnerability Analysis

Genetic

Testing

WP 4:

Software

Composition

Analysis

Gene Therapy 5.1 Software Patching

Transgenic Technology 5.2 Software Refactoring

Genetic

Engineering

WP 5:

Software

Maintenance

Gene-gene Interaction Analysis 3.1 Software Dependency Analysis

Family Classification 3.2 Software Clustering

Phenotype Analysis 3.3 Software Portrait

Evolution Analysis 3.4 Software Evolution Analysis

Genome

Analysis

WP 3:

Software

Genome

Analysis

Sample Collection 1.1 Software Code Collection

DNA Sequencing 1.2 Software Scope Determination

Sequence Assembly 1.3 Software Repository Closure

Structural Annotation 1.4 Software IP Analysis

Functional Annotation 1.5 IP Functionality Analysis

2.1 Vulnerabilities Collection
Inheritable Disease Gene

Collection
2.2 Malicious Code Collection

2.3 Sensitive Code Collection

Annotation 2.4 Code Functionality Analysis

Human

Genome

Construction

and

Annotation

WP 1:

Software

Genome

Construction

and

Annotation

Human

Disease

Genome

Construction

and

Annotation

WP 2:

Software

Intelligence

Genome

Construction

and

Annotation

…

…

…

WP 6: Open Source Governance

6.1 Real-time Intelligence Prewarning 6.2 Secured Package Manager 6.3 Compatible Semantic Versioning 6.4 License Compliance

…

Newborn Screening SCA-Component Analysis

Paternity Testing SCA-Clone Detection

Genetic Traceability SCA-Dependency Analysis

Diagnostic Testing SCA-Vulnerability Analysis

Genetic

Testing

Software

Composition

Analysis

Gene Therapy Software Patching

Transgenic Technology Software Refactoring

Genetic

Engineering

Software

Maintenance

Gene-gene Interaction Analysis Software Dependency Analysis

Family Classification Software Clustering

Phenotype Analysis Software Portrait

Evolution Analysis Software Evolution Analysis

Genome

Analysis

Software

Genome

Analysis

Sample Collection Software Code Collection

DNA Sequencing Software Scope Determination

Sequence Assembly Software Repository Closure

Structural Annotation Software IP Analysis

Functional Annotation IP Functionality Analysis

Vulnerabilities Collection
Inheritable Disease Gene

Collection
Malicious Code Collection

Sensitive Code Collection

Annotation Code Functionality Analysis

Human

Genome

Construction

and

Annotation

Software

Genome

Construction

and

Annotation

Human

Disease

Genome

Construction

and

Annotation

Software

Intelligence

Genome

Construction

and

Annotation

…

…

…

Open Source Governance

Real-time Intelligence Prewarning Secured Package Manager Compatible Semantic Versioning License Compliance

…

Representative Software Selection

Ethnic Group Identification

Software Clustering

Software Evolution Analysis

Evolution Analysis

Gene Evolution Analysis

Environments Definition

Natural Selection Analysis

Environments Impact Analysis

Evolution Recommendation

Natural Selection → Artificial Selection → Open Source Development

The Origin of Software Species

Genetic Testing

Genome-based Applications

Genetic Engineering

Software Composition

Analysis

Software Maintenance

Genetic Testing

Genome-based Applications

Genetic Engineering

Software Composition

Analysis

Software Maintenance

Structural Annotation

Genome Annotation

Functional Annotation

Software Gene

Identification

Code Functionality

Analysis

Structural Annotation

Genome Annotation

Functional Annotation

Software Gene

Identification

Code Functionality

Analysis

Human Genome

Construction

Genome Construction

Human Disease

Genome Construction

Software Genome

Construction

Software Intelligence

Genome Construction

Human Genome

Construction

Genome Construction

Human Disease

Genome Construction

Software Genome

Construction

Software Intelligence

Genome Construction

Human Genome

Analysis

Genome Analysis

Software Genome

Analysis

Human Genome

Analysis

Genome Analysis

Software Genome

Analysis

Open Source Governance

Real-time Intelligence Prewarning

Secured Package Manager

Compatible Semantic Versioning

License Compliance

Sample Collection Software Code Collection

DNA Sequencing Software Scope Determination

Sequence Assembly Software Repository Closure

Vulnerabilities Collection
Inheritable Disease Gene

Collection
Malicious Code Collection

Sensitive Code Collection

Human

Genome

Construction

Software

Genome

Construction

Human

Disease

Genome

Construction

Software

Intelligence

Genome

Construction

…… ……

Newborn Screening SCA-Component Analysis

Paternity Testing SCA-Clone Detection

Genetic Traceability SCA-Dependency Analysis

Diagnostic Testing SCA-Intelligence Analysis

Genetic

Testing

Software

Composition

Analysis

(SCA)

Gene Therapy Software Patching

Transgenic Technology Software Refactoring

Genetic

Engineering

Software

Maintenance

… …

Genome Construction

Genome-based Applications

Gene Identification Code Contribution Analysis

Vulnerabilities Analysis
Function Prediction

Malicious Code Analysis

Sensitive Code Analysis

Structural

Annotation

Software

Gene

Identification

Functional

Annotation

Code

Functionality

Analysis

Genome Annotation

Gene-gene Interaction Analysis Software Dependency Analysis

Family Classification Software Clustering

Phenotype Analysis Software Portrait

Evolution Analysis Software Evolution Analysis

Human

Genome

Analysis

Software

Genome

Analysis

Genome Analysis

Structural Annotation

Genome Annotation

Functional Annotation

Software Gene Identification

Code Functionality Analysis

Human Genome Construction

Genome Construction

Human Disease Genome Construction

Software Genome Construction

Software Intelligence Genome Construction

Human Genome Analysis

Genome Analysis

Software Genome Analysis

Genetic Testing

Genome-based Applications

Genetic Engineering

Software Composition Analysis

Software Maintenance

Genome-based Open Source Governance

Real-time Intelligence

Prewarning

Secured Package

Manager

Compatible Semantic

Versioning

License

Compliance

Software Gene Analysis

Structural Annotation

Genome Annotation

Functional Annotation

Software Gene Identification

Code Functionality Analysis

Human Genome Construction

Genome Construction

Human Disease Genome Construction

Software Genome Construction

Software Intelligence Genome Construction

Human Genome Analysis

Genome Analysis

Software Genome Analysis

Genetic Testing

Genome-based Applications

Genetic Engineering

Software Composition Analysis

Software Maintenance

Genome-based Open Source Governance

Real-time Intelligence

Prewarning

Secured Package

Manager

Compatible

Semantic Versioning

License

Compliance

Governance Policies Governance Guidelines

… …

Figure 3: Framework of the software genome project

reusability, and facilitate maintenance in software projects, akin
to chromosomes in genetics, which help maintain order and trans-
mit genetic information.

• Repository: A repository, similar to a human being, is a com-
plete entity. It encompasses all the modules, components, and
code snippets that make up the functional aspects of the soft-
ware. A repository is designed to serve specific purposes and
functions, just as a human being has a specific genetic makeup
and characteristics.

• Software Genome: The software genome is a metaphorical term
used to describe the complete collection of code within a software
system. It serves as a comprehensive reference of software code,
akin to the human genome.
Figure 2 shows the mapping relationship between DNA and soft-

ware. We can see that an individual carries multiple chromosome,
each comprising coding and non-coding segments. Segments of
DNA that encode proteins are referred to as genes. A DNA frag-
ment consists of multiple codons, with each codon made up of three
bases. Looking at software architecture, a software repository is
a composition of various modules, each module housing several
components. Components, in turn, contain multiple code snippets,
and each snippet’s purpose is achieved through different code to-
ken combinations. When viewing a software as a human, all of its
code constitutes its genetic material, and the collective code of all
open-source software in the open source community constitutes
what we refer to as the software genome. Building on this analogy,
we introduce the concept of the Software Genome Project (SGP),
aiming to apply a HGP-like approach to the software community.

As depicted in Figure 3, the SGP comprises five major stages:
❶ Genome Construction. The scope of this initiative extends
beyond the mere construction of the software genome, it also in-
volves the assembly of a software intelligence genome, drawing
parallels with the human disease genome. This comprehensive
dataset equips us to conduct exhaustive security analyses and enact
robust software defenses. In this stage, the SGP aims to answer
the questions: what kind of objectives in source code should be
considered as genes? what is the scope of software genes that com-
pose the software world? what kind of software genes are there to
threatening real-world software?

3

❷ Genome Annotation. Subsequently, SGP delves into structural
annotation to identify software genes that hold paramount signifi-
cance within the open-source community, meriting ongoing main-
tenance. Moreover, it also perform functional annotation to enable
us to comprehend the roles and functionalities of all software genes
and the software intelligence genome. This is a fundamental step
to interpret the semantics of software genes, based on which, large-
scale tasks, such as training codeLLMs with semantic-enhanced
data, finer-grained migrations, can be further conducted.
❸ Genome Analysis. Armed with this knowledge, we proceed
to the analysis of gene clusters, delving into aspects such as de-
pendency cohesion, software architecture, portrait, and evolution.
Based on these, we could have deeper understanding on the forma-
tion, collaboration, semantic aggregation, as well as evolution of
software tech stacks to guide future developement.
❹ Genome-based Applications. SGP also incorporates the knowl-
edge acquired through genome analysis into existing techniques
to enhance the effectiveness of software composition analysis and
software maintenance, akin to the principles of genetic testing and
genetic engineering.
❺ Genome-based Open Source Governance. Moreover, unlike
the natural evolution of biological genes, we got the chance to
participate and guide the evolution of software ecosystems. Our
ultimate goal of SGP is to chart a course for open-source gover-
nance, ensuring the development of a robust, real-time, secured,
and effective open-source community.
4 Discussion
We discuss the insights from the similarities and differences be-
tween the software genes and the biological genes.
Similarity. ① Species & Domains. The genetic information (inner
factor) and environment (outer factor) decide the functioning of
both software and biological individuals. Similar to Human genes,
source code, the genes of software, is composed of tokens of code.
Common patterns of token compositions could also be interpreted
as meaningful fragments (i.e., genes) when they are expressed to
external manifestation, and these manifestations also distinguish
individuals as different categories and species, leading to the di-
versity of software. ② Survival of Fitness. The environment also
fosters the metamorphosis of software genes, including not only
the competition but also the corporation. Software genes that are
more adaptable to the environment would be gradually more com-
petitive than less fitted ones (e.g., the iteration of technique stacks
towards user requirements), and new combinations of software
genes could also enjoy a renaissance when new opportunities arise.
③ Engineering. Engineering can intervene in the genes of both
software and creatures for maintenance and improvement. For in-
stance, genes could be edited to prevent genetic disease, like fixing
patches for bugs and code smells.
Difference. ① Reproductive Isolation vs. Technique Stack.
The evolution of the biological genes could lead to reproductive
isolation between species, which blocks the communication of
genes from different species. While software domains do not isolate
vertical clusters, genes and functionalities (e.g., technique stacks)
could still be referred to and transferred among domains. ② Food
Chain vs. Supply Chain. In the biological world, cooperation and
competition are established on the basic relationship, i.e., the food

chain among species, which unites the biosphere and fosters its
stability. While in the world of software, the fundamental relation-
ship is no longer the predator-prey relationship but upstream and
downstream supply chain relationships. The downstream software
consumes the upstream ones, while such a supply-chain relation-
ship would facilitate the prosperity of both upstream and down-
stream software (double-win) instead of threatening the existence
of prey species, and then, further influencing the predator species
(double-lose when unbalanced) in the biological world. ③ Nature
Evolution vs. Hands of God. In the biological realm, genes natu-
rally mutate over time, allowing species to adapt through natural
selection for long-term survival. Conversely, in the software world,
software is created to meet human requirements and community
support, shaping the evolution of techniques and the prosperity of
software domains. Unlike manipulating biological genes, it is much
easier to manipulate software genes and guide the community to
devote to specific domains of software (i.e., open source governance
and regulations), like the hands of god for the biosphere.

The SGP seeks to engender a comprehensive and nuanced under-
standing of software creation, encompassing not only the structural
composition and functional aspects of code but also delving into
the methodologies underlying its development and maintenance.
Drawing an analogy with human genetics and inspired by the Hu-
man Genome Project, the SGP endeavors to transpose concepts,
methodologies, measurement techniques, and governance strate-
gies from the realm of biological sciences to elucidate the intricacies
of “software genes”, thereby paving the way for enhanced future
governance in this domain. Additionally, given the rapid iteration
of software in contrast to the slower evolutionary pace of biolog-
ical genes, it is anticipated that insights gleaned from the SGP
may reciprocally inform and enrich the fields of biological genetic
engineering and biosphere governance.
5 Conclusion
This paper draws inspiration from the Human Genome Project
to provide a Software Genome Project to understanding software
composition, likening it to human genetic formation. This analogy
is used to develop strategies for improving software maintenance
and guiding the evolution of the software ecosystem. We focus on
analyzing code snippets to understand software formation, identify
coding knowledge diversity, and assess the ecosystem’s capacity.
The insights gained from this software genome analysis can illu-
minate the software ecosystem’s evolution and provide valuable
reference points for understanding other evolving subjects.
Acknowledgments
We would thank the anonymous reviewers for their insightful com-
ments to improve the quality of the paper. This work is supported
by the National Research Foundation, Singapore, and the Cyber
Security Agency under its National Cybersecurity R&D Programme
(NCRP25-P04-TAICeN), the National Research Foundation Singa-
pore and DSO National Laboratories under the AI Singapore Pro-
gramme (AISG Award No: AISG2-RP-2020-019), and NRF Investi-
gatorship NRF-NRFI06-2020-0001. Any opinions, findings and con-
clusions or recommendations expressed in this material are those
of the author(s) and do not reflect the views of National Research
Foundation, Singapore and Cyber Security Agency of Singapore.

4

References
[1] Oscar Franco-Bedoya, David Ameller, Dolors Costal, and Xavier Franch. Open

source software ecosystems: A systematic mapping. Information and software
technology, 91:160–185, 2017.

[2] Pros and cons of open-source software. https://www.vspry.com/pros-and-cons-
of-open-source-software/, 2023.

[3] Christian Payne. On the security of open source software. Information systems
journal, 12(1):61–78, 2002.

[4] Scott A. Hissam, Daniel Plakosh, and C Weinstock. Trust and vulnerability in
open source software. IEE Proceedings-Software, 149(1):47–51, 2002.

[5] Andrew Meneely and Laurie Williams. Secure open source collaboration: an
empirical study of linus’ law. In Proceedings of the 16th ACM conference on
Computer and communications security, pages 453–462, 2009.

[6] Paul Kavanagh. Open source software: Implementation and management. Elsevier,
2004.

[7] State of open source security 2023. https://snyk.io/reports/open-source-security/,
2023.

[8] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. Expectation vs.
experience: Evaluating the usability of code generation tools powered by large
language models. In Chi conference on human factors in computing systems
extended abstracts, pages 1–7, 2022.

[9] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta,
Shin Yoo, and Jie M Zhang. Large language models for software engineering:
Survey and open problems. arXiv preprint arXiv:2310.03533, 2023.

[10] Yuan Huang, Yinan Chen, Xiangping Chen, Junqi Chen, Rui Peng, Zhicao Tang,
Jinbo Huang, Furen Xu, and Zibin Zheng. Generative software engineering.
arXiv preprint arXiv:2403.02583, 2024.

[11] Threats associated with llm and generative ai: Safeguarding enterprise
open-source practices | by aishield | medium. https://boschaishield.medium.com/
threats-associated-with-llm-and-generative-ai-safeguarding-enterprise-open-
source-practices-c6ffae621934, 2024. (Accessed on 06/17/2024).

[12] The open source sustainability crisis - open path by chad whitacre. https://
openpath.chadwhitacre.com/2024/the-open-source-sustainability-crisis/, 2024.

(Accessed on 06/17/2024).
[13] Ido Morag, Peter Chemweno, Liliane Pintelon, and Mohammad Sheikhalishahi.

Identifying the causes of human error in maintenance work in developing coun-
tries. International Journal of Industrial Ergonomics, 68:222–230, 2018.

[14] Tao Liu, Chengwei Liu, Tianwei Liu, He Wang, Gaofei Wu, Yang Liu, and Yuqing
Zhang. Catch the butterfly: Peeking into the terms and conflicts among spdx
licenses. arXiv preprint arXiv:2401.10636, 2024.

[15] Jiaqi Wu, Lingfeng Bao, Xiaohu Yang, Xin Xia, and Xing Hu. A large-scale
empirical study of open source license usage: Practices and challenges. 2024.

[16] Sihan Xu, Ya Gao, Lingling Fan, Zheli Liu, Yang Liu, and Hua Ji. Lidetector:
License incompatibility detection for open source software. ACM Transactions
on Software Engineering and Methodology, 32(1):1–28, 2023.

[17] The human genome project. https://www.genome.gov/human-genome-project,
2023.

[18] Maynard V Olson. The human genome project. Proceedings of the National
Academy of Sciences, 90(10):4338–4344, 1993.

[19] Matthew Cobb. 60 years ago, francis crick changed the logic of biology. PLoS
biology, 15(9):e2003243, 2017.

[20] Francis H Crick. On protein synthesis. In Symp Soc Exp Biol, volume 12, page 8,
1958.

[21] Francis George Gosling. The Manhattan Project: making the atomic bomb. Diane
Publishing, 1999.

[22] The apollo program. https://www.nasa.gov/the-apollo-program/, 2023.
[23] Elizabeth Pennisi. The human genome, 2001.
[24] Nucleobase - wikipedia. https://en.wikipedia.org/wiki/Nucleobase, 2024. (Ac-

cessed on 06/17/2024).
[25] Dna and rna codon tables - wikipedia. https://en.wikipedia.org/wiki/DNA_and_

RNA_codon_tables, 2024. (Accessed on 06/17/2024).
[26] Dna fragmentation - wikipedia. https://en.wikipedia.org/wiki/DNA_

fragmentation, 2024. (Accessed on 06/17/2024).
[27] Chromosome - wikipedia. https://en.wikipedia.org/wiki/Chromosome, 2024.

(Accessed on 06/17/2024).

5

https://www.vspry.com/pros-and-cons-of-open-source-software/
https://www.vspry.com/pros-and-cons-of-open-source-software/
https://snyk.io/reports/open-source-security/
https://boschaishield.medium.com/threats-associated-with-llm-and-generative-ai-safeguarding-enterprise-open-source-practices-c6ffae621934
https://boschaishield.medium.com/threats-associated-with-llm-and-generative-ai-safeguarding-enterprise-open-source-practices-c6ffae621934
https://boschaishield.medium.com/threats-associated-with-llm-and-generative-ai-safeguarding-enterprise-open-source-practices-c6ffae621934
https://openpath.chadwhitacre.com/2024/the-open-source-sustainability-crisis/
https://openpath.chadwhitacre.com/2024/the-open-source-sustainability-crisis/
https://www.genome.gov/human-genome-project
https://www.nasa.gov/the-apollo-program/
https://en.wikipedia.org/wiki/Nucleobase
https://en.wikipedia.org/wiki/DNA_and_RNA_codon_tables
https://en.wikipedia.org/wiki/DNA_and_RNA_codon_tables
https://en.wikipedia.org/wiki/DNA_fragmentation
https://en.wikipedia.org/wiki/DNA_fragmentation
https://en.wikipedia.org/wiki/Chromosome

	Abstract
	1 Introduction
	2 Background
	2.1 Central Dogma of Molecular Biology
	2.2 Human Genome Project

	3 Software Genome Project
	4 Discussion
	5 Conclusion
	References

