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Abstract—Due to the convenience and popularity of Web
applications, they have become a prime target for attackers. As
the main programming language for Web applications, many
methods have been proposed for detecting malicious JavaScript,
among which static analysis-based methods play an important
role because of their high effectiveness and efficiency. However,
obfuscation techniques are commonly used in JavaScript, which
makes the features extracted by static analysis contain many
useless and disguised features, leading to many false positives
and false negatives in detection results. In this paper, we propose
a novel method to find out the essential features related to
the semantics of JavaScript code. Specifically, we develop JS-
Revealer, a robust, effective, scalable, and interpretable detector
for malicious JavaScript. To test the capabilities of JSRevealer,
we conduct comparative experiments with four other state-of-
the-art malicious JavaScript detection tools. The experimental
results show that JSRevealer has an average F1 of 84.8% on
the data obfuscated by different obfuscators, which is 21.6%,
22.3%, 18.7%, and 22.9% higher than the tools CUJO, ZOZZLE,
JAST, and JSTAP, respectively. Moreover, the detection results
of JSRevealer can be interpreted, which can provide meaningful
insights for further security research.

Index Terms—Web Security, JavaScript Obfuscation, Mali-
cious JavaScript, Robustness.

I. INTRODUCTION

The Web is still the dominant software platform and the
primary tool for billions of users worldwide to interact with the
Internet. Since it is so prevalent, it naturally attracts attackers
to leverage it for their own illegal purposes. Particularly,
JavaScript is abused to perform various attacks [1]–[4] such
as drive-by malware, malicious code targeting browser vulner-
ability, malicious browser extension, cryptojacking, browser-
based phishing, and web skimming. Moreover, browser fin-
gerprinting and tracking also have the potential to violate
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users’ sensitive information. In fact, these attacks can have
a very widespread impact. For example, cryptojacking, a
new mechanism for mining cryptocurrency without the users’
consent, is estimated to affect over 10 million web users every
month [5]. Due to the widespread and harmful nature of these
attacks, detecting malicious JavaScript code is a critical matter.

There have been proposed many malicious JavaScript detec-
tion methods, which can be classified into two main categories:
static analysis based and dynamic analysis based. Dynamic
analysis can reveal the behavior of malicious code more clearly
[1], [6]–[10], but the identifiable nature of the analysis environ-
ment results in malicious code being able to evade detection
through inspection of the environment. Moreover, the overhead
of dynamic analysis is too high. So it is not suitable for large-
scale analysis. Static analysis, on the other hand, consumes
fewer resources, is simple and fast to detect malicious code,
and is more cost-effective [11]–[26]. With the emergence of
more and more new malicious JavaScript code, expensive
manual analysis has prompted static detection tools to leverage
machine learning techniques, through which good results are
achieved [11], [12], [20]–[26]. However, static analysis is
susceptible to obfuscation. JavaScript obfuscation is a series
of code transformations that transform easy-to-read JavaScript
code into a version that is extremely difficult to understand
and reverse engineer. Obfuscation is now commonly used in
JavaScript, both benign and malicious scripts [27]. In general,
benign scripts use obfuscation to protect intellectual property,
while malicious code uses obfuscation to evade detection.
Previous works [12], [20], [21] briefly discussed the effects of
obfuscation on their methods, but no detailed and quantitative
experiments were done to analyze the effects of obfuscation
on their methods. Whereas, from the features they extract, it
is inevitable that these methods are significantly affected by
obfuscation.



In this paper, we propose a novel malicious JavaScript
detection method that is robust against obfuscation. We dive
into the nature of benign and malicious based on the idea of
splitting and regrouping. The code is divided into fine-grained
representations, and then the most important and essential
features are obtained by regrouping these representations. This
poses two challenges:

1) How to divide the code into fine-grained representations
and keep the complete semantic information for each
representation?

2) How to remove confusing features from these repre-
sentations and obtain the most important and essential
features?

To address the first challenge, we first represent the code
of JavaScript as an abstract syntax tree (AST) and then add
data flow information to the AST to supplement the semantic
information of the code. We call this representation enhanced
AST. To obtain more fine-grained representations, we traverse
the enhanced AST and divide it into a number of paths. After
collecting the paths, we perform path embedding to obtain
continuous distribution vector representations and weights of
them. In this way, the original AST can be transformed into
more fine-grained representations with code semantics.

To tackle the second challenge, given the vectors of all
paths, we first perform outlier detection to remove the ones
that are irrelevant or even interfere with the behavior analysis
of the code. The output of this phase is some essential path
vectors. After obtaining these vectors, we cluster the vectors
of benign and malicious samples separately and then remove
the clusters with high similarity. The remaining clusters are
used as features. In this way, the behaviors of JavaScript are
abstracted into more representative and robust features, which
are less susceptible to obfuscation.

We develop a prototype system namely JSRevealer and
evaluate it on a massive dataset including over 40,000 mali-
cious samples and over 210,000 benign samples. Specifically,
we conduct a comprehensive evaluation of JSRevealer in
four aspects: effectiveness, robustness, interpretability, and
scalability. In terms of effectiveness, JSRevealer achieves an
F1 score of 99.4% on unobfuscated samples. As for robust-
ness, when detecting samples obfuscated by four commonly
used obfuscation tools (JavaScript-Obfuscator [28], Jfogs [29],
JSObfu [30], and Jshaman [31]), the average F1 of JSRevealer
is 84.8%, while the other four comparative tools (e.g., CUJO
[11], ZOZZLE [12], JAST [20], and JSTAP [21]) are only
63.2%, 62.5%, 66.1%, and 61.9%, respectively. Regarding in-
terpretability, after analyzing the five most important features,
we find that benign samples focus on the implementation of
functionalities, while malicious samples focus on the manip-
ulation of data. In terms of scalability, JSRevealer requires
an average of around 0.6 seconds to detect a JavaScript file.
Such result suggests that JSRevealer is suitable for large-scale
detection of malicious JavaScript.

In summary, the main contributions of this paper are as
follows:

• We propose JSRevealer, a novel approach using the idea
of splitting and regrouping to transform the JavaScript
code into more abstract and essential features. Based on
such features, JSRevealer is the first malicious JavaScript
detector that can resist obfuscation and have interpretabil-
ity.

• We perform comprehensive evaluations of JSRevealer.
The experimental results show that JSRevealer can
achieve better performance than the other four state-of-
the-art malicious JavaScript detection tools (e.g., CUJO
[11], ZOZZLE [12], JAST [20], and JSTAP [21]).

The remainder of this paper is organized as follows. Sec-
tion II introduces the background of malicious JavaScript and
obfuscation techniques. Section III describes our approach in
detail. Section IV presents our experimental results. Section V
discusses the inspiration and some limitations of our approach.
Section VI introduces some related works. Section VII con-
cludes this paper.

II. BACKGROUND

A. Malicious JavaScript
The Web is one of the most popular platforms for billions

of people to interact with the Internet, and JavaScript is one
of its core technologies used to provide interactive features.
JavaScript is used by more than 90% of websites according
to statistics [32]. Since JavaScript is so pervasive, it provides
attackers with the opportunity to conduct high-impact attacks
by exploiting the huge attack surface offered by JavaScript.
Just like many other web technologies, JavaScript has long
been used by attackers to execute attacks. The antivirus
industry and academia have discovered many kinds of attacks
using JavaScript [8]. At this moment, many users are still
suffering threats from a large number of malicious JavaScript
codes. Below are some of the most prevalent attacks using
JavaScript today:

• Browser Exploit: Browser exploit leverages web browser
vulnerabilities to breach web browser security. The web
browser is the key component of the computer and the
main entry point for users to access the Web. If a user
visits a malicious website with a vulnerable browser,
browser exploit can use the vulnerability to perform
various attacks such as personal information stealing and
malware spreading.

• Web Skimming: Web Skimming extracts data from a filled
HTML form that the user has completed by injecting
malicious code into Web sites. This poses an enormous
threat to users’ important information such as bank card
information.

• Cryptojacking: Cryptojacking is the unauthorized use of
other people’s computational resources to mine cryp-
tocurrency. Many websites are infected with cryptojackers
today. Malicious JavaScript hosts unethical and insecure
websites and steals CPU computing resources from web-
site visitors to mine cryptocurrencies.

Here we list only a small number of attack types using
JavaScript. From these attacks, we can get a glimpse of the
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threat posed by malicious JavaScript, which can cause harm
to users’ devices, information, etc. Moreover, now attackers
are using obfuscation techniques to hide malicious code and
making it much more difficult to analyze and detect.

B. Obfuscation Technique

There are various obfuscation techniques applied in the
wild. Below are several common obfuscation techniques,
which can give us a clearer picture of exactly what obfuscation
does to the code:

• Variable obfuscation randomly turns meaningful vari-
ables, methods, and constant names into meaningless
gibberish-like strings such as single characters or hex-
adecimal strings to reduce code readability.

• String obfuscation arrays strings and stores them centrally
with MD5 or Base64 encryption so that no plaintext
strings appear in the code, thus avoiding the need to locate
the entry point using a global search for strings.

• Property encryption transforms the properties of
JavaScript objects cryptographically, hiding the
invocation relationships between the code.

• Control flow flattening disrupts the original code exe-
cution flow of functions and function call relationships,
making the code logic chaotic and disorderly.

• Dead code injection randomly inserts useless dead code
or dead functions into the code to further clutter the code.

• Debugging protection checks the current runtime environ-
ment and adds some forced debugger statements based
on debugger statements to make it difficult to execute
JavaScript code in debug mode.

• Polymorphic mutation makes JavaScript code automati-
cally mutates itself every time it is called, changing it into
a completely different code than before, i.e. the function
remains the same but the form of the code changes, thus
eliminating the code from being dynamically analyzed
and debugged.

According to the work of Moog et al. [27], most Alexa
Top 10K sites [33] contain at least one obfuscated script, and
obfuscation is commonly used by both benign and malicious
scripts. Benign scripts tend to apply minification. Over 60%
of the scripts from the websites apply minification. However,
there are also some benign samples applying multiple obfusca-
tions. There are about 6% of benign scripts using variable ob-
fuscation. About 3% of benign scripts apply string obfuscation.
The percentage of benign scripts that use other obfuscation
techniques is less than 3%. Malicious scripts tend to combine
many obfuscation techniques. 25%-27% of malicious scripts
use variable obfuscation. 17%-21% of malicious scripts use
string obfuscation. Other obfuscation techniques are used in
malicious scripts with a probability of 5%-10%. So we can not
simply use the detection of obfuscation to classify content as
malicious. Note that obfuscation only changes the appearance
of code, not its semantics or function, that is obfuscation does
not change the essence of the code. If we can capture the
essence of what the code achieves, it will be less difficult to
analyze the obfuscated code.

Parsing Traversing Embedding Outlier 
Detection Clustering Filtering

Classification

Path Extraction Path Embedding Feature Extraction

Enhanced 
AST

Paths FeaturesClustersSelected 
Vectors

Path  
Vectors

Weights

JS

Fig. 1: Architecture of JSRevealer

III. APPROACH

In this section, we introduce the design of our robust
malicious JavaScript detector, JSRevealer.

A. Overview

Figure 1 illustrates the architecture of JSRevealer. JSRe-
vealer consists of four components, which are path extraction,
path embedding, feature extraction, and classification. First,
path extraction parses JavaScript files into ASTs, adds data
flow information as enhanced ASTs, and then traverses those
enhanced ASTs to obtain the paths. Next, in the path embed-
ding, we use neural networks and attention mechanisms to get
the embeddings of the paths, namely path vectors, and the
corresponding weights. After that, in the feature extraction
stage, we perform outlier detection on those vectors with
weights. Then the selected vectors are clustered, and the
features are obtained by filtering the clusters. Finally, we use
these features for learning and classification.

In the following, we describe the details of each component
in turn.

1 f u n c t i o n t e s t c a s e ( ){
2 v a r t imeZoneMinu tes = new Date ( ) . g e t T i m e z o n e O f f s e t ( ) *( −1) ;
3 v a r da t e , d a t e S t r ;
4 t r y{
5 i f ( t imeZoneMinu tes > 0){
6 d a t a = new Date ( 1 9 7 0 , 0 , 100000001 ,0 ,0+ t imeZoneMinu tes + 6 0 , 0 , 1 ) ;
7 d a t a S t r = d a t e . t o l S O S t r i n g ( ) ;
8 r e t u r n f a l s e ;
9 }e l s e{

10 d a t e = new Date ( 1 9 7 0 , 0 , 1 0 0 0 0 0 0 0 1 , 0 , 0 , 0 , 1 ) ;
11 d a t e S t r = d a t e . t o l S O S t r i n g ( ) ;
12 r e t u r n f a l s e ;
13 }
14 }c a t c h ( e ){
15 r e t u r n e i n s t a n c e o f RangeEr ro r ;
16 }
17 }

Listing 1: A real JavaScript code example

B. Path Extraction

Obfuscation changes the appearance of the code, but not
its semantics. We believe that if the method is affected by
obfuscation, it is because too much attention is given to
representational features. We focus on abstract features that
are related to the intrinsic semantics of the code so that
the approach using these features is not easily affected by
obfuscation. The general idea of obtaining abstract features is
splitting and regrouping.

First, we split the code into more fine-grained units. The
AST path is a good abstract representation proven by previous
works [34], [35]. However, the AST contains only the syntactic
structure of the code and misses semantic information, which
does not help us to find the abstract features of the intrinsic
semantics. To make the fine-grained units contain semantic
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information, we first use Esprima [36] to parse the JavaScript
files into AST and then add data flow information to the AST.
We refer to such an AST as an enhanced AST. A data depen-
dency edge is added between statements that contain the same
variable. This representation captures the data flow between
the different components so that the semantic information of
the code can be reflected in the units, that is, the paths we
extract next.

timeZoneMinutes, Identifier BinaryExpression IfStatement BlockStatement  
ExpressionStatement AssignmentExpression NewExpression Identifier, timeZoneMinutes 

IfStatememnt

BinaryExpression BlockStatementBlockStatement

Identifier Literal ExpressionStatementExpressionStatement ReturnStatement

AssignmentExpressionAssignmentExpression

NewExpression Identifier Identifier

Identifier

CallExpression

Identifier

timeZoneMinutes

timeZoneMinutes

date

date

@var

@var, Identifier AssignmentExpression CallExpression Identifier, date 

…

…

Fig. 2: Enhanced AST corresponding to line 5 to 12 of the
code in Listing 1

Then we traverse enhanced ASTs to obtain paths. The path
here is similar to the path-context Alon et al. [34] defined,
i.e., a triple < xs, n1n2...nk, xt >, where n1 and nk are
leaves of the AST, xs and xt are the values associated with
n1 and nk, n2...nk−1 is the sequence of AST nodes between
the two leaves. Specifically, for the syntactic unit with data
dependency, we keep the value of that syntactic unit. In this
way, xs or xt in the triple of the path is a specific value, for
example, a variable name. The two paths with data dependency
will have the same value in their triplets, and the vectors
obtained in the embedding process will be closer. For the
syntactic unit with data dependency, xs or xt here is an
indicator, @var int for integer type variables, @var str for
string type variables, and so on. Figure 2 shows the enhanced
AST generated from line 5 to 12 of the code in Listing 1.
We add a data dependency edge (the blue dot line) to the two
leaves that have data dependency (a program statement refers
to the data of a preceding statement). The value of the leaves,
timeZoneMinutes, is preserved. The variable dateStr has no
data dependencies with other components of the program, so
@var str is used here to indicate it.

The number of paths obtained will be huge and the com-
putational overhead will be unacceptable if we extract all the
paths naively. To limit the number of extracted paths, we put
a limit on the maximum length and maximum width of a path
as the previous works did. Maximum length is the maximal
value of k. Maximum width is the maximal difference in index
between two child nodes of the same intermediate node. We

set these values to 12 and 4 empirically. The rationality has
been discussed by Alon et al. [34] in terms of locality, sparsity,
and performance.
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Fig. 3: A schematic of our neural network for embedding

C. Path Embedding

Different from the previous methods [20], [21], we do
not extract features from the path directly. The information
that the path exhibits is not intuitive and the relationships
between paths are not clear. To represent paths better, the
neural network is used for path embedding. The continuous
distribution vector representations facilitate analysis using
data-driven automated methods.

We build a model based on the attention mechanism, which
consists mainly of a fully connected layer and attention (as
shown in Figure 3). The paths P = {p1, p2, ..., pn} extracted
from the script are fed into the model, and each path is first
embedded into a d-dimensional vector after passing through
the fully connected layer.

p′i = tanh(W · pi) (1)

where pi ∈ R|P | is the initial vector representing i − th
path, p′i is the output of the fully connected layer, that is,
the embedding of the path, and W ∈ Rd×|P | is the learned
weight matrix.

Then the attention mechanism is used to calculate the
weights of path vector.

αi =
exp(p′i

T ·α)∑n
j=1 exp(p

′
j
T ·α)

(2)

where αi is the attention weight of p′i and α is the attention
vector, which is initialized randomly.

Finally, we train this model with the labels of scripts.

v =

n∑
i=1

αi · p′i (3)

y′ = softmax(W · v) (4)

Loss = cross− entropy(y, y′) (5)
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where v is the aggregated vector, which represents the whole
script, y is the label of the script, which is binary here, y′ is the
probability vector that denotes the probability that the script
should be tagged to each label, and we use cross-entropy loss
function to get the loss.

Note that here we train this model with 5,000 additional
data, including 2,500 benign samples and 2,500 malicious
samples, using the labels of the samples, namely benign and
malicious, as the ground truth. We choose 300 as the path
embedding size of d (the length of path vector) and train
the model for 100 epochs. When we get a trained model, the
paths from an unseen script can be fed into the model as same
as the training step. We take the output vectors of the fully
connected layer and the weights calculated by the attention
mechanism. These vectors are the embeddings of the paths,
and the corresponding weights reflect the importance of each
path in the script.

D. Feature Extraction

P1 W1

P2 W2

P3 W3

P4 W4

P5 W5

W1

W2+W3

W4

W5

V1

V2

V3

V4

Clustering

Outlier

Normalize

Feture vector

Path embeddings and weights

Fig. 4: A schematic for feature extraction

Our core insight is to find more essential and abstract
features that are less likely to be disturbed by obfuscation. We
use a clustering algorithm to cluster these vectors to reveal the
hidden groupings of these paths once the paths are embedded
as vectors. Using the obtained clusters as features should
better indicate the essential semantics of the code and be more
resistant to code transformations such as obfuscation.

Figure 4 shows a schematic of our feature extraction. There
is bound to be some noise in the paths we get, such as some
statements in the program that make little sense. For better
clustering results, outlier removal is performed before cluster-
ing. There are many outlier detection algorithms. Selecting a
suitable outlier detection algorithm is to some extent a matter
of luck. Models are difficult to evaluate because the target
dataset is often unlabeled and there is no universal evaluation
function. Using a data-driven approach to model selection is
a good idea. We use MetaOD [37] proposed by Zhao et al.

[38] to select our outlier detection model. MetaOD, based on
mata-learning [39], is designed to automatically select a good
outlier detection method and its hyperparameters on a new
dataset. The optimal outlier detection model on our dataset
returned by MetaOD is Fast Angle-Based Outlier Detection
using the approximation (FastABOD). FastABOD is an outlier
detection method that is based on the principle of calculating
the variance of the angle formed by each sample and all other
samples, where the variance of the outlier is small. Leveraging
an implementation of FastABOD in a Python library, PyOD
[40], we remove the vectors that are identified as outliers from
all the path vectors.

Then we perform clustering on the remaining vectors. The-
oretically, for these continuously distributed vectors, vectors
corresponding to paths with similar semantics have close dis-
tances. The commonly used center-of-mass-based clustering
algorithm is suitable for the task of clustering on these vectors.
For better performance than K-Means, we choose Bisecting
K-Means to perform clustering. Bisecting K-Means algorithm
is a modification of the K-Means algorithm, mainly to solve
the problem of uncertainty in the clustering results caused by
the randomness of choosing the initial center of mass in the
K-means algorithm. Utilizing the implementation in a Python
library, scikit-learn [41], we cluster the path vectors obtained
in the benign samples and ones in the malicious samples
separately. Then the groups with high overlap are removed.
The remaining groups are used as features to identify benign
and malicious samples. For the choice of clustering K values,
we combine the elbow method and our classification task to
experiment with different K values. Empirically, the optimal K
value for benign samples is 11 and 10 for malicious samples.
There are no similar clusters to be removed, that is, we end up
with 21 clusters, which is described in detail in Section IV-B.

It can be explained that each feature represents a class of
behavior of the code when we select the clusters obtained
by clustering as features. As shown in Figure 4, we use
the importance of the behavior in the code, that is, the
weights of paths obtained in path embedding, as the value
of the feature, rather than the binary value of whether the
path occurs or not. Specifically, for a target script, we get
the vector and weight corresponding to each path after path
extraction and embedding, and this weight indicates the path’s
importance in the script. For all the paths in this script, we
judge which cluster they belong to in turn. If a path belongs
to a certain cluster, the weight of that path vector is added to
the corresponding feature value. Finally, the obtained feature
vectors are normalized by leveraging min-max normalization.
The equation is as follows:

V ′ =
V −min(V )

max(V )−min(V )
(6)

where V is the feature vector and V ′ is the normalized feature
vector.
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E. Classification

The last component of JSRevealer is a machine learning
classifier. The feature vectors are used to train our clas-
sifier, or targets for classification by the trained classifier.
We empirically evaluate several machine learning algorithms
(Support Vector Machine (SVM), logistic regression, decision
tree, Gaussian naive Bayes, and random forest), and choose
random forest, which is described in detail in Section IV-B.

IV. EVALUATION

In this section, we describe the results of our evaluation
of JSRevealer. We aim to answer the following Research
Questions (RQs):

• How does JSRevealer perform on detecting obfuscated
malicious JavaScript?

• How does JSRevealer perform compared to other state-
of-the-art approaches?

• How is the interpretability of JSRevealer?
• How is the runtime overhead of JSRevealer?

A. Experimental Setup

1) Dataset: Our dataset contains data from different
sources. Table I shows the detail of the dataset. The malicious
samples in the dataset consist of the malware collection of
Hynek Petrak [42], exploit kits from GeeksOnSecurity [43],
and the additional samples from VirusTotal [44]. The benign
samples come from the 150k JavaScript Dataset published by
Raychev et al. [45], consisting of 150,000 JavaScript files, and
the scripts crawled from Alexa Top-10k websites, consisting
of over 60,000 scripts.

Even though previous studies have proposed some ap-
proaches to detect obfuscation [27], [46], we are not sure
which of these scripts in the original dataset are obfuscated and
in what way the obfuscated scripts are obfuscated with these
approaches. But our subsequent experiments need to know
which scripts are obfuscated in which way with certainty. To
achieve this, the obfuscated samples in our test set are re-
obfuscated by the obfuscators below.

TABLE I: Dataset

Class Source #JS

Malicious
Hynek Petrak 39,450

GeeksOnSecurity 1,370
VirusTotal 1778

Benign 150k JavaScript Dataset 150,000
Alexa Top-10k 65,203

2) JavaScript Obfuscation Tools: We evaluate JSRevealer
against four of the most commonly used obfuscators:

• JavaScript-Obfuscator [28] is a powerful and free obfus-
cator for JavaScript, containing a variety of features, such
as variable renaming and control flow flattening.

• Jfogs [29] is a JavaScript obfuscator that focuses on
removing function call identifiers and parameters.

• JSObfu [30] is a JavaScript obfuscator written in Ruby,
which randomizes and removes easily-signaturable string
constants as much as possible.

• Jshaman [31] is a professional JavaScript code obfus-
cation and encryption platform, providing professional
JavaScript obfuscation and JavaScript encryption ser-
vices.

3) JavaScript Malware Detectors: We compare JSRevealer
with four state-of-art, static, learning-based JavaScript mal-
ware detectors:

• CUJO uses n-grams features from both static and dy-
namic analysis to detect malware. Since JSRevealer is
static, we compare JSRevealer only with CUJO’s static
part. We use the re-implementation of CUJO provided by
Fass et al. [11] in our experiments.

• ZOZZLE detects malware based on the hierarchical fea-
tures of ASTs. In our comparison, we use the ZOZZLE
re-implemented by Fass et al. [47].

• JAST extracts n-grams features from ASTs to detect
malicious JavaScript. We directly use the system available
on GitHub [48].

• JSTAP extends the detection capability of lexical and
AST-based pipelines by also leveraging control and data
flow information. It extracts n-gram features or combines
them with the name information of variables. We consider
JSTAP’s PDG code abstraction with the n-grams feature
in our comparison. We use their implementation available
on GitHub [49].

4) Classifier Training: We use the following protocol to
train and evaluate JSRevealer and four detectors. To build
a balanced model, we randomly select 20,000 samples from
benign and malicious samples, respectively. Then we split
them into training and validation sets containing 75% and 25%
of the samples to train these detectors. The remaining samples
are used to evaluate the performance of these detectors. The
results are obtained by repeating the procedure five times and
then averaging.

Note that the ratio of benign to malicious in our test
set is 1:1. This is different from the distribution in reality,
where there are more benign samples. However, we compare
detectors on multiple metrics and we highlight FPR and FNR,
which are unaffected by the ratio of the two types of samples
in the test set. So the difference does not affect the reliability
of our experimental conclusions.

We conduct all our experiments on a server with Ubuntu
18.04.1, an Intel Xeon Gold 6234 CPU @ 3.30GHz, NVIDIA
Quadro RTX 5000 GPU, and 32G RAM.

B. RQ1: Performance

It is difficult to get the optimal value of K for clustering.
Here we use the elbow method to guide us to find a more
appropriate K value. The core metric of the elbow method
is SSE (sum of the squared errors), which is the clustering
error of all samples, and represents the clustering effect, and
the core idea is that the intra-cluster distance decreases as the
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Fig. 5: SSE values corresponding to different K in benign and
malicious samples

TABLE II: Performance of different machine learning algo-
rithms

Method Accuracy (%) F1 (%) FPR (%) FNR (%)

SVM 98.9 98.7 1.3 0.9
Logistic Regression 98.4 98.3 2.0 1.0

Gaussian Naive Bayes 98.4 98.2 2.1 1.0
Decision Tree 99.0 98.8 1.2 0.9

Random Forest 99.4 99.4 0.3 0.8

value of K increases in the process of changing from small to
large, but there is no significant decrease in the intra-cluster
distance when the optimal solution of K is obtained. Figure 5
shows the SSE values corresponding to different K values in
benign and malicious samples. We can see that the elbow value
in the benign sample is around 7 and the elbow value in the
malicious sample is around 4.

We use the K values 7 and 4 to evaluate several common
machine learning methods, including SVM, logistic regres-
sion, decision tree, Gaussian naive Bayes, and random forest.
Table II shows the results of these methods trained and
tested on JavaScript files without obfuscation. We can see
that these methods perform similarly, with random forest
performing best. Since random forest is also able to provide
some interpretability, we choose it in all our other experiments
to build our classifier.

But the K values 7 and 4 are not necessarily optimal for
detection on obfuscated data. We also perform experiments
with K values around these two values, using obfuscated
samples to test the JSRevealer’s performance. Table III shows
the average F1 of JSRevealer using different K values on code
obfuscated by four obfuscators. It can be seen that JSRevealer
performs best when the clustering K value is taken to be 11 in
benign samples and 10 in malicious samples. In the following
experiments, we use 11 and 10 as the clustering K values in
benign and malicious samples, respectively.

To evaluate the effectiveness of JSRevealer, we test JSRe-
vealer on the dataset obfuscated by four obfuscators described
in Section IV-A2. Table IV shows the results of JSRevealer
to classify the JavaScript code obfuscated by each obfuscator.
The first row gives the results of JSRevealer classifying the

TABLE III: Average F1-measure (%) of JSRevealer using
different clusters on code obfuscated by four obfuscators

Clusters
from

malicious samples

Clusters from benign samples

6 7 8 9 10 11 12

3 84.8 84.6 84.8 84.7 84.8 84.8 84.7
4 84.5 84.6 84.6 84.3 84.3 85.4 84.9
5 84.6 84.7 84.2 85.0 84.5 84.7 84.3
6 84.1 84.4 84.3 84.5 84.3 85.4 84.7
7 84.3 84.5 84.4 85.9 84.6 85.7 84.5
8 84.4 84.5 84.8 84.1 84.8 84.6 85.2
9 85.1 85.1 85.1 85.3 85.3 85.4 85.6

10 85.1 85.4 85.3 85.2 85.7 86.9 85.0
11 84.2 86.9 84.9 84.9 85.5 86.4 85.6
12 86.6 84.5 85.4 85.5 85.6 84.9 85.0

scripts without obfuscation, which serves as the baseline.
JSRevealer performs well in all metrics on the dataset without
obfuscation, with 99.4% accuracy and F1, and only 0.3%
FPR and 0.8% FNR. We aim to have good results on the
obfuscated data as well, but the performance will definitely
somewhat degrade compared to the unobfuscated data. Rows
two through five show the results of JSRevealer tested on the
data obfuscated by obfuscators. JSRevealer shows decreases
in all metrics. Jshaman affected JSRevealer the least, with
only a 5.2% decrease in accuracy compared to baseline, only
a 7.5% increase in FPR, and a 3.1% increase in FNR. This is
probably because we only use the basic version of Jshaman,
which mainly uses variable obfuscation techniques, resulting
in a weaker obfuscation compared to other obfuscators. The
accuracy of JSRevealer on the data obfuscated by JavaScript-
Obfuscator and Jfogs are 86.7% and 83.3%, respectively.
However, their different characteristics have a different im-
pact on JSRevealer. On the code obfuscated by JavaScript-
Obfuscator, the FPR of JSRevealer reaches 22.2%, while the
FNR is only 5.6%. In the contrast, the FPR is only 4.7%,
while the FNR reaches 28.1% of the code obfuscated by
Jfogs. JSObfu has the strongest impact on JSRevealer, with an
accuracy of only 73.6%. Both the FPR and FNR of JSRevealer
increase significantly compared to the baseline, by 29.9% and
22.3%, respectively.

TABLE IV: Performance of JSRevealer using enhanced AST
and regular AST on code obfuscated by different obfuscators

Obfuscator Representation Accuracy (%) F1 (%) FPR (%) FNR (%)

Baseline
(No obfuscation)

Enhanced AST 99.4 99.4 0.3 0.8
Regular AST 76.1 78.5 41.6 1.9

JavaScript-Obfuscator Enhanced AST 86.7 88.4 22.2 5.6
Regular AST 68.5 75.4 56.5 10.1

Jfogs Enhanced AST 83.3 81.5 4.7 28.1
Regular AST 61.1 72.1 77.5 2.5

JSObfu Enhanced AST 73.6 75.4 30.2 23.1
Regular AST 76.3 80.8 44.6 4.6

Jshaman Enhanced AST 94.2 94.2 7.8 3.9
Regular AST 63.6 72.3 68.0 4.2

Average on
obfuscated samples

Enhanced AST 84.5 84.8 16.2 15.2
Regular AST 67.4 75.2 61.7 5.4

But in general, JSRevealer exceeds 73% accuracy and F1
on various obfuscated data and keeps the decline within 24%
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compared to the baseline. On average, the accuracy is 84.5%
and F1 is 84.9%. The FPR and FNR are relatively constant,
with an average increase of 15.9% and 14.3% compared to
the baseline, respectively.

To demonstrate the necessity of the enhanced AST, we
evaluate the performance of JSRevealer using regular AST.
We replace the enhanced AST used in JSRevealer with the
regular AST and keep the rest of the parts the same. Note that
we obtain different values of K than using enhanced AST.
The K values we obtain using the elbow method are 5 on
the benign samples and 4 on the malicious samples. Then as
using the enhanced AST, we evaluate K values around these
two values on the obfuscated samples. Finally, we take 5 and
6 for the K values.

From Table IV, we can see that JSRevealer using regular
AST exhibits high FPRs on both unobfuscated and obfuscated
samples. The performance on each obfuscator is poorer than
using the enhanced AST. The only exception is JSObfu, where
using regular AST has 2.7% higher accuracy and 5.4% higher
F1 than using enhanced AST on the samples it obfuscates.
However, its FPR is up to 44.6%. On average, the FPR of
using regular AST is up to 61.7%, which is unacceptable in
practice.

We argue that the path extracted directly from the AST does
not contain semantic information about the code, so further
abstraction such as embedding and clustering is meaningless.
It does not make the detector gain the ability to distinguish
between benign and malicious samples, which is demonstrated
here by the tendency to classify various types of samples as
malicious scripts.

Summary: JSRevealer can achieve good detection perfor-
mance on both unobfuscated and obfuscated JavaScript code,
in which enhanced AST plays an important role.

C. RQ2: Comparison with Other Techniques

In this section, we compare JSRevealer with four state-of-
art malicious JavaScript detectors.

TABLE V: Accuracy (%) of JSRevealer and other detectors
on code obfuscated by different obfuscators

Detector Baseline JavaScript-
Obfuscator Jfogs JSObfu Jshaman

CUJO 77.4 52.6 50.3 51.2 51.4
ZOZZLE 98.0 71.5 77.8 36.9 74.7

JAST 97.9 80.9 59.4 67.1 88.0
JSTAP 99.1 70.4 54.1 75.6 98.8

JSRevealer 99.4 86.7 83.3 73.6 94.2

Table V shows the accuracy of training and testing JSRe-
vealer and four comparative detectors on the unobfuscated
samples and the samples obfuscated by different obfuscators.
On the scripts obfuscated by JavaScript-Obfuscator and Jfogs,
the accuracy of JSRevealer is higher than all four detectors,
exceeding them by 5.8%-36.1% and 5.5%-30.0%. On the
code obfuscated by JSObfu and Jshaman, the accuracy of
JSRevealer is slightly lower than JSTAP, by 2.0% and 4.6%,

and higher than the other three detectors, by 6.5%-36.7%
and 6.2%-42.8%, respectively. Overall, the accuracy of the
JSRevealer is higher than that of the four compared detectors
on various types of samples. The only exception is a lower
accuracy than JSTAP on the samples obfuscated by JSObfu and
Jshaman. However, this is due to the significant classification
bias of JSTAP, which means that it will be biased to identify
samples as a certain class.

Next, we discuss the FNR and FPR metrics. The specific
performance of the detectors is very different. Figure 6 shows
the FNRs and FPRs of JSRevealer and four detectors on the
different obfuscated samples. CUJO mainly shows a signif-
icant increase in FPR on obfuscated samples. The FPRs of
CUJO increase by 57.9%, 55.7%, and 52.5% on the data
obfuscated by JavaScript-Obfuscator, JSObfu, and Jshaman,
respectively. Such performance may be due to the fact that the
features extracted by CUJO are token n-grams obtained from
lexical analysis. These obfuscators will disrupt the original
token ordering of the code. Most of malicious samples in
the original dataset as the training set also use obfuscation,
which makes it easy for CUJO to extract features indicating
maliciousness from the benign samples obfuscated by these
three obfuscators for testing. CUJO’s performance on samples
obfuscated by Jfogs is an exception. The FPR is 49.5% and the
FNR is 49.9%, both close to 50%. This suggests that CUJO is
unable to distinguish between benign and malicious samples
obfuscated by Jfogs. This may be because Jfogs uses a similar
structure to remove function call identifiers and parameters
and use the string fog instead, making the features extracted
by CUJO all similar.

ZOZZLE shows a completely different performance, with a
significant increase in FNR on obfuscated samples. Compared
to the baseline, the FNRs of ZOZZLE increase by 47.3%,
40.4%, 46.6%, and 44.3% on the samples obfuscated by
JavaScript-Obfuscator, Jfogs, JSObfu, and Jshaman, respec-
tively. The feature ZOZZLE extracts consists of AST context
and the text of the AST node. Each of these obfuscators can
break this combination, thus allowing malicious samples to
escape ZOZZLE’s detection.

JAST’s FNRs significantly increase on the samples obfus-
cated by Jfogs and JSObfu, by 79.8% and 56.1%, respectively,
while FPRs significantly increase on the samples obfuscated
by JavaScript-Obfuscator and Jshaman, by 37.8% and 19.7%,
respectively. JAST uses n-grams of AST syntactic units as
features. Each of these four obfuscators can change the struc-
ture of the code’s AST, introducing many different syntactic
unit n-grams. These changes may predispose JAST to classify
obfuscated samples as either benign or malicious, suggesting
that JAST is more vulnerable.

JSTAP shows a similar trend with ZOZZLE, mainly a
significant increase in FNR. JSTAP’s FNRs increase 52.2%,
88.4%, and 46.1% on the code obfuscated by JavaScript-
Obfuscator, Jfogs, and JSObfu, respectively. Except JSTAP
performs well against Jshaman, not much worse than baseline.
JSTAP extracts n-gram features from PDG of the code. It
extracts a larger number of n-grams, and when the malicious
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Fig. 6: False negative rate and false positive rate of JSRevealer and other detectors on code obfuscated by different obfuscators

samples are obfuscated, the obvious malicious features may be
drowned in other features, thus allowing malicious samples to
evade detection. Since we use the basic version of Jshaman,
it has less impact on the structure of the code’s PDG, thus
JSTAP has better performance on the data it obfuscates.

In contrast, JSRevealer keeps the decrease in FNRs and
FPRs within 30% on all types of obfuscated samples compared
to the baseline. This indicates that the features JSRevealer
extracts are not easily affected by obfuscation. Although the
FNR or FPR is higher than a certain detector on a certain
type of obfuscated samples, JSRevealer has the most stable
performance when we combine the four types of obfuscated
data. JSRevealer does not show very serious errors on all
four types of obfuscated data, while all four detectors as
comparisons do, which is unacceptable in practice.

TABLE VI: F1-measure (%) of JSRevealer and other detectors
on code obfuscated by different obfuscators

Detector Baseline JavaScript-
Obfuscator Jfogs JSObfu Jshaman

CUJO 80.8 69.0 49.8 67.2 66.7
ZOZZLE 97.9 65.4 72.0 44.8 67.6

JAST 98.0 84.9 32.2 58.2 89.1
JSTAP 99.1 62.6 18.0 68.1 98.8

JSRevealer 99.4 88.4 81.5 75.4 94.2

We further discuss F1 scores of JSRevealer and other
detectors (as Table VI shows), which show the comprehensive
performance of these approaches. On the data obfuscated by
JSObfu, JSTAP has a higher accuracy than JSRevealer, but it
is important to see that it has a very high FNR of 47.8%.
In terms of F1, JSRevealer is 7.3% higher than JSTAP and
8.2%-30.6% higher than the other three detectors. On the data
obfuscated by JavaScript-Obfuscator and Jfogs, JSRevealer is
3.5%-25.8% and 9.5%-63.5% higher than the four detectors.
The only exception is that JSTAP’s F1 is 4.6% higher than
JSRevealer’s on the code obfuscated by Jshaman. This is
probably due to the fact, as we describe above, that Jshaman
only uses the technique of variable obfuscation and JSTAP

uses PDG n-grams as features, which results in JSTAP being
less affected.

Overall, JSRevealer’s comprehensive performance is supe-
rior to the compared detectors. Figure 7 shows the average
performance of JSRevealer and other detectors on code obfus-
cated by different obfuscators. The average F1 of JSRevealer
is significantly higher than the compared detectors, 21.6%,
22.3%, 18.7%, and 22.9% higher than CUJO, ZOZZLE, JAST,
and JSTAP, respectively.

Summary: On the obfuscated samples, JSRevealer detection
performance is significantly better than four of the most
influential detectors.
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Fig. 7: Average performance of JSRevealer and other detectors
on code obfuscated by different obfuscators

D. RQ3: Analysis of Features

Our method has a more robust performance by using the
features we extract. The essence of the feature extraction
is to use a data-driven approach to automatically delineate
the categorization of semantic units. These categories provide
a distinctive perspective on the different patterns exhibited
by benign and malicious code. We choose the five most
important features, or clusters, based on random forests. We
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TABLE VII: The central paths and importances corresponding to the five most important features

Importance Central paths

0.133 [controls, Identifier VariableDeclarator VariableDeclaration BlockStatement
VariableDeclaration VariableDeclarator ConditionalExpression MemberExpression Identifier,options]

0.225 [@var str, Identifier MemberExpression AssignmentExpression FunctionExpression
BlockStatement ReturnStatement CallExpression CallExpression Identifier,item]

0.103 [@var str, Identifier CallExpression IfStatement BlockStatement IfStatement
BlockStatement IfStatement BinaryExpression CallExpression Literal,@var str]

0.202 [@var int, Literal MemberExpression BinaryExpression
MemberExpression MemberExpression Literal,@var int]

0.093 [@var str, Literal AssignmentExpression ExpressionStatement BlockStatement IfStatement
BlockStatement ExpressionStatement AssignmentExpression Literal,@var int]

store all the paths obtained in the training set as a corpus
and use the index to represent each path. The paths and the
corresponding embeddings are one-to-one. We additionally
store the index of a path while obtaining its embedding. So
for each embedding, we can get the corresponding path with
the traditional AST representation based on the index. We
obtain the paths corresponding to these cluster centers from the
stored indexes. Table VII shows details of the central paths and
importances corresponding to the five most important features.

The first, second, and third are obtained by clustering benign
samples, and the fourth and fifth are obtained from malicious
samples. The values at the beginning and end of the first path
are “controls” and “options”, respectively, and the specific
values indicate data dependencies with other paths. These
two words are often found in JavaScript files in the form of
“options.controls”. The middle path contains multiple Vari-
ableDeclaration, representing a part of the configuration of
various variables. It is often found when setting up and imple-
menting multimedia functions for web pages. The “@var int”
in the second path indicates an integer-type variable name,
and the “@var str” below indicates a string-type variable
name. The middle of the path is FuntionExpression and
BlockStatement. We assume that the second path represents
the units related to the overall structure of functions. The third
path contains multiple IfStatement and CallExpression, and
the beginning and end are Identifier “@var str” and Literal
“@var str”, respectively, representing variable names of string
type and value of string type. We think it represents the
units associated with different function call cases. In contrast,
the clustering centers obtained from malicious samples are
significantly different. The fourth path has BinaryExpression
in the middle, and MemberExpression and the value of integer
type on either side, indicating the operation of integer values.
We consider the fourth path to represent the units related to
basic data manipulation. The fifth path has the IfStratement
and BlockStatement in the middle. On either side, there is
a string-type value assignment and an integer-type value
assignment. We assume that it represents the assignment and
fetches operations for different cases.

In summary, we can see that benign samples focus on
the implementation of functions, while malicious samples
focus on the manipulation of data, probably because malicious
samples are mainly interested in the sensitive data of users.

This essentially explains the difference between benign and
malicious samples and provides further insight into the nature
of both benign and malicious samples.

Summary: JSRevealer has interpretability and the features
we extract can reflect the nature of benign and malicious
JavaScript code.

E. RQ4: Runtime Overhead

In this part, we evaluate the time overhead of JSRevealer.
The experimental results are obtained by training and test-
ing JSRevealer five times and then averaging the time. In
particular, the average file size in our dataset is 62 KB.
Table VIII presents the average time overhead and standard
deviation per module on one file. While path embedding,
feature generation, and classification are based on machine
learning and deep learning. Many of the libraries used to
implement them are optimized for large-scale data processing.
The standard deviations of file-consuming time for these parts
cannot be evaluated here, so they are not included here.

The path extraction module includes enhanced AST gen-
eration and path traversal. The enhanced AST generation is
time-consuming compared to other modules, while the path
traversal is more time-consuming, resulting in the path extrac-
tion taking much longer time. Though we use depth and width
pruning to reduce the traversal time consumption, the number
of paths is still quite large. The standard deviation of the time
consumption in path extraction is also quite large. This is
because some files are so large that enhanced AST generation
and path traversal on them can take several times or even
tens of times longer. In path embedding module, it requires
additional files for pre-training as Section III-C describes.
Since we use a very simple model, the time overhead here
is small, with an average pre-training time of 22.546 ms per
file. The time overhead of embedding is even smaller, only
11.66 ms. Feature generation consists of outlier detection and
clustering. Outlier detection takes the longest time, 396.471
ms per file. This is related to the outlier detection method
we choose. The time overhead of different outlier detection
methods can vary significantly, and the time overhead here
is within an acceptable range. In an actual deployment, it is
possible to change to an outlier detection method with less
time overhead as needed. In contrast, clustering has a small
time overhead, only 24.243 ms per file. As for classification,
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the training and classifying phases both have outstanding time
performance, only 0.235 ms and 0.143 ms, respectively.

The path extraction and feature generation modules have
relatively high time overheads. However, in practical applica-
tions, feature generation only needs to be run once. The time
that is consumed to detect one file includes the time overheads
of path extraction, embedding in the path embedding module,
and classifying in the classification module, that is, the average
time to detect one file is 582 ms. Considering that the average
size per file is 62 KB, the time performance is acceptable for
accomplishing scalable detection.

Summary: JSRevealer has relatively good time performance
and can meet the needs of large-scale detection.

TABLE VIII: JSRevealer’s run-time per module

Modules Period Average time consumed
per file (ms)

Standard
Deviation (ms)

Path extraction Enhanced AST 221.278 822.920
Path traversal 348.537 1048.058

Path embedding Pre-training 22.546 -
Embedding 11.660 -

Feature generation Outlier detection 396.471 -
Clustering 24.243 -

Classification Training 0.235 -
Classifying 0.143 -

V. DISCUSSION AND LIMITATIONS

A. Discussion

Previous works have briefly discussed the effects of obfus-
cation in their papers, but there are no quantitative experiments
to show exactly what the effects would be. Our experiments
above illustrate that their methods are very susceptible to
obfuscation, with substantially lower accuracy on obfuscated
samples. Although malicious scripts may not employ the
same obfuscation tools we use in reality, these experimental
results show that malicious scripts can easily evade detection
through these obfuscations, which already pose a potentially
significant threat to web users. And when malicious scripts use
more targeted obfuscation, they are less likely to be detected
by these detectors. The experimental results above confirm
that the detector we propose, JSRevealer, does have good
resistance to obfuscation. We get the features by fine-grained
partitioning of the code and then clustering, i.e., splitting
and then regrouping. We argue that such characteristics are
abstract and more essential, which are less susceptible to
obfuscation. To explain further, it is about appearance and
essence. The obfuscation tools now in common use only
change the appearance, not its semantics, that is, the essence.
Finding features that better reflect the nature of benign versus
malicious will mitigate the effects of obfuscation naturally,
resulting in a more robust approach. However, our work targets
the binary classification of benign and malicious samples and
does not distinguish between different JavaScript attacks. Our
future work will add a JavaScript malware family component,

and will also further optimize detection for different types of
JavaScript attacks.

Additionally, there may be some problematic vectors with
low weights, and it may be unavoidable for JSRevealer to
ignore them. However, JSRevealer identifying scripts is not
dependent on a certain vector. All path vectors of a script
can roughly satisfy the condition that the more they reflect
the semantics of the script, the higher the weight. So these
omitted low-weight vectors have little impact on JSRevealer.

B. Limitations

As with all learning-based methods, our approach is de-
pendent on the dataset. If some malicious samples are very
different from those in the training set, it is also difficult for
our method to detect them. For example, if the distance of the
vector of a test sample from the dataset centroid is longer than
the longest distance of the vectors of samples in the dataset
from the dataset centroid, such a sample may be beyond the
capability of the trained model. This can only be solved by
increasing the number and variety of samples in the training
set as much as possible. However, since we extract more
abstract features, our method is more difficult to be targeted
compared to the previous methods. It is possible to focus the
improvements only on improving the quality of the dataset.

In our experiments, we first select a value using the elbow
method and then search for an appropriate value K around
this value. The specific value K depends on the following
classification task and we cannot guarantee its optimality.
We consider incorporating more methods for selecting K
values in future work, such as Silhouette Coefficient and Gap
Statistic, and then combining multiple methods to select a
more appropriate K that is not dependent on the downstream
task.

Although our method is less affected by obfuscation com-
pared to other methods, it still cannot detect some obfus-
cated samples correctly. Our approach does not completely
eliminate the threat of malicious samples evading detection
through obfuscation. The features we extract do not identify
the essential difference between benign and malicious very
clearly. In future improvements, the essential features of these
abstractions can be further clarified in combination with other
static and dynamic analysis techniques.

Moreover, our approach is certainly not resistant to all
obfuscation techniques. For example, Romano et al. [50]
propose Wobfuscator, which leverages WebAssembly to evade
static JavaScript malware detection. For malware that uses
WebAssembly, JSRevealer is likely to fail to detect it because
important code segments are missing. Since JSRevealer is
based on static analysis of the script’s own code, it is not
capable of detecting malicious behaviors that leverage the
external import of JavaScript, either. Additionally, JSRevealer
dives into the semantics of the code based on enhanced AST to
obtain more abstract and more relevant features to the nature
of benign and malicious. If more sophisticated obfuscation
strategies cause deep damage to the syntactic structure and
data flow of the code, it may be unavoidable that JSRevealer
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will be affected. For example, compared to the performance
on other obfuscated samples, JSRevealer has higher FPR and
FNR on the samples obfuscated by JSObfu. JSObfu takes an
iterative obfuscation technique (the number of iterations we
use is three), which may be able to corrupt the structure
of enhanced AST more deeply than other obfuscators, thus
causing JSRevealer to extract more corrupted features on
such obfuscated samples. In future work, we consider fusing
multiple code representations such as Data Flow Graph to
make JSRevealer also work well on scripts that use very
complex obfuscation strategies.

VI. RELATED WORKS

Up to now, many methods have been proposed to detect
malicious JavaScript, which can be roughly divided into two
categories: dynamic analysis-based and static analysis-based.

Methods based on dynamic analysis: Dynamic analysis-
based approaches leverage information from program execu-
tion to detect malicious behavior. Cova et al. [1] presented an
approach that combines anomaly detection with emulation to
automatically detect malicious JavaScript code. Kolbitsch et
al. [6] proposed a JavaScript multiexecution virtual machine,
ROZZLE, to explore multiple execution paths within a single
execution, thus exposing malicious behavior. Invernizzi et
al. [7] presented EVILSEED, which uses an initial seed of
known, malicious web pages to automatically generate search
engine queries to identify other malicious pages. Xue et al.
[8] used Deterministic Finite Automaton (DFA) to abstract and
summarize common behaviors of malicious JavaScript of the
same attack type. Kim et al. [9] proposed J-FORCE, which
explores all possible execution paths by mutating the outcomes
of branch predicates to detect malicious behaviors. Sarker et al.
[10] investigated the nature of JavaScript obfuscation through
its concealing effect on JavaScript browser API features.

Methods based on static analysis: Some works use
lexical, syntactic, and semantic information extracted from
JavaScript code to identify malicious scripts. Curtsinger et
al. [12] proposed ZOZZLE, using hierarchical features of
the JavaScript AST to detect malware. Laskov et al. [14]
presented a technique to detect JavaScript-bearing malicious
PDF documents based on lexical analysis. Wang et al. [16]
implemented JDSC to detect JavaScript malware using fea-
tures of lexical analysis, program structures, and risky function
calls. Seshagiri et al. [17] proposed AMA to detect malicious
code through static code analysis of web pages. Fass et al.
[20] presented JAST, which uses the extraction of features
from the AST to detect malicious JavaScript. Later they
proposed JStap [21], which extends the detection capability
of existing lexical and AST-based methods by also leveraging
CFG and PDG of the code. Alazab et al. [51] employed several
features and machine-learning techniques to detect obfuscation
in JavaScript and then classify the code as benign or malicious.

Some work uses the characteristics of specific attacks to
extract targeted features. Rieck et al. [11] presented CUJO for
the detection of drive-by-download attacks. They extracted n-
gram features from both static and dynamic analysis. Canali

et al. [13] implemented Prophiler, using static analysis fea-
tures including features derived from the HTML contents of
web pages, the associated JavaScript code, and corresponding
URLs to detect malicious web pages. Xu et al. [15] proposed
JStill to defend against obfuscated malicious JavaScript code,
based on the static analysis of function invocation. Stock et al.
[18] presented KIZZLE for finding exploit kits by generating
anti-virus signatures. Kar et al. [19] presented an approach to
detect injection attacks by modeling SQL queries as a graph of
tokens and using the centrality measure of nodes as features.

There are other methods that use deep learning to conduct
feature learning [22]–[26]. Wang et al. [22] presented a deep
learning-based method to extract features from JavaScript
code directly. Ndichu et al. [26] used Doc2Vec to conduct
feature learning for AST of JavaScript code. Fang et al. [23]
relied on Bi-LSTM networks and syntactic unit sequences
from AST to detect malicious JavaScript. Later they presented
the method using the program dependency graph and graph
neural network [25]. Huang et al. [24] introduced Word2Vec
and two Bidirectional Long Short-Term Memory (Bi-LSTM)
layers to conduct feature learning and leveraged TextCNN for
classification.

While some works claim that their methods are able to
detect obfuscated malicious code [15], [21], [23]–[26], [51],
it is not clear whether the code that is correctly identified by
their methods is still correctly identified after obfuscation. The
goal of our approach is that the code will still be recognized
properly after the transformation of obfuscation, which is the
biggest advantage over other approaches.

VII. CONCLUSION

Obfuscation techniques are now commonly used in
JavaScript, which will undoubtedly affect the existing detec-
tors based on static analysis. In this paper, we propose a
more robust method against obfuscation, which uses more
abstract and essential features to detect malicious JavaScript.
Experimental results show that our method not only performs
well on unobfuscated data but also achieves relatively good
performance on data obfuscated by four commonly used ob-
fuscation tools. Meanwhile, compared with the other four most
influential detectors, our method performs significantly better
on the obfuscated data. Our proposed method for extracting
features provides a novel perspective for understanding benign
and malicious. We believe it better reflects the nature of
benign and malicious, making the detector less susceptible to
obfuscation.
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