
Gitor: Scalable Code Clone Detection by Building Global Sample
Graph

Junjie Shan∗
shanjunjie@westlake.edu.cn

Westlake University
Hangzhou, China

Shihan Dou∗
shihandou@foxmail.com

Fudan University
Shanghai, China

Yueming Wu†
wuyueming21@gmail.com

Nanyang Technological University
Singapore

Hairu Wu
hrwu20@fudan.edu.cn

Fudan University
Shanghai, China

Yang Liu
yangliu@ntu.edu.sg

Nanyang Technological University
Singapore

ABSTRACT
Code clone detection is about finding out similar code fragments,
which has drawn much attention in software engineering since it
is important for software maintenance and evolution. Researchers
have proposed many techniques and tools for source code clone
detection, but current detection methods concentrate on analyzing
or processing code samples individually without exploring the
underlying connections among code samples.

In this paper, we propose Gitor to capture the underlying con-
nections among different code samples. Specifically, given a source
code database, we first tokenize all code samples to extract the
pre-defined individual information (e.g., keywords). After obtaining
all samples’ individual information, we leverage them to build a
large global sample graph where each node is a code sample or a
type of individual information. Then we apply a node embedding
technique on the global sample graph to extract all the samples’
vector representations. After collecting all code samples’ vectors,
we can simply compare the similarity between any two samples to
detect possible clone pairs. More importantly, since the obtained
vector of a sample is from a global sample graph, we can combine
it with its own code features to improve the code clone detection
performance. To demonstrate the effectiveness of Gitor, we evaluate
it on a widely used dataset namely BigCloneBench. Our experimen-
tal results show that Gitor has higher accuracy in terms of code
clone detection and excellent execution time for inputs of various
sizes (1–100 MLOC) compared to existing state-of-the-art tools.
Moreover, we also evaluate the combination of Gitor with other
traditional vector-based clone detection methods, the results show
that the use of Gitor enables them detect more code clones with
higher F1.

∗Equal contribution
†Yueming Wu is the corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3616371

CCS Concepts
• Software and its engineering→ Softwaremaintenance tools.

Keywords
Clone Detection, Node Embedding, Global Sample Graph

ACM Reference Format:
Junjie Shan, Shihan Dou, Yueming Wu, Hairu Wu, and Yang Liu. 2023.
Gitor: Scalable Code Clone Detection by Building Global Sample Graph. In
Proceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’23),
December 3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3611643.3616371

1 INTRODUCTION
Code clone, also known as duplicate code or similar code, refers
to the existence of two or more identical or similar source code
fragments. Numerous empirical studies [6, 23, 42] have shown
that code cloning widely exists in different open source or closed
source code bases. For example, [6, 37] detected 22.3% of code
clones in Linux system, Kamiya et al. found 29% code clones in
JDK, and even up to 50% code clones in some software systems [50].
Widespread code cloning has helped the development of software
systems to a certain extent and can have positive benefits [21, 40].
However, many studies have pointed out that a large number of code
clones can have a negative impact on software systemsmaintenance
[19, 31, 49], since it may introduce bugs or vulnerabilities. Therefore,
the automatic detection of code clones has attracted wide attention
in the field of software engineering.

According to the syntactic or semantic similarity of code clones,
Bellon et al. classified code clones into four types [8, 41]: textual
similarity (type 1), lexical similarity (type 2), syntactic similarity
(type 3), and semantic similarity (type 4). From type 1 to type 4, the
similarity of cloned codes gradually decreases and the difficulty of
detection gradually increases. A number of code clone detection
method has been proposed [17, 20, 44, 46, 51, 55, 59]. For example,
a state-of-the-art token-based method namely SourcererCC [44] is
designed to capture the tokens’ overlap similarity among different
methods to detect Type-1 to Type-3 clones. In practice, token-based
techniques are unable to handle Type-4 clones (i.e., semantic clones)
due to a lack of respect for program semantics. To mitigate the issue,
researchers use program analysis to distill the semantics of code

https://doi.org/10.1145/3611643.3616371
https://doi.org/10.1145/3611643.3616371


ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Junjie Shan, Shihan Dou, Yueming Wu, Hairu Wu, and Yang Liu

fragments into tree or graph representations (e.g., abstract syntax
tree and control flow graph) and apply tree or graph matching
to quantify the similarity between different codes. Empirical stud-
ies [24, 26, 51] have shown that tree-based and graph-based code
clone detectors can achieve better performance on semantic code
clone analysis. However, due to the complexity of tree and graph
structures, they are unable to scale to large programs. Given that
large-scale clone detection is essential to daily software engineering
activities such as code search [22], mining library candidates [16],
and license violation detection [12, 25], there is an increasing need
for a scalable technique to detect code clones.

In this paper, we propose a novel code clone detection method
leveraging global graph built across code samples. We find that
almost all current code clone detection methods focus on extracting
the features from source code directly while ignoring the potential
underlying connections among different code samples. To achieve
scalable and accurate code clone detection, we consider extracting
these connections to build “bridges” between code samples (i.e.,
global graph) and using them to detect code clones. Specifically, we
mainly address two challenges in our paper.

• How to build the global graph from source code and represent
it properly to retain code details?

• How to utilize the global graph across different source code
samples to efficiently and accurately detect code clones?

To tackle the first challenge, we choose keyword tokens along
with side information as the individual information to represent
the source code samples. In detail, since the programming language
of our experimental dataset is Java, we leverage the reserved words
of Java as keyword tokens. Meanwhile, to better capture the code
details, we also extract another kind of information (i.e., side infor-
mation) such as the maximum depth of brackets and the number of
loops. Because the extraction of keywords and side information can
be achieved by simple lexical analysis, we can complete scalable
code clone analysis.

To address the second challenge, we use keywords and side in-
formation as the “bridge” to connect different code samples. Specif-
ically, we build a global sample graph to represent the underlying
connections between all samples. Each node in the graph represents
a code sample or a kind of individual information (i.e., keywords
or side information). Each edge indicates whether a code sample
contains such individual information. After constructing the global
graph, we perform a node embedding technique on it to convert
all code samples into corresponding vector representations. Given
generated vectors, we can calculate the cosine similarity of two
samples and quickly identify whether they are clone pairs.

We implement a prototype system, Gitor, and evaluate it on a
widely used dataset, namely BigCloneBench [1, 46]. Our evaluation
results show that Gitor is superior to six state-of-the-art compara-
tive systems including SourcererCC [44], CCFinder [20], Nicad [42],
Deckard [17], CCAligner [52], Oreo [43], LVMapper [56], and NIL
[34]. Moreover, we can also combine the code sample representa-
tion vector generated by Gitor with feature vector obtained from
source code directly by three traditional vector-based tools (i.e.,
word2vec [33], doc2vec [27], and code2vec [5]), the results indicate
that the combination make them detect more clones with higher F1.
Finally, we examine the scalability of Gitor on various sizes of code.

Evaluation results report that Gitor has the ability to analyze 100
million lines of code, with the shortest execution time compared to
SourcererCC, CCFinder, Nicad , Deckard, CCAligner, Oreo, LVMapper,
and NIL.

In summary, this paper makes the following contributions:
• We propose a novel method to detect code clones by building
a global sample graph using keywords and side information.
The constructed global graph can capture the underlying
connections between different source code samples.

• We design a prototype system namely Gitor and conduct
evaluations on a widely used dataset (i.e., BigCloneBench
[1]). Experimental results suggest that Gitor outperforms
SourcererCC, CCFinder, Nicad , Deckard, CCAligner, Oreo,
LVMapper, and NIL and Gitor is adept at handling the chal-
lenges posed by the big scale of code.

Paper organization. The remainder of the paper is organized as
follows. Section 2 explains the background and motivation. Section
3 introduces our system. Section 4 reports the experimental results.
Section 5 discusses the future work. Section 6 describes the related
work. Section 7 concludes the present paper.

2 DEFINITION AND MOTIVATION
2.1 Definitions
The paper utilizes the well-accepted definitions of code clones and
clone types as follows:
1 public static int fib(int i){
2 int f1=0, f2=1, c=0;
3 if((i == 0) || (i == 1)) return i;
4 for (int j =2; j<=i; j++){
5 c=f1+f2; f1=f2; f2=c;
6 }
7 return c;
8 }

Listing 1: Original (Func #0)

1 public static int fib(int i){
2 int f1=0, f2=1, c=0;
3 if((i == 0) || (i == 1)) return i;
4 for (int j =2; j<=i; j++){
5 c=f1+f2; f1=f2; f2=c;
6 }
7 return c;
8 }

Listing 2: Type-1 (Func #1)

1 public static int fib(int num){
2 int f1=0, f2=1, c=0;
3 if((num == 0) || (num == 1)) return num;
4 for (int j =2; j<=num; j++){
5 c=f1+f2; f1=f2; f2=c;
6 }
7 return c;
8 }

Listing 3: Type-2 (Func #2)

1 public static int calFib(int num){
2 int fib1=0, fib2 =1;
3 int t=0;
4 if((num == 1) || (num == 0)) return num;
5 for (int k =2; k<=num; k++){
6 t=fib1+fib2; fib1=fib2; fib2=t;
7 }
8 return t;
9 }

Listing 4: Type-3 (Func #3)



Gitor: Scalable Code Clone Detection by Building Global Sample Graph ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

1 public static long calFib(long number){
2 long f1=0, f2=1, c=0;
3 switch(number){
4 case 0:
5 return 0;
6 case 1:
7 return 1;
8 default:
9 break;
10 }
11 while(number >=2){
12 c=f1+f2; f1=f2; f2=c;
13 number --;
14 }
15 return c;
16 }

Listing 5: Type-4 (Func #4)

2.1.1 Clone Types In our paper, we use the following widely used
definitions [8, 41] of code clone types.

• Type-1 (textual similarity): Identical code fragments, ex-
cept for minor differences in white-space, layout, or com-
ments.

• Type-2 (lexical similarity): Structurally identical code frag-
ments, in addition to Type-1 clone differences, there might
be some differences in identifier names and literal values.

• Type-3 (syntactic similarity): Modified similar code frag-
ments that differ at the statement level. Besides the Type-
1 and Type-2 clone, the fragments might have statements
added, modified and/or removed compared to each other.

• Type-4 (semantic similarity): Dissimilar code fragments
with the same functionality but implemented in a syntacti-
cally different way.

To elaborate on different types of clones, listings 1 to 5 present
examples from Type-1 to Type-4 clones. The original code is used to
compute the Fibonacci number given the order. The Type-1 clone
(starting in line #11) is identical to the original code. The Type-
2 clone (starting in line #21) differs only in identifiers name (i.e.,
𝑚 and 𝑛 instead of 𝑎 and 𝑏). Obviously, the two types mentioned
above are easy to detect. The Type-3 clone (starting in line #31) is
syntactically similar but differs at the statement level. The first line
in Type-3 (line #42) is totally different from the origin code. The
method name and types of parameters are all changed. In addition, it
calculates the greatest common divisor in a similar but not identical
way. Detecting Type-3 clones is harder than the previous two types.
Finally, the Type-4 clone (starting in line #42) iterates to compute
the greatest common divisor which is a completely different way. Its
lexical and syntactic are dissimilar to the original method. Therefore,
it requires an in-depth understanding of code fragments to detect
Type-4 clones.

2.2 Motivation
To illustrate the key insight of our proposed method, we leverage
Fun #0 and its corresponding type 3 and type 4 clones (i.e., Fun #3
and Fun #4) as our analysis targets. As shown in Listing 1, those
examples are all used to calculate the Fibonacci number of the given
order. According to the definition of code clone, the clone pair
Fib0.java and Fib3.java are classified as Type-3 clone (i.e., syntactic
similarity) since they differ at the statement level. The clone pair
Fib0.java and Fib4.java are classified as a Type-4 clone (i.e., semantic

clone) because they have syntactically dissimilar code to implement
the same functionality.

2.2.1 SourcererCC We start with illustrating how the widely used
clone detection tool SourcererCC [44] (i.e., one of the state-of-the-
art token-based clone detectors) detects possible clone pairs by
calculating the similarity of each pair. SourcererCC [44] utilizes the
Overlap of two source code blocks to compute the similarity since
it intuitively captures the notion of overlap among different code
blocks. For example, given two code blocks C1 and C2, the overlap
similarity S(C1, C2) is calculated as the number of tokens shared by
C1 and C2.

S(C1,C2) = |C1
⋂

C2 |
Given the threshold \ and the maximum number of tokens

𝑇 =𝑚𝑎𝑥 ( |𝐶1 |, |𝐶2 |), a pair of code blocks is considered as a clone
pair when the ratio of overlap similarity and 𝑇 is greater than the
threshold \ .

𝑆 (𝐶1,𝐶2 )
𝑇

≥ \

2.2.2 Keywords To achieve a more accurate clone detection, we
need to extract reliable information to represent the source code,
preferably some kind of global information that can reflect the
connections between source code samples rather than analyze the
information from code samples individually. So, we will extract
the individual information from each code sample by extracting
keywords and build a global sample graph that connects all code
samples.

Func #3

Func #4

Func #0

int

public

static

return

if

for

switch

case

1
1

1
4
1

2

1

1
21

1
5

1

while

1
3

1

2

3

1

Motivation 2

Figure 1: A global graph of Func#0, Func#3, and Func#4.

We first tokenize the source code to get the sequences of tokens
of Func#0, Func#3, and Func#4. Then we choose only the reserved
words in Java as the keywords instead of all tokens to represent
code samples since the reserved words are used in all Java source
code samples. After extracting keywords from the above code sam-
ples, we construct a weighted directed graph with the frequency of
keywords as weight as illustrated in Figure 1. Each blue node repre-
sents a code sample, each red node represents a keyword, and the
weight from blue nodes to red nodes is the frequency of keyword
in the corresponding code sample.

2.2.3 Node Embedding In order to obtain the similarity of Fun#0,
Fun#3, and Fun#4 in Figure 1, we first use node embedding meth-
ods to convert them into their vector representations. These node



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Junjie Shan, Shihan Dou, Yueming Wu, Hairu Wu, and Yang Liu

Clone 

Detector
A Code Database

Global Graph Construction Node Embedding Clone Detection

Keywords

Side 

Information

Union

Global graph

overview

Figure 2: System overview of Gitor

embedding algorithms typically aim to capture the structural in-
formation and relationships between nodes and covert the graph
structure and node attributes into representation vectors, which
can preserve the underlying similarity among nodes [14, 36]. In
this paper, we mainly consider two different embedding methods,
namely node2vec [14] and ProNE [58], since they support the em-
bedding of weighted graph. However, to achieve the scalability,
we choose ProNE as our embedding method because it is faster,
more scalable, and more effective than node2vec [30]. So, we use
ProNE [58] to map the code samples into vectors, which can be
used to calculate the similarity among different functions.

2.2.4 Similarity Evaluation We calculate the similarity of above
two code blocks using the method mentioned in SourcererCC. It
shows that the number of tokens in Func#0 and Func#3 is 73 and
74, respectively. Then the same tokens shared by Fun#0 and Func#3
are obtained for computing the overlap similarity. We observe that
there are 18 same tokens shared by these two code blocks, which
means the overlap similarity of Func#0 and Func#3 is 18/74=0.24. If
similarity threshold in SourcererCC is set to 70%, which means that
SourcererCC reports two methods as a clone pair only when the
ratio of number of shared tokens andmaximum number of tokens of
them is larger than 70%. In this case, SourcererCC will cause a false
negative by reporting Func#0 and Func#3 as a none clone pair. Also,
the similarity between Func#0 and Func#4 according to SourcererCC
is 0.23. Now, we conduct node embedding on the graph shown in
Figure 1, and thenwe get the vector representations of Fun#0, Fun#3,
and Fun#4, which are used to calculate the similarity. After node
embedding, the similarity between Func#0 and Func#3 is 0.99 and
the similarity between Func#0 and Func#4 is 0.65, suggesting that
the similarity among these clone pairs is significantly improved.

Based on the observation, we propose a novel code clone detec-
tion framework by considering the global relationships between
different functions.

3 APPROACH
In this section, we introduce our proposed system, namely Gitor.

3.1 System Overview
As shown in Figure 2, Gitor consists of three main phases: Global
Graph Construction, Node Embedding, and Clone Detection.

• Global Graph Construction: We first apply lexical analy-
sis to extract the individual information including keywords
and side information of a code sample with corresponding

weights. Then a global sample graph is built by using these
information where each node represents a sample or a type
of individual information.

• Node Embedding: Given a graph of the whole code base,
we use a node embedding technique on the global graph and
output the vectors of each node with chosen dimension. The
input is a weighted global sample graph, and the outputs are
vectors of all samples in the code base.

• Clone Detection: After the generation of vectors, we have
two ways to detect potential clone pairs. First, we can simply
calculate the cosine similarity of a pair of samples to iden-
tify code clones. Second, we can combine Gitor with other
vector-based clone detection methods, which will boost the
performance of clone detection.

3.2 Global Graph Construction
3.2.1 Individual Information Extraction. In this paper, we aim to
combine the connection capture capability of graph embedding
methods with the scalability of token-based methods. Therefore,
we first conduct tokenization on the source code to extract the
keywords and side information from the source code. Since our ex-
periments are done on the BigCloneBench dataset [46], we tokenize
the java source code based on a java parse tool, namely javalang
[2]. We choose the Java reserved words as keywords along with five
types of side-information as individual information. For example,
take the Func #0 from Listing 1, the keywords and corresponding
weights of Func #0 is {public: 1, static: 1, int: 4, if: 1, return: 2, for: 1}.
Moreover, the five different types of side information are as follows:

• Maximum Nesting Depth of the Curly Brackets (MNDCB):
The number of maximum depth of nested curly brackets. For
example, the MNDCB of Func #0 is 2.

• Maximum Number of Parallel Curly Brackets (MNPCB): The
number of maximum parallel curly brackets with depth 2.
For example, the MNPCB of Func #0 is 1.

• Loop-Repetition Information (LRI ): The number of loop func-
tions used in the code, including for-loop and while-loop.
For example, the LRI of Func #0 is 1.

• Flow-Control Information (FCI ): The number of flow-control
functions used in the code, including if-else and switch-case.
For example, the FCI of Func #0 is 1.

• Numerical Declaration Information (NDI ): The number of
numeric variables declared in the code, including int, double,
float, byte, short and long declaration. For example, the NDI
of Func #0 is 4.



Gitor: Scalable Code Clone Detection by Building Global Sample Graph ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

For MNDCB, we utilize a depth counter, adjusting it with every
encountered curly bracket—incrementing for each opening and
decrementing for each closing, subsequently noting the peak depth.
For MNPCB, we discern parallel curly brackets at distinct depths
by counting sequential opening and closing pairs. Loop-related
tokens like for and while contribute to the LRI tally. Similarly, flow-
control tokens such as if and switch are counted for FCI. The NDI
is ascertained by enumerating numeric variable declaration tokens
like int and double. This token-based methodology offers a nuanced
perspective on the code’s structure and semantics.

In this paper, we chose these types of side information because
they can provide additional information about the structure and
complexity of the code samples and can help to identify clones that
might not have been detected by keyword-based methods alone.
Also, using such information can improve the scalability of code
clone since it reflects the code structure without processing and
comparing the whole code sample. For example, LRI represents the
number of for-loop declarations and while-loop declarations since
they have similar functionality in Java, and the substitution of these
two loop functions for each other is often found in clone samples.
Also, the types of side informationmight differ according to the pro-
gramming language of code samples. For instance, the functionality
of curly brackets in Python is different from that of curly brackets
in Java. So, the types of side information should be carefully selected
according to the different programming languages of code samples.
Moreover, different combinations of side informationmay affect the
detection performance slightly and the main goal of this paper is
not about finding the optimal combination of different types of side
information, so we will use all of these five types in the following
paper.

In our study on code clone detection, we discern the importance
of both keywords and side information. Keywords are the reserved
words directly extracted as tokens from the code, serving as founda-
tional markers of code content. On the other hand, side information
delves deeper, encapsulating structural metadata such as bracket
depth and loop count. To maximize the potential of both elements,
we construct individual graphs for each. These are then amalga-
mated into a singular, comprehensive global graph, establishing
diverse connections between code samples. This method not only
merges lexical content with structural nuances but also provides
a more robust framework, enhancing the precision in detecting
code clones by highlighting intricate relationships and similarities
between code snippets.

After extracting keywords and side information, we can get a
sequence of tokens with corresponding weight, which is the fre-
quency in this case.

3.2.2 Global Graph Construction. Nowadays, the graph is an im-
portant kind of representation to encode relation structure, which
is used in many domains (i.e., social networks, citation networks,
function call diagrams, etc.). The nodes and edges can represent
the objects and relationships respectively. Evaluation of similarity
between two nodes based on the graph structure has a wide range
of applications, such as social networks analysis, knn, graph clus-
tering, etc. Therefore, instead of simply comparing the similarity
using the overlap keywords and side information of two samples,
we first use keywords extracted from the last step to build a graph

Func #1
Func #2

Func #3

Func #4

Func #0

int

public

static

return

if

for

switch

case

1

1

1

4

1

2

1

1

2 1

1

4 1

1

2

1

1 4
1

1

1
2

15

1while

1

3 1

2
3

1

Figure 3: A global graph of Func #0-4 constructed by key-
words.

Func #1

Func #2

Func #3

Func #4

Func #0 12

1

1

1

2

11

1

2

1

1
1

2

1

1

1

2

1
1

MP

FCI

LRI

MD

NDI

4

4

4

5

3

Figure 4: A global graph of Func #0-4 constructed by side
information.

representing the whole code base. To better illustrate this phase
in Gitor, we choose the samples in Listing 1 as an example and
present a clearer description in Figure 3. As illustrated in Figure 3,
the blue nodes represent Function #0-4 and the red nodes represent
the keywords. The weight on the directed edges from functions to
keywords is the frequency of keywords appearing in the functions.

To better capture the program details of source code, we also
select another kind of information. Specifically, we construct an-
other graph using side information defined above, where the blue
nodes represent function as well, but the red nodes represent side
information types, and the weight is the count of corresponding
side-information, as illustrated in Figure 4. After obtaining two
graphs using keywords and side information, we merge them by
merging the nodes that have the same labels to build one larger
global sample graph which will be embedded and used to calculate
the similarity of any two functions.

In short, the input of graph construction is a code database
containing many code samples (i.e., functions) and the output is a
large global sample graph.



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Junjie Shan, Shihan Dou, Yueming Wu, Hairu Wu, and Yang Liu

Method 1

Application #2:  Combined 

with individual information

Global Vector

𝑓1

𝑓2

𝑣1
𝑣2

𝑓4

𝑓3 𝑣3
𝑣4

Node 

Embedding
Global Graph 

Construction𝑓1

𝑓2 𝑓4

𝑓3

Function 1-4
Global Graph

Word2vec

Doc2vec

Code2vec

Encoder Individual Vector

𝑣1_
𝑣2_
𝑣3_
𝑣4_

Detect clones with 

global features

𝐶𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚(𝑣1, 𝑣2)

𝐶𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚(𝑣1+ 𝑣1_ , 𝑣2 + 𝑣2_)

Detect clones with global and 

individual features

Figure 5: Two applications of Gitor. The first is to detect code clones using global features and the second is to combine global
features with individual features to detect code clones.

3.3 Node Embedding
Graph is a commonly used type of information representation in
complex systems and can represent many complex relationships
in real-life scenarios, such as social networks [35], crime networks
[15], traffic networks [61], etc. Graph analysis is used to dig deeper
into the intrinsic features of graph data, however, since the graph
is non-Euclidean data, traditional data analysis methods generally
have high computational effort and spatial overhead. Graph em-
bedding is an effective method to solve the graph analysis problem,
which transforms the original graph data into a low-dimensional
space and preserves key information, thus improving node clas-
sification, link prediction, and graph analysis. It can improve the
performance of the tasks like node classification, link prediction,
and node clustering by retaining key information from the graph.
Deep Learning-based methods among different graph embedding
methods have demonstrated promising results due to their capabil-
ity of automatically discovering underlying connections and iden-
tifying useful representations from the complex graph structures.
For instance, deep learning with random walk (i.e., DeepWalk [39]
and Node2vec [14]) can leverage the neighborhood structure by
sampling paths on the graph automatically.

Graph embedding methods are feature representation learning
methods, exploiting the graph structure to transform each node of
the graph into a low-dimensional vector while preserving neighbor-
hood similarity, semantic information, and community structure
among nodes [10]. The obtained vector representations can be uti-
lized by a wide range of tasks such as link prediction [45], node
classification [48]. So, the node embedding method can capture the
global connections among nodes in the graph, which means it can
capture the underlying similarity property among functions from a
holistic perspective than analyzing them individually. In this paper,
we choose ProNE [58] since it is a fast and effective method that
combines the benefits of various embedding methods while remain-
ing time-efficient [30]. Moreover, we conduct the embedding with
different vector sizes (i.e., d = 16, 32, 64, 128) on our chosen dataset,
BigCloneBench[46], to find the optimal embedding dimension for
clone detection.

In brief, the input of node embedding is the graph constructed
before, and the outputs are vectors of all nodes in the graph with
the pre-defined dimension.

3.4 Clone Detection
After collecting the vectors of all functions, we have two applica-
tions to use them for code clone detection. The first is to apply
code clone detection by directly computing the similarity of these
vectors. More importantly, these vectors can also be used to en-
hance the detection effectiveness of other vector-based code clone
detectors. Figure 5 describes an example of the two applications of
Gitor.

3.4.1 Application 1: Detect clones with global features. Cosine sim-
ilarity is a commonly used metric, which measures similarity be-
tween two vectors, especially in high-dimension space. It measures
similarity as the cosine of the angle between two vectors. Two
similar vectors are expected to have a small angle between them.
The cosine similarity of two vectors x and y is defined as follows:

cos\ =
Σ𝑑
𝑖
𝑥𝑖𝑦𝑖√︃

Σ𝑑
𝑖
𝑥2
𝑖

√︃
Σ𝑑
𝑖
𝑦2
𝑖

Our first application is simply calculating the cosine similarity
between two vectors, If the similarity is greater than a certain
threshold (e.g., 0.7), they are identified as a clone pair, as illustrated
in Figure 5.

3.4.2 Application 2: Detect clones with global and self features. We
choose the graph as the representation of the whole code base since
the natural structure of the graph can capture the underlying global
connections among different code samples better than analyzing
them individually. Instead of using the Gitor alone, we can combine
it with other self-features-based (i.e., individual-features-based)
methods, which is generated by individual analysis on each code
sample. Nowadays, there are numerous vector-based code clone
detection methods, such as [53] and [57], and the current methods
all focus on detecting clones utilizing individual features. In other
words, our proposed global graph based clone detection method



Gitor: Scalable Code Clone Detection by Building Global Sample Graph ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 1: Detection performance of Gitor with different cosine similarity thresholds.

Cosine = 0.60
Keywords Side Information Both

16 32 64 128 16 32 64 128 16 32 64 128

T-1 Recall 1 1 1 1 1 1 1 1 1 1 1 1
T-2 Recall 1 1 1 1 1 1 1 1 1 1 1 1

VST-3 Recall 0.986 0.972 0.991 0.990 1 1 1 0.999 0.988 0.989 0.993 0.992
ST-3 Recall 0.858 0.822 0.868 0.847 0.995 0.995 0.995 0.994 0.843 0.829 0.922 0.906
MT-3 Recall 0.638 0.617 0.560 0.568 0.959 0.958 0.956 0.952 0.672 0.683 0.780 0.690
Type-4 Recall 0.168 0.186 0.099 0.089 0.606 0.595 0.559 0.550 0.162 0.199 0.204 0.114
Precision 0.858 0.874 0.926 0.919 0.687 0.694 0.712 0.711 0.867 0.903 0.912 0.936

F1 0.651 0.655 0.625 0.621 0.747 0.749 0.752 0.750 0.659 0.684 0.715 0.669

Cosine = 0.70 16 32 64 128 16 32 64 128 16 32 64 128

T-1 Recall 1 1 1 1 1 1 1 1 1 1 1 1
T-2 Recall 1 1 1 1 1 1 1 1 1 1 1 1

VST-3 Recall 0.979 0.930 0.958 0.946 1 1 1 0.999 0.964 0.954 0.988 0.989
ST-3 Recall 0.811 0.753 0.777 0.761 0.995 0.995 0.994 0.993 0.755 0.750 0.840 0.803
MT-3 Recall 0.537 0.486 0.401 0.402 0.945 0.950 0.945 0.943 0.548 0.537 0.601 0.492
Type-4 Recall 0.101 0.099 0.045 0.039 0.498 0.486 0.446 0.436 0.097 0.103 0.090 0.046
Precision 0.905 0.922 0.955 0.958 0.728 0.730 0.738 0.739 0.917 0.939 0.951 0.964

F1 0.612 0.597 0.557 0.554 0.748 0.747 0.742 0.740 0.613 0.616 0.637 0.589

Cosine = 0.80 16 32 64 128 16 32 64 128 16 32 64 128

T-1 Recall 1 1 1 1 1 1 1 1 1 1 1 1
T-2 Recall 1 1 1 1 1 1 1 1 1 1 1 1

VST-3 Recall 0.936 0.871 0.918 0.907 1 0.999 0.999 0.999 0.897 0.939 0.963 0.931
ST-3 Recall 0.721 0.655 0.620 0.634 0.995 0.994 0.994 0.993 0.681 0.672 0.700 0.666
MT-3 Recall 0.425 0.312 0.233 0.231 0.916 0.911 0.903 0.898 0.422 0.370 0.378 0.290
Type-4 Recall 0.051 0.040 0.015 0.013 0.343 0.329 0.296 0.287 0.048 0.040 0.027 0.014
Precision 0.954 0.960 0.981 0.982 0.769 0.766 0.770 0.769 0.954 0.973 0.979 0.985

F1 0.563 0.518 0.480 0.480 0.729 0.723 0.716 0.712 0.558 0.541 0.541 0.504

can be combined with current vector-based detection methods to
boost the performance of clone detection.

In this paper, we choose Doc2vec [27], Word2vec [33], and
Code2vec [5] as the vector-based detectionmethods [53, 57].Word2vec
[33] and Doc2vec [27] are well-known natural language processing
baseline methods for extracting feature vectors from source code.
Code2vec [5] parses a code fragment into an AST path collection.
To predict the method name, the core idea is to use a soft-attention
mechanism on the paths and aggregate all vector representations
into a single vector. This combined method is illustrated in Figure
5. The global vector and individual vector are added to calculate
the similarity between two code samples.

4 EXPERIMENTS
In this section, we aim to answer the following research questions:

• RQ1: What is the effectiveness of Gitor in detecting different
types of code clones when used alone?

• RQ2: How does the use of global features contribute to the effec-
tiveness of boosting individual-features-based clone detection?

• RQ3: What is the effectiveness of Gitor compared to other state-
of-the-art code clone detectors?

• RQ4: What is the runtime performance of Gitor compared to
other state-of-the-art clone detectors?

4.1 Experimental Settings
4.1.1 Dataset We conduct our evaluations on the dataset: Big-
CloneBench [1], which consists of more than 8,000,000 labeled
clone pairs from 25,000 systems. The code granularity of clone
pairs in BigCloneBench [1] is function-level, and each clone pair is
manually assigned a corresponding clone type. Type-3 and Type-4
types are usually further divided into four subcategories based on
their syntactical similarity score, as follows: i) Very Strongly Type-3
(VST3) with a similarity between [0.9, 1.0), ii) Strongly Type-3 (ST3)
with a similarity between [0.7, 0.9), iii) Moderately Type-3 (MT3)
with a similarity between [0.5, 0.7), and iv)Weakly Type-3/Type-4
(WT3/T4) with a similarity between [0.0, 0.5). The total number of
these clone pairs used in our experiments is 8,446,574 including
8,139 Type-1 clones, 3,292 Type-2 clones, 4,577 VST3 clones, 3,469
ST3 clones, 7,606 MT3 clones, and 8,424,068 WT3/T4 clones. In
the following experiment results, we use Type-4 (T4) to denote
WT3/T4.

4.1.2 Implementation For individual information extraction, we
leverage a java parser (i.e., javalang [2]) to extract the keywords
and side information from source code samples. For global sample
graph construction, we use a Python library, networkx [3], to build
a weighted and directed graph. For node embedding, we employ a



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Junjie Shan, Shihan Dou, Yueming Wu, Hairu Wu, and Yang Liu

widely used embedding method, ProNE [58], to conduct the embed-
ding of the graph. The output of embedding is a series of vectors of
all nodes in the graph.

We also select certain state-of-the-art code clone detection tools
as our comparative systems, including SourcererCC [44],CCFinder [20],
NiCad [42],Deckard [17], CCAligner [52],Oreo [43], LVMapper [56],
and NIL [34]. All experiments are conducted on a server with Intel
Xeon E5-2678 v3 @ 2.50GHz, 32 Gig-bytes memory, GeForce RTX
2080 TI Graphics Card and Ubuntu 18.04.5 LTS.

4.1.3 Metrics We make use of the following widely used metrics
to measure the detection performance of Gitor. Precision is defined
as 𝑃 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃). Recall is defined as 𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 ). F1 is
defined as 𝐹1 = 2 ∗ 𝑃 ∗ 𝑅/(𝑃 + 𝑅). Among them, true positive (TP)
represents the number of samples correctly classified as clone pairs,
false positive (FP) represents the number of samples incorrectly
classified as clone pairs, and false negative (FN) represents the
number of samples incorrectly classified as non-clone pairs.

4.2 RQ1: Effectiveness of Gitor Used Alone
To examine the capability of Gitor on clode clone detection, we
conduct experiments from two perspectives, one is testing the per-
formance of Gitor alone, and another is testing the performance of
Gitor combined with other individual-features-based methods. In
this part, we focus on checking the ability of Gitor alone. Specifi-
cally, we select different cosine similarity thresholds (i.e., 0.6, 0.7,
and 0.8) and different dimensions (i.e., 16, 32, 64, and 128) of node
embedding vectors to commence our evaluations. The results are
illustrated in Table 1, including the recall, precision, and F1 scores of
our experiment on BigCloneBench dataset. As for the measurement
of precision, similar to other previous works [43, 52], we randomly
sample 400 clone pairs from clone reports in each tool and conduct
manual analysis to validate them. Each clone pair is checked inde-
pendently by two experts. If there is a conflict, a final decision will
be made after discussion with another expert. The principle rule
for judging is based on the overall similarity between the two clone
fragments and on whether they perform similar functionality.

Through the results in Table 1, we find several interesting phe-
nomena. First, when the similarity threshold is different, the de-
tection performance of Gitor is also different. Basically, the larger
the threshold, the higher the precision, but the lower the recall.
It is reasonable because the larger the threshold, the higher the
similarity of the detected clones, and the higher the similarity is, the
greater the probability of clones. But at the same time, some pairs
whose similarity is slightly lower than the threshold will be filtered
out, resulting in lower recall. Second, when the vector dimensions
are different, the detection performance of Gitor is also different.
This is normal because the dimensions of the vectors are different,
the degree of retention of graph information will also be differ-
ent. Basically, when we combine keywords with side information,
the larger the dimension of the vector, the higher the precision.
Third, the features obtained when selecting keywords to construct a
sample graph are more accurate than when selecting side informa-
tion. In other words, when using keywords to construct the global
graph, the precision of Gitor is higher than when selecting side
information. This is because keywords represent the key tokens in
the programming language, these key tokens are not allowed to

be changed, and different key tokens describe different program
information. Gitor can preserve more program semantics when all
keywords are considered. Forth, after combining keywords with
side information, Gitor’s precision is mostly improved. It shows that
the combination of the two information allows Gitor to retain more
program semantics. At this time, when the vector dimension is 64,
the average F1 under the three thresholds (i.e., 0.6, 0.7, and 0.8) is
the highest.

Based on the above findings, we suggest that if researchers want
to detect more clones, they can set the threshold to 0.6 when using
Gitor with keywords and side information. In addition, if researcher
like to detect clones with higher accuracy, they can set the threshold
to a higher value, such as 0.7 or 0.8.

Table 2: Detection performance of individual-features-based detec-
tors

Method
Individual-features-based detector

Doc2Vec W2V-avg Code2Vec

Type-1 Recall 1 1 1
Type-2 Recall 0.95 1 1
VST-3 Recall 0.86 0.99 0.998
ST-3 Recall 0.57 0.85 0.995
MT-3 Recall 0.21 0.53 0.979
Type-4 Recall 0.02 0.11 0.928
Precision 0.98 0.98 0.619

F1 0.47 0.63 0.753

Table 3: Detection performance of individual-features-based detec-
tors combined with Gitor

Method
With Gitor (Ours)

Doc2Vec W2V-avg Code2Vec

Type-1 Recall 1 1 1
Type-2 Recall 1 1 1
VST-3 Recall 0.947 0.973 0.998
ST-3 Recall 0.671 0.817 0.996
MT-3 Recall 0.421 0.573 0.979
Type-4 Recall 0.042 0.131 0.939
Precision 0.971 0.981 0.65

F1 0.558 0.649 0.778

4.3 RQ2: Combination with Other Individual
Features-based Methods

In this part, we pay attention to the effectiveness when Gitor is
combined with other detection methods. Since our system is purely
based on global features, we first want to explore how would it con-
tribute to current individual-features-based detection methods. In
order to check the effectiveness of detection using the combination
of global features and individual features, we pick several widely
used methods [53, 57], which have been proved effective on clone
detection, then we test the effectiveness when they are combined
with Gitor.



Gitor: Scalable Code Clone Detection by Building Global Sample Graph ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 4: Detection performance of SourcererCC [44], CCFinder [20], NiCad [42], Deckard [17], CCAligner [52], Oreo [43], LVMapper[56],
NIL[34], and Gitor on detecting different types of code clones.

Tool SourcererCC CCFinder NiCad Deckard CCAligner Oreo LVMapper NIL Gitor

Type-1 Recall 1 1 1 0.6 1 1 0.99 0.99 1
Type-2 Recall 0.97 0.93 0.99 0.58 0.99 0.99 0.99 0.96 1

Very Strongly Type-3 Recall 0.93 0.62 0.98 0.62 0.97 1 0.98 0.93 0.988
Strongly Type-3 Recall 0.6 0.15 0.93 0.31 0.7 0.89 0.81 0.67 0.84

Moderately Type-3 Recall 0.05 0.01 0.008 0.12 0.1 0.3 0.19 0.1 0.601
Type-4 Recall 0 0 0 0.01 - 0.007 - - 0.09

Precision 0.978 0.72 0.99 0.348 0.8 0.895 0.58 0.94 0.951

In this experiment, we choose Doc2Vec [27], Word2Vec [33], and
Code2Vec [5] as the individual-features-based detection methods
[53, 57]. We define the average vectors of Word2Vec as W2V-avg,
and the Doc2Vec extends the word vectors to entire document
vectors. The Code2Vec can embed the entire code sample into a
single vector. We choose cosine similarity as the similarity metric
in this part of experiments, and we use the default parameters for
Doc2Vec, Word2Vec, and Code2Vec.

To evaluate the detection performance of these three methods,
we test them on the BigCloneBench dataset. We use three methods
to get the embeddings of all code samples and compare the cosine
similarity to detect possible clone pairs, where we set the similarity
threshold as 0.9, and embedding dimension as 128 since these tools
reach their best performance under this setting [57]. Table 2 shows
the detection results including recall, precision and F1-score on the
BigCloneBench dataset. Then we combine the vectors generated
by the above methods with Gitor generated vectors and conduct
the similarity comparison on the BigCodeBench dataset, where the
similarity threshold is set to 0.9 as well and the dimension of Gitor
is 32 since Gitor performs the best with dimension as 32 when the
similarity threshold set to 0.9. The results are illustrated in Table 3,
where we can see that the overall detection performance, including
recall, precision, and F1-score, is significantly improved compared
to the original results, so it suggests that Gitor can boost the effec-
tiveness of other individual-features-based detection methods.

In short, the Gitor is not only effective when used alone, but also
able to boost the performance of other individual-features-based
detection methods.

4.4 RQ3: Comparative with Other Detectors
In order to evaluate Gitor’s performance comprehensively, we
compare the performance of Gitor’s clone detection against the
latest versions of several publicly available clone detection tools,
such as SourcererCC [44], CCFinder [20], NiCad [42], Deckard [17],
CCAligner [52], Oreo [43], LVMapper [56], and NIL [34]. Since most
of traditional code clone detection tools (e.g., SourcererCC [44] and
NiCad [42]) select 0.7 as their thresholds to identify code clones,
we also choose 0.7 as the threshold to commence our comparative
evaluations. Through the results in Table 1, we observe that Gitor
can maintain the best overall performance (i.e., F1) when the di-
mension of node embedding vectors is 64. Therefore, we use the
corresponding detection results as the comparative performance
of Gitor, SourcererCC, CCFinder, Nicad , Deckard, CCAligner, Oreo,

LVMapper, and NIL, where the recall numbers are summarized per
clone category. As Table 4 shows, Gitor outperforms every other
tool onmost of the clone categories, except for ST3. AlthoughNiCad
performs the best on ST3, Gitor’s performance on ST3 clone is still
quite comparable to the state-of-art since there is only a 9 percent
difference. The recall results are promising since they suggest that,
in addition to recognizing easier-to-find clones like T1, T2, and
VST3, Gitor also detects clones that other tools miss. In comparison
to other methods, where Oreo’s highest recall is 0.3, 0.601 recall in
the MT3 category is a significant improvement. Table 4 also shows
the precision results of all tools. The precision of Gitor is 0.951, and
only SourcererCC and NiCard perform marginally better than Gitor
(by 5 percent).

The recall and precision experiments show that Gitor is a reliable
and accurate clone detector that can detect Type-1, Type-2, and
Type-3 clones efficiently and detect part of Type-4 clones. To address
this issue, in the future we will improve Gitor with better chosen
individual information to detect Type-4 clones more effectively.

4.5 RQ4: Scalability
In this section, we pay attention on the runtime performance of
Gitor. As mentioned before, scalability is an important requirement
for clone detection methods, and Gitor is designed as a scalable
clone detection system. So, we will evaluate the efficiency and
demonstrate the scalability of Gitor in two parts: training efficiency
and classification efficiency.

Dataset for scalability experiments:We use the whole dataset
of BigCloneBench (i.e., IJaDataset [4]), which is a widely used
dataset containing about 250 million lines of Java source code mined
from SourceForge and Google Code. The full IJaDataset and its sub-
sets are often used for evaluating execution time and scalability of
clone detection tools [28, 44, 52]. We test Gitor using inputs with
different sizes generated from this dataset.

Different sizes for scalability experiments: Execution time
primarily depends on the size of the input in terms of the number
of lines of code (LOC) needed to be processed and classified by the
system. So, we build the inputs with varying convenient sizes (i.e.,
1K, 10K, 100K, 1M, 10M, and 100M LOC) by randomly selecting
samples from IJaDataset.

Results: The execution is finished on a machine with Intel Xeon
E5-2678 v3 @ 2.50GHz 12 cores CPU, 32GB of memory, GeForce
RTX 2080 TI Graphics Card, and system is Ubuntu 18.04.5 LTS. For
Gitor, it mainly consists of two phases, the first it to apply node



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Junjie Shan, Shihan Dou, Yueming Wu, Hairu Wu, and Yang Liu

Table 5: Runtime performance of SourcererCC [44], CCFinder [20], NiCad [42], Deckard [17], CCAligner [52], Oreo [43], LVMapper[56], NIL[34],
and Gitor.

LOC SourcererCC CCFinder NiCad Deckard CCAligner Oreo LVMapper NIL Gitor

1K 3s 2s 1s 1s 1s 1s 1s 1s 0.03s
10K 5s 5s 2s 4s 2s 3s - - 0.18s
100K 7s 10s 5s 32s 3s 6s - - 1.26s
1M 37s 39s 12s 27m12s 11m52s 4m34s 29s 10s 13.10s
10M 12m21s 6m30s 19m49s Killed 29m48s 36m6s 13m 38s 1m 38s 2m11s
100M 12h27m 9h49m Killed - Killed 1d13h46m 17h 23m 39s 1h 38m 29s 1h7min

Killed means the tool fails to parse the code or report out-of-memory errors, "-" means no such data in previous study

embedding to extract all functions’ vectors, and then these vectors
will be used to compute cosine similarity one by one. In practice, it
takes little time to complete the first phase (i.e., 20 minutes for 100M
LOC). However, when the code size becomes large, the number
of functions will also be large, resulting in a massive number of
code pairs to be analyzed. To mitigate the issue, we adopt matrix
computation to calculate the similarity of all code pairs, where GPU
is used to accelerate the computation process. The runtime of Gitor
is the total time of two phases included. The runtime performance
of all the above tools and corresponding LOC are listed in Table 5,
which shows thatGitor outperforms the seven state-of-the-art clone
detection tools in all sizes of inputs while Gitor is a bit slower than
NIL in 1MLOC and 10MLOC size, but Gitor is still more efficient
than the state-of-the-art detector NIL when it comes to larger size,
100MLOC, in this case.

In conclusion, Gitor is eight times faster than the token-based
detection tool CCFinder [20] with the input size of 100 million LOC,
which means it is highly scalable.

4.6 Summarization
Our experimental results demonstrate Gitor’s effectiveness as a
code clone detection method. It achieves optimal accuracy using a
combination of keyword and side information features (RQ1). Gitor
improves the performance of individual feature-based detectors
when used jointly (RQ2). In comparative evaluations, Gitor attains
higher recall than eight state-of-the-art tools on the BigCloneBench
dataset, with precision comparable to top techniques (RQ3). More-
over, Gitor analyzes 100 million lines of code efficiently in just 1
hour, and is the fastest tool on large code bases, running 100X faster
than CCFinder (RQ4). In summary, through extensive evaluations,
our results consistently highlight Gitor’s strengths in terms of effec-
tiveness, enhancement capability, superior accuracy over current
methods, and scalability to large code bases.

5 DISCUSSION
Why Gitor outperforms the other approaches. First, currently
existing clone detection tools (e.g., CCFinder [20] and SourcererCC
[44]) focus on analyzing code samples individually without consid-
ering the underlying connection among code samples. However,
Gitor considers the connection among different code samples by
extracting the individual information of a code sample as its repre-
sentation, and the extracted individual information is used to build

a global graph to represent the whole code base which preserves
the underlying connections of all code samples.
Why not compare with deep learning basedmethods. First of all,
Gitor is not a deep learning-based method, and the experiment we
conduct in Section 4.3 is only used to prove that Gitor can boost the
performance of other detection methods, which does not suggest
that Gitor is a deep learning based. Second, deep learning-based
methods require training a detector on large labeled datasets, which
is time-consuming and limits the practicability and scalability of
deep learning-based clone detectors. In contrast, Gitor does not
require time-consuming training on large labeled datasets, making
it more practical for use in real-world applications.
Future work. The embedding process ofGitor is very efficient since
we make use of ProNE [58], however, the code clone classification
process is quite time-consuming due to its O(𝑛2) complexity to
get all clones detected. In future work, we consider techniques like
filtering to improve our classification speed by filtering most of the
unlikely code pairs according to the properties of the sample itself,
such as lines of a sample, and the number of tokens in a sample.
Besides, to achieve better detection performance, we will explore
more types of individual information to represent code samples
more properly and more accurately.

6 RELATEDWORK
This section introduces related studies on code clone detection,
which can be classified into five categories: text-based methods,
token-based methods, tree-based methods, graph-based methods,
and metrics-based methods.

The similarity between two code snippets ismeasured in the form
of text or strings for the text-based methods [11, 18, 42]. [18] pro-
poses a fingerprinting technique for detecting code clones. [11] de-
velops a language-independent method for detecting similar codes
using only line-based string matching. These two techniques, how-
ever, do not support Type-3 clone detection. To detect more types
of clones, Nicad [42] introduces a two-stage approach that consists
of i) identifying and normalizing potential clones using flexible
pretty-printing and ii) computing similarity by simply text-line
comparison using the longest common subsequence algorithm. Al-
though Nicad can detect a number of Type-3 clones, it cannot detect
Type-4 clones because it ignores the program semantics of given
code samples.

For the token-based techniques [13, 20, 29, 44, 52], tokens are
first collected from program code by lexical analysis. CCFinder



Gitor: Scalable Code Clone Detection by Building Global Sample Graph ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

[20] extracts a token sequence from the input code and converts
it into a regular form for finding Type-1 and Type-2 clones using
numerous rule-based transformations, and SourcererCC [44] has
been developed to support Type-3 clone detection, which is de-
signed to capture the tokens’ overlap similarity among multiple
approaches for detecting Type-3 clones that are close to being de-
tected. SourcererCC [44] is the most scalable code clone detector,
capable of detecting 250 million lines of code. However, token-based
detection methods, like text-based approaches, are unable to handle
Type-4 clones.

To detect code clones, the tree-based tools [17, 54, 59] employ
Abstract Syntax Tree (AST) as the code representation. Deckard
[17]’s core idea is to compute characteristic vectors within ASTs
and use Locality Sensitive Hashing (LSH) to cluster comparable vec-
tors for clone detection. CDLH [54] first converts ASTs to binary
trees, then uses Tree-LSTM [47] to encode these trees into vector
representations. Finally, these vectors are utilized to compare dis-
tinct codes’ similarity. ASTNN [59] separates each huge AST into a
sequence of little statement trees, unlike CDLH [54]. To find seman-
tic code clones, after encoding these statement trees into vectors,
a bidirectional RNN model is utilized to construct the final vector
representation of a code fragment. These tree-based methods can
detect semantic clones, but their scalability is limited due to their
long execution times.

For the graph-based methods [9, 24, 26, 51, 60], program seman-
tics are first distilled into multiple graph representations, such as
program dependency graph and control flow graph. [24] and [26]
both extract program dependency graphs from code fragments
and locate similar codes by excavating isomorphic subgraphs to
represent code clones. CCSharp [51] employs two strategies to re-
duce the overall processing cost of [24] and [26]: graph structure
modification and characteristic vector filtering. However, due to
the complexity of graph isomorphism and the heavy-weight time
consumption of graph matching, it still has low scalability on large-
scale code clone detection.

Metrics can be obtained from tree or graph representations of
source code or straight from source code for the metrics-based
techniques [7, 32, 38, 43]. Both [7] and [32] use metrics extracted
from the AST to describe the source code and to identify code
clones. In addition, [38] detects clones using a variety of metrics
collected from source code (e.g., classes, coupling, and hierarchical
organization). These approaches use code features to determine
how similar two code fragments are in terms of semantics.

7 CONCLUSION
In this paper, we propose Gitor to achieve scalable code clone de-
tection. Given a source code base, we first generate a global graph
representing the whole code base, and then apply graph embed-
ding to extract the vectors of all code samples in the code base.
Finally, the code sample vectors can be simply used to compute
the similarity of different code sample. We evaluate Gitor on a
widely used dataset and compare Gitor with other widely used
code clone detection methods. The results show that Gitor is supe-
rior to SourcererCC [44], CCFinder [20], NiCad [42], Deckard [17],
CCAligner [52], and Oreo [43] on both effectiveness and scalability.

Moreover,Gitor requires only about one hour to analyze 100 million
lines of code and is the most scalable among our comparative tools.

8 DATA AVAILABILITY
Our data are available on our website: https://github.com/Gitor-
clone/Gitor.

ACKNOWLEDGEMENTS
We would thank the anonymous reviewers for their insightful com-
ments to improve the quality of the paper. This research/project
is supported by the National Research Foundation, Singapore, and
the Cyber Security Agency under its National Cybersecurity R&D
Programme (NCRP25-P04-TAICeN). Any opinions, findings and
conclusions or recommendations expressed in this material are
those of the author(s) and do not reflect the views of National
Research Foundation, Singapore and Cyber Security Agency of
Singapore.

REFERENCES
[1] 2020. BigCloneBench. https://github.com/clonebench/BigCloneBench.
[2] 2020. javalang. https://github.com/c2nes/javalang.
[3] 2020. Software for complex networks (Networkx). http://networkx.github.io.
[4] 2022. IJaDataset. https://github.com/jeffsvajlenko/BigCloneEval.
[5] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learn-

ing distributed representations of code. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 1–29.

[6] B. S. Baker. 1995. On Finding Duplication and Near-Duplication in Large Software
Systems. In Proceedings of the Second Working Conference on Reverse Engineering
(WCRE ’95). IEEE Computer Society, USA, 86.

[7] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lague, and Kostas
Kontogiannis. 1999. Measuring clone based reengineering opportunities. In
Proceedings of the 6th International Software Metrics Symposium (ISMS’99).

[8] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo.
2007. Comparison and evaluation of clone detection tools. IEEE Transactions on
Software Engineering (2007).

[9] Kai Chen, Peng Liu, and Yingjun Zhang. 2014. Achieving accuracy and scalability
simultaneously in detecting application clones on android markets. In Proceedings
of the 36th International Conference on Software Engineering (ICSE’14).

[10] Quanyu Dai, Xiao Shen, Liang Zhang, Qiang Li, and DanWang. 2019. Adversarial
training methods for network embedding. In The World Wide Web Conference.
329–339.

[11] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. 1999. A language in-
dependent approach for detecting duplicated code. In Proceedings of the 1999
International Conference on Software Maintenance (ICSM’99).

[12] Daniel M German, Massimiliano Di Penta, Yann-Gael Gueheneuc, and Giuliano
Antoniol. 2009. Code siblings: technical and legal implications of copying code
between applications. In Proceedings of the 6th International Working Conference
on Mining Software Repositories (MSR’09).

[13] Nils Göde and Rainer Koschke. 2009. Incremental clone detection. In Proceedings
of the 2009 European Conference on Software Maintenance and Reengineering
(ECSMR’09).

[14] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[15] Chao Huang, Junbo Zhang, Yu Zheng, and Nitesh V Chawla. 2018. DeepCrime:
Attentive hierarchical recurrent networks for crime prediction. In Proceedings of
the 27th ACM International Conference on Information and KnowledgeManagement.
1423–1432.

[16] Tomoya Ishihara, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki, and Shinji
Kusumoto. 2012. Inter-project functional clone detection toward building li-
braries: an empirical study on 13,000 projects. In Proceedings of the 19th Working
Conference on Reverse Engineering (WCRE’12).

[17] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
Deckard: scalable and accurate tree-based detection of code clones. In Proceedings
of the 29th International Conference on Software Engineering (ICSE’07).

[18] J Howard Johnson. 1994. Substringmatching for clone detection and change track-
ing.. In Proceedings of the 1994 International Conference on Software Maintenance
(ICSM’94).

https://github.com/Gitor-clone/Gitor
https://github.com/Gitor-clone/Gitor
https://github.com/clonebench/BigCloneBench
https://github.com/c2nes/javalang
http://networkx.github.io
https://github.com/jeffsvajlenko/BigCloneEval


ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Junjie Shan, Shihan Dou, Yueming Wu, Hairu Wu, and Yang Liu

[19] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner.
2009. Do code clones matter?. In 2009 IEEE 31st International Conference on
Software Engineering. 485–495. https://doi.org/10.1109/ICSE.2009.5070547

[20] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: a
multilinguistic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering (2002).

[21] Cory J. Kapser and Michael W. Godfrey. 2006. Supporting the Analysis of Clones
in Software Systems: Research Articles. J. Softw. Maint. Evol. 18, 2 (mar 2006),
61–82.

[22] Iman Keivanloo, Juergen Rilling, and Philippe Charland. 2011. Internet-scale
real-time code clone search via multi-level indexing. In Proceedings of the 18th
Working Conference on Reverse Engineering (WCRE’11).

[23] Miryung Kim, Vibha Sazawal, David Notkin, and Gail C. Murphy. 2005. An
empirical study of code clone genealogies. In ESEC/FSE-13.

[24] Raghavan Komondoor and Susan Horwitz. 2001. Using slicing to identify du-
plication in source code. In Proceedings of the 2001 International Static Analysis
Symposium (ISAS’01).

[25] Rainer Koschke. 2012. Large-scale inter-system clone detection using suffix trees.
In Proceedings of the 16th European Conference on Software Maintenance and
Reengineering (ECSME’12).

[26] Jens Krinke. 2001. Identifying similar code with program dependence graphs. In
Proceedings of the 8th Working Conference on Reverse Engineering (WCRE’01).

[27] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and
documents. In International conference on machine learning. PMLR, 1188–1196.

[28] Guanhua Li, Yijian Wu, Chanchal K Roy, Jun Sun, Xin Peng, Nanjie Zhan, Bin Hu,
and Jingyi Ma. 2020. SAGA: efficient and large-scale detection of near-miss clones
with GPU acceleration. In 2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 272–283.

[29] Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder. 2017.
Cclearner: a deep learning-based clone detection approach. In Proceedings of
the 2017 International Conference on Software Maintenance and Evolution (IC-
SME’17).

[30] Xueyi Liu and Jie Tang. 2021. Network representation learning: A macro and
micro view. AI Open 2 (2021), 43–64. https://doi.org/10.1016/j.aiopen.2021.02.001

[31] Angela Lozano and Michel Wermelinger. 2008. Assessing the effect of clones
on changeability. In 2008 IEEE International Conference on Software Maintenance.
227–236. https://doi.org/10.1109/ICSM.2008.4658071

[32] Jean Mayrand, Claude Leblanc, and Ettore Merlo. 1996. Experiment on the
automatic detection of function clones in a software system using metrics. In Pro-
ceedings of the 1996 International Conference on Software Maintenance (ICSM’96).

[33] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. Computer Science (2013).

[34] Tasuku Nakagawa, Yoshiki Higo, and Shinji Kusumoto. 2021. NIL: large-scale
detection of large-variance clones. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 830–841.

[35] Mark EJ Newman, Duncan J Watts, and Steven H Strogatz. 2002. Random graph
models of social networks. Proceedings of the national academy of sciences 99,
suppl 1 (2002), 2566–2572.

[36] Enrico Palumbo, Giuseppe Rizzo, Raphaël Troncy, Elena Baralis, Michele Osella,
and Enrico Ferro. 2018. Knowledge graph embeddings with node2vec for item
recommendation. In The Semantic Web: ESWC 2018 Satellite Events: ESWC 2018
Satellite Events, Heraklion, Crete, Greece, June 3-7, 2018, Revised Selected Papers 15.
Springer, 117–120.

[37] J.-F. Patenaude, E. Merlo, M. Dagenais, and B. Lague. 1999. Extending software
quality assessment techniques to Java systems. In Proceedings Seventh Interna-
tional Workshop on Program Comprehension. 49–56. https://doi.org/10.1109/WP
C.1999.777743

[38] J-F Patenaude, Ettore Merlo, Michel Dagenais, and Bruno Laguë. 1999. Extending
software quality assessment techniques to java systems. In Proceedings of the 7th
International Workshop on Program Comprehension (IWPC’99).

[39] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710.

[40] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. 2013. Software clone
detection: A systematic review. Information and Software Technology 55, 7 (2013),
1165–1199.

[41] Chanchal Kumar Roy and James R Cordy. 2007. A survey on software clone
detection research. Queen’s School of Computing TR (2007).

[42] Chanchal K Roy and James R Cordy. 2008. NICAD: accurate detection of near-
miss intentional clones using flexible pretty-printing and code normalization.
In Proceedings of the 2008 International Conference on Program Comprehension
(ICPC’08).

[43] Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Pierre Baldi, and Cristina V
Lopes. 2018. Oreo: detection of clones in the twilight zone. In Proceedings of
the 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (FSE’18).

[44] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V
Lopes. 2016. SourcererCC: scaling code clone detection to big code. In Proceedings
of the 38th International Conference on Software Engineering (ICSE’16).

[45] Jiankai Sun, Bortik Bandyopadhyay, Armin Bashizade, Jiongqian Liang, P Sa-
dayappan, and Srinivasan Parthasarathy. 2019. Atp: Directed graph embedding
with asymmetric transitivity preservation. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 33. 265–272.

[46] Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo, Chanchal K Roy, and Moham-
mad Mamun Mia. 2014. Towards a big data curated benchmark of inter-project
code clones. In Proceedings of the 2014 International Conference on Software Main-
tenance and Evolution (ICSME’14).

[47] Kai Sheng Tai, Richard Socher, and Christopher D Manning. 2015. Improved
semantic representations from tree-structured long short-termmemory networks.
arXiv preprint arXiv:1503.00075 (2015).

[48] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th international conference on world wide web. 1067–1077.

[49] Suresh Thummalapenta, Luigi Cerulo, Lerina Aversano, and Massimiliano
Di Penta. 2010. An empirical study on the maintenance of source code clones.
Empirical Software Engineering 15, 1 (2010), 1–34.

[50] Andrew Walenstein and Arun Lakhotia. 2007. The software similarity problem
in malware analysis. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik.

[51] MinWang, PengchengWang, and YunXu. 2017. CCSharp: an efficient three-phase
code clone detector using modified pdgs. In Proceedings of the 24th Asia-Pacific
Software Engineering Conference (APSEC’17).

[52] Pengcheng Wang, Jeffrey Svajlenko, Yanzhao Wu, Yun Xu, and Chanchal K Roy.
2018. CCAligner: a token based large-gap clone detector. In Proceedings of the
40th International Conference on Software Engineering (ICSE’18).

[53] Xiao Wang, Qiong Wu, Hongyu Zhang, Chen Lyu, Xue Jiang, Zhuoran Zheng,
Lei Lyu, and Songlin Hu. 2022. HELoC: Hierarchical Contrastive Learning of
Source Code Representation. arXiv preprint arXiv:2203.14285 (2022).

[54] Huihui Wei and Ming Li. 2017. Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information in source code.
In Proceedings of the 2017 International Joint Conferences on Artificial Intelligence
(IJCAI’17).

[55] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. In Proceedings of
the 31st International Conference on Automated Software Engineering (ASE’16).

[56] Ming Wu, Pengcheng Wang, Kangqi Yin, Haoyu Cheng, Yun Xu, and Chanchal K
Roy. 2020. Lvmapper: A large-variance clone detector using sequencing alignment
approach. IEEE access 8 (2020), 27986–27997.

[57] Kazuki Yokoi, Eunjong Choi, Norihiro Yoshida, and Katsuro Inoue. 2018. Investi-
gating vector-based detection of code clones using bigclonebench. In 2018 25th
Asia-Pacific Software Engineering Conference (APSEC). IEEE, 699–700.

[58] Jie Zhang, Yuxiao Dong, Yan Wang, Jie Tang, and Ming Ding. 2019. ProNE: Fast
and Scalable Network Representation Learning.. In IJCAI, Vol. 19. 4278–4284.

[59] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A novel neural source code representation based on abstract syntax
tree. In Proceedings of the 41st International Conference on Software Engineering
(ICSE’19).

[60] Gang Zhao and Jeff Huang. 2018. Deepsim: deep learning code functional similar-
ity. In Proceedings of the 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (FSE’18).

[61] Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. 2020. Gman: A
graph multi-attention network for traffic prediction. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 34. 1234–1241.

Received 2023-02-02; accepted 2023-07-27

https://doi.org/10.1109/ICSE.2009.5070547
https://doi.org/10.1016/j.aiopen.2021.02.001
https://doi.org/10.1109/ICSM.2008.4658071
https://doi.org/10.1109/WPC.1999.777743
https://doi.org/10.1109/WPC.1999.777743

	ABSTRACT
	1 INTRODUCTION
	2 DEFINITION AND MOTIVATION
	2.1 Definitions
	2.2 Motivation

	3 APPROACH
	3.1 System Overview
	3.2 Global Graph Construction
	3.3 Node Embedding
	3.4 Clone Detection

	4 EXPERIMENTS
	4.1 Experimental Settings
	4.2 RQ1: Effectiveness of Gitor Used Alone 
	4.3 RQ2: Combination with Other Individual Features-based Methods
	4.4 RQ3: Comparative with Other Detectors
	4.5 RQ4: Scalability
	4.6 Summarization

	5 DISCUSSION
	6 RELATED WORK
	7 CONCLUSION
	8 DATA AVAILABILITY
	REFERENCES

