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ABSTRACT
Code clone detection refers to finding the functional similarities
between two code fragments, which is becoming increasingly im-
portant with the evolution of software engineering. Numbers of
code clone detection methods have been proposed, including tree-
based methods that are capable of detecting semantic code clones.
However, since tree structure is complex, these methods are difficult
to apply to large-scale clone detection. In this paper, we propose
a scalable semantic code clone detector based on semantically en-
hanced abstract syntax tree. Specifically, we add the control flow
and data flow details into the original tree and regard the enhanced
tree as a social network. Thenwe build a social network-based triads
model to collect the similarity features between the two methods by
analyzing different types of triads within the network. After obtain-
ing all features, we use them to train a machine learning-based code
clone detector (i.e., Tritor). Our comparative experimental results
show that Tritor is superior to SourcererCC, RtvNN,Deckard,ASTNN,
TBCNN, CDLH, and SCDetector, are equally good with DeepSim and
FCCA. As for scalability, Tritor is about 39 times faster than another
current state-of-the-art tree-based code clone detector ASTNN.
CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools.
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1 INTRODUCTION
As the field of software engineering is constantly evolving, the
demand for software is increasing. As a result, many software de-
velopers choose to build or maintain software code by code cloning
to save time and effort. In reality, code clones are divided into
syntactic and semantic clones. Syntactic clones are usually found
when copying and pasting code, and are divided into three types in
descending order of similarity, namely Type-1 (textual similarity),
Type-2 (lexical similarity), and Type-3 (syntactic similarity). Seman-
tic clones are usually introduced when using different code syntax
to implement a same functionality, which is Type-4 (semantically
similarity). Although code cloning facilitates software development,
it also increases maintenance costs and even causes the propagation
of vulnerabilities, which can have a negative impact on software
security [17, 31, 40, 48]. Therefore, code clone detection is more
and more important in the field of software engineering.

A number of code clone detection techniques have been pro-
posed. For example, the token-based detection technique CCFinder
[32] performs lexical analysis of the code to extract the token se-
quence, which is then converted into a rule form to detect Type-1
and Type-2 clones. Token-based approaches can also detect a frac-
tion of Type-3 clones, such as SourcererCC [47]. It detects Type-3
clones by calculating the overlapping similarity between the tokens
of two methods. However, as only the program syntax is consid-
ered, these token-based methods cannot detect semantic clones.
To solve this problem, researchers intend to capture semantic in-
formation by extracting intermediate representations of programs,
thus equipping these methods with the ability to detect semantic
clones. Graph-based approaches [35, 36, 52, 61, 62] extract graph
structures (e.g., control flow graph) containing semantic details of
programs, and then use graph analysis to implement code clone de-
tection. However, graph-based approaches usually have a high time
overhead and thus are not scalable to large datasets. This is slightly
mitigated by tree-based methods [28, 29, 38, 55, 60], which detect

https://doi.org/10.1145/3611643.3616354
https://doi.org/10.1145/3611643.3616354


ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Deqing Zou, Siyue Feng, Yueming Wu, Wenqi Suo, and Hai Jin

semantic clones by obtaining a tree representation of the program
and using tree matching. However, the problem of the lack of high
scalability has not been completely solved, because although the
tree analysis algorithm is lighter than the graph comparison algo-
rithm, the tree structure is still complex [57]. For example, all the
nodes and the child edges in Figure 4 are the original abstract syntax
tree (AST) generated for the code in Figure 4. We can see from the
figure that a simple function with only 11 lines generates a complex
subtree of 44 nodes, not to mention more complex programs. As
a result, the tree analysis also incurs a significant overhead and is
difficult to be applied to large-scale code clone analysis.

In this paper, we implement a novel system for scalable semantic
code clone detection. Specifically, we address two main challenges:
• Challenge 1: AST has complex tree structure, which results in a
high time overhead if only a simple tree matching algorithm is used
to measure similarity. Then, how to design a lightweight model
that can process the complex tree in a succinct way?
• Challenge 2: AST only contains the syntactic features of the code
and lacks the semantic information to handle semantic code clones.
Then, how to design an effective model that can handle semantic
code clones?
To tackle the first challenge, we build a novel triads model to

represent the tree details of a complex AST. Specifically, we first
add the control flow and data flow details of codes into the original
AST to enrich the code semantics. After obtaining the semantically
enhanced AST (SE-AST), we treat it as a social network and build a
network-based triads model to process the tree structures. A type of
triads describes a type of relationship among three nodes within a
network, and it can well represent the nature of node’s relationships.
In our approach, we extract 10 types of triads and leverage them to
complete the model building. By this, we can achieve scalable tree
analysis while maintaining the program semantics.

To solve the second challenge, we compute the similarity scores
of each type of triads and use them to train a code clone detec-
tor. Specifically, we first use the built triads model to divide all
triads into different groups according to their corresponding node
types. After completing the triads grouping, we then extract the
similarity of all groups between two methods and leverage them
to construct feature vectors. These vectors will be used to train a
machine learning classifier for code clone detection. By this, we
can achieve effective semantic code clone analysis.

We implement a prototype system namely Tritor and conduct
comparative experiments with other nine state-of-the-art code
clone detection systems on two widely used datasets, Google Code
Jam (GCJ) [1] and BigCloneBench (BCB) [2, 50]. The nine code clone
detection systems include two token-based methods (i.e., Sourcer-
erCC [47] and RtvNN [56]), four tree-based methods (i.e., Deckard
[28], ASTNN [60], TBCNN [41], and CDLH [55]), and three graph-
based methods (i.e., SCDetector [58], DeepSim [61], and FCCA [25]).
Experimental results show that our system not only has good de-
tection performance but also has ideal scalability. Although it takes
more time than the token-based approach (i.e., SourcererCC), it is
much faster than other tree-based and graph-based techniques. For
example, compared to another recent state-of-the-art tree-based
code clone detector (i.e., ASTNN ), Tritor only requires 487 seconds

to accomplish the analysis on one million code pairs while ASTNN
consumes about 18,990 seconds.

Overall, our contributions to this paper are as follows:
• We extract the semantically enhanced AST to maintain the
program details and build a novel social network-based triads
model to represent the tree details.
• We implement a prototype system namely Tritor [9] by us-
ing the built model to construct feature vectors and train a
semantic code clone detector.
• We evaluate Tritor with other nine tools on the GCJ and BCB
datasets. The experimental results show that Tritor has great
detection performance and strong scalability on semantic
code clone analysis.

2 DEFINITIONS AND PRELIMINARY STUDY
2.1 Definitions
We first give some formal definitions of the terms we used in the
paper.
2.1.1 Clone Types. Code cloning can be classified into four types
according to the degree of similarity. In our paper, we use the
following definitions of code cloning types [12, 45]:
• Type-1 (textual similarity): Identical code fragments, except
for different white-space, layouts, and comments.
• Type-2 (lexical similarity): Identical code fragments, except
for differences in identifier names and lexical values, in addition
to the differences in Type-1 clones.
• Type-3 (syntactic similarity): Syntactically similar code snip-
pets that differ at the statement level. In addition to Type-1 and
Type-2 clone differences, the fragments have statements added,
modified, and/or removed with respect to each other.
• Type-4 (semantically similarity): Syntactically dissimilar code
fragments that implement the same functionality.

2.1.2 Triads. In the field of social networks, triad is a census
algorithm for networks and represents the 16 relationships between
three nodes in the absence of cyclic relationships, which can well
represent the properties of the relationship between nodes [10].
Therefore, in our paper, Triad means triples of three nodes. As
illustrated in Figure 1, according to the relationship between the
three nodes, Triads are divided into 16 categories.

1-003 2-012 3-102 4-021D

5-021U 6-021C 7-111D 8-111U

9-030T 10-030C 11-201 12-120D

13-120U 14-120C 15-210 16-300

1-003 2-012 3-102 4-021D 5-021U 6-021C 7-111D 8-111U

9-030T 10-030C 11-201 12-120D 13-120U 14-120C 15-210 16-300

Figure 1: 16 categories of triads in a social network

2.1.3 Jaccard Similarity. The Jaccard similarity coefficient, also
known as the Jaccard index, is used to compare the similarity be-
tween finite sample sets. Given two sets 𝐴 and 𝐵, the Jaccard index
is defined as the ratio of the size of the intersection of 𝐴 and 𝐵 to
the size of the union set. It is calculated as:

𝐽 (𝐴, 𝐵) = |𝐴 ∩ 𝐵 ||𝐴 ∪ 𝐵 | =
|𝐴 ∩ 𝐵 |

|𝐴| + |𝐵 | − |𝐴 ∩ 𝐵 | (1)
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2.2 Preliminary Study
Triads are widely used in the analysis of social networks, and have a
wide range of applications in fields like network structure analysis
[11], population census [14], and social systems analysis [18].

For code clone detection, AST is a type of intermediate represen-
tation of code, and its structure can reflect the syntactic information
of the code well. Since AST extraction does not require compila-
tion, it is more lightweight and often used in code clone detection
compared to program dependency graph (PDG) and control flow
graph (CFG). Methods that implement different functionalities have
different AST structures, while methods with the same function-
alities have similar AST structures. However, no researchers have
attempted to apply triads to the code clone detection field to analyse
the structure of AST. Therefore, we do not know whether triads are
suitable for code clone detection or not. To answer the question,
we conduct a preliminary study to figure out whether triads can
reflect the structural information of AST, resulting in a significant
difference between clone pairs and non-clone pairs.
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Figure 2: Jaccard similarity of clone pairs and non-clone pairs

Specifically, we perform experiments on 270,000 clone pairs and
270,000 non-clone pairs on the GCJ dataset. At first, we conduct
static analysis to obtain the ASTs of all methods. The nodes in the
AST are regarded as nodes of the social network, and the relation-
ship between the three connected nodes is extracted to obtain triads.
There are only two types of relationships between three nodes in
AST since AST is a tree structure. One is that one node points to
the other two nodes (i.e., 4-021D in Figure 1), and the other is that
one node points to the second node, which in turn points to the
third node (i.e., 6-021C in Figure 1). For a code pair, we compute
the Jaccard similarity between the triads of two methods. First, we
extract all the triads in the two methods separately and compute the
concatenation and intersection of the two sets. The set consisting
of triads shared by two methods is considered to be the intersection,
and the set consisting of all triads occurring in both methods is
considered to be the concatenation. Then we calculate the value
of the intersection divided by the concatenation as the result of
computing Jaccard similarity. After obtaining all similarities, we
apply statistical analysis to study whether the similarity is higher
for clone pairs and lower for non-clone pairs. In detail, we conduct
experiments on similarity differences between clone and non-clone
pairs in three cases: 4-021D, 6-021C, and all of these two types.

Through the results in Figure 2, we observe three findings:

• First, the similarity between clone and non-clone pairs has obvi-
ous differences, which indicates that triads can accurately reflect
the structural information of AST, making higher similarities of
clone pairs and lower similarities of non-clone pairs.
• Second, the average similarity of both clone and non-clone pairs
is not high, neither exceeding 70%. So, we cannot directly extract
triads and simply calculate the similarity based on the number
to perform semantic code clone detection.
• Third, the discrepancy of the similarities between clone and
non-clone pairs obtained by different types of triads differs.
According to these findings, we know that triads can reflect the

differences between clone and non-clone code pairs, but cannot
be directly used to detect semantic code clones. However, differ-
ent types of triads have different similarities. If we can learn the
differences between various categories of triads and find the most
representative triad in detecting semantic clones, it will be a great
candidate to use triads for semantic clone analysis. In this paper,
we propose to use machine learning to learn the differences and
design a novel triads-based semantic code clone detector.
3 SYSTEM
In this section, we present our proposed system namely Tritor.

AST Generation 
and Enhancement

Triads 
Extraction

Feature 
Extraction Classification

AST Generation 
and Enhancement

Triads 
Extraction

Program1

Program2

1 (Clone)
0 (Not Clone)

Input Tritor: Detecting Semantic Code Clones by Building Social Network-based Triads Model Output
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Program1
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Input A Social Network Triads-based Semantic Code Clone Detector Output
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1 
(Clone)

0 
(Not Clone)

Figure 3: System architecture of Tritor

3.1 Overview
Figure 3 shows that Tritor consists of AST Generation and Enhance-
ment, Triads Extraction, Feature Extraction, and Classification.
• AST Generation and Enhancement: The purpose of this phase
is to perform static analysis to extract the AST and add the con-
trol flow and data flow details to the AST to enrich the semantic
information incorporated in the AST. The input of this phase is
a method and the output is a SE-AST.
• Triads Extraction: The purpose of this phase is to partition the
SE-AST into different types of triads and group them according
to the node types. The input is an SE-AST and the output is the
number of various triads in each group.
• Feature Extraction: The purpose of this phase is to extract the
similarity scores of triads in the same group one by one. The
input of this phase is the triads of two methods and the output
is the similarity vector.
• Classification: The purpose of this phase is to determinewhether
two methods are a clone based on the machine learning model
trained in advance. The input of this phase is a similarity vector
of two methods and the output is whether they are a clone pair.

3.2 AST Generation and Enhancement
In this paper, our objective is to detect semantic clones between
programs. Therefore, we need to extract the semantic information
of the program and use it as the basis for judging whether they
are clones. AST is the common intermediate representation that
contains syntactic information about the code. So, we perform static
analysis on the method to obtain the ASTs of the methods. There are
different static analysis tools for different programming languages
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}

Figure 4: The semantically enhanced AST of the code on the left

that can be utilized. For example, if the programming language is
Java, we can use Javalang [8] to extract the ASTs of the methods.

AST is rich in syntactic information but lacks semantic infor-
mation. By adding data flow and control flow to the original AST,
we can enrich the semantics contained in AST [54]. To this end,
we adopt the method of flow-augmented abstract syntax tree in a
recent work [54] to maintain the program semantics. However, we
do not add all the edges but make trade-offs according to our needs.

For data flow, we add NextToken and NextUse edges in addition
to the Child edges that are already in the AST. The NextToken edge
concatenates the terminal nodes that belong to the same statement
in token order, which reflects the sequence of tokens well. The
NextUse edge connects the node where the variable is located to the
next occurrence of that variable, which reflects the information of
the data flow. We do not add the Parent and NextSib edges because
the Child edge is sufficient to represent the relationship between
parent and child nodes for our purposes. Moreover, the relation-
ship between sibling nodes contained in the NextSib edge does not
have great significance for the increase of semantic information.
Therefore, we do not add these two edges.
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Figure 5: Categorize the triads of one subtree in Figure 4

For control flow, we add Sequential Execution, If statements,While,
and For loops. Sequential Execution adds edges between the children
nodes of a BlockStatement, pointing from the previous child node
to the subsequent child node, to indicate the sequential execution
of the statement. The If edge adds a CondTrue edge between the
conditional statement and the statement when the condition is true,
and a CondFalse edge between the conditional statement and the
statement when the condition is false (if there is no else statement, it

is not added). BothWhile and For edges add two bidirectional edges
between the condition and the body. Figure 4 shows a graphical
representation of the SE-AST corresponding to the code on the left
that is generated by javalang.

Algorithm 1 Triads Extraction

Input: 𝑔𝑟𝑎𝑝ℎ, the SE-AST to be analysed.
Output:𝑇𝑟𝑖𝑎𝑑𝑠𝐿𝑖𝑠𝑡 , all triads included in the SE-AST.
1: 𝑇𝑟𝑖𝑎𝑑𝑠𝐿𝑖𝑠𝑡 ← []
2: for each node: 𝑣 in 𝑔𝑟𝑎𝑝ℎ do
3: 𝑣_𝑛𝑏𝑟𝑠 ← Pred_nodes(𝑣) + Succ_nodes(𝑣)
4: for each node: 𝑢 in 𝑣_𝑛𝑏𝑟𝑠 do
5: if 𝑖𝑑 [𝑢 ] > 𝑖𝑑 [𝑣 ] then
6: 𝑢_𝑛𝑏𝑟𝑠 ← Pred_nodes(𝑢) + Succ_nodes(𝑢)
7: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← 𝑣_𝑛𝑏𝑟𝑠 +𝑢_𝑛𝑏𝑟𝑠
8: for each node: 𝑤 in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do
9: if 𝑖𝑑 [𝑢 ] < 𝑖𝑑 [𝑤 ] or (𝑖𝑑 [𝑣 ] < 𝑖𝑑 [𝑤 ] < 𝑖𝑑 [𝑢 ] and v not

in Pred_nodes(𝑤) and v not in Succ_nodes(𝑤)) then
10: Add the (𝑢, 𝑣, 𝑤) into the𝑇𝑟𝑖𝑎𝑑𝑠𝐿𝑖𝑠𝑡
11: end if
12: end for
13: end if
14: end for
15: end for

3.3 Triads Extraction
After semantic enhancement of the AST, relationships other than
parent-child relationships are found between nodes. In the prelimi-
nary study section, we mention that only two types of triads could
be extracted from the AST: 4-021D and 6-021C. However, with the
enrichment of node relationships in SE-AST (i.e., the variety of
edges increases), it is possible that triads types other than 4-021D
and 6-021C could be presented in the SE-AST. In order to determine
the types of triads used in the model, we calculate the SE-ASTs
generated by all files in our open source projects, where the open
source projects come from the top 10,000 java projects in GitHub
in terms of criticality score. This score can be used to describe the
impact and importance of an open source project [4]. Excluding the
first three cases where there is no connection between the nodes,
we find that there are a total of 10 categories of triads (i.e., 4-021D,
5-021U, 6-021C, 7-111D, 8-111U, 9-030T, 10-030C, 12-120D, 13-120U,
and 14-120C). They are marked in red in Figure 1. Therefore, we
use these 10 types in our model. If we treat the resulting SE-AST
as a network, the similarity between two networks can be mea-
sured by analyzing the relationships between nodes in the network.
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Therefore, compared to the traditional graph matching method
to compare the similarity of two graphs, we count all the triads
appearing in the SE-AST and classify them.

The extraction of triads from SE-AST will be divided into three
steps: First, as described in Algorithm 1, we traverse each node 𝑣 in
a SE-AST from top to bottom, finding the first-level neighbor nodes
𝑣_𝑛𝑏𝑟𝑠 using the edges it connects as indices (line 3 in Algorithm
1), and then using these nodes in turn as criteria to find the second-
level neighbor nodes 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (line 4-7 in Algorithm 1). In this
way, we get all the triads from SE-AST. Line 5 and line 9 are designed
to avoid duplicate searches by a criterion that only nodes with an id
greater than the benchmark node can be used as neighboring nodes.
Pred_nodes and Succ_nodes are methods to get the predecessor
nodes and successor nodes of a node. For the same tree, the triads
obtained by different traversal methods are the same, so using
different traversal methods will not affect triads extraction.

Second, as similarity can only be calculated between triads of the
same category, so we count all the triads that appear in each SE-AST
and categorize them into one of the ten categories. As shown in
Figure 5, the top left part of the picture is a part of Figure 4. For this
subtree, we can get a total of five triads (i.e., the part in the dashed
box of Figure 5), and we can see that these five triads belong to
three categories, namely 4-021D, 5-021U, and 6-021C.
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Figure 6: Group the triads of type 6-021C in Figure 5

Finally, different triads in each category may have completely
different nodes. If we calculate the similarity between triads cate-
gories directly (as we did in our preliminary study), it may not
give the ideal similarity score. Therefore, for each triads, they are
grouped according to the types of the three nodes in the triads. As
we can see in Figure 4, two kinds of nodes appear in the AST, one
being non-leaf nodes and the other being leaf nodes. The types of
non-leaf nodes can represent the code syntax of a method while the
leaf nodes of an AST are tokens obtained by parsing the source code
of a method. For the non-leaf nodes, to obtain a determinate result
of node types, we extract the ASTs of all methods in our open source
projects which consists of more than 300M lines of code to analyze
the code syntax types from these trees. Eventually, we obtain a total
of 57 code syntax types. For the leaf nodes (i.e., tokens) in ASTs,
we cannot extract an exact number. In order for these tokens to
be assigned to a fixed group, we intend to represent them by their
token types. For example, the token “int” is replaced by its type
“BasicType”. The blue texts in Figure 4 are leaf nodes represented
by token types. We still choose the open source projects for the
collection of token types as we did for the analysis of non-leaf
nodes. After our statistical analysis, we find that 14 types appear

in most of ASTs. In fact, the proportion of these 14 types accounts
for more than 99.5% of all nodes. Therefore, we choose these 14
types as the final token types and add a Null type to represent other
types. In final, we collect a total of 72 types which consists of 57
code syntax types and 15 token types.

For each triads, we group them according to the types of the
three nodes in the triads. For example, the three triads of type
6-021C in Figure 5 can belong to three groups according to their
node types: MethodDeclaration, Modifier, and BasicType. For the
first triads of 6-021C in Figure 6, since the node types consist of
MethodDeclaration and Modifier, it belongs to these two groups,
respectively. Since there are a total of 72 node types, one type of
triads will contain at most 72 groups. After these three steps, all
triads contained in each SE-AST will be assigned to specific groups.
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Figure 7: Obtain the similarity vector of two methods

3.4 Feature Extraction
After obtaining the specific grouping information, we obtain their
similarity vectors by sequentially calculating the Jaccard index of
the groups corresponding to the two methods. As shown in Figure
7, after the previous steps, all triads in the SE-AST are divided into
different categories according to triads types, and the triads in each
category are divided into different groups according to the types of
nodes. We then calculate the Jaccard index between the correspond-
ing groups, and each group will output a similarity score. After
collecting all similarity results, we concatenate them to construct
a feature vector. After our statistical analysis on our open source
projects, the number of groups contained in each type of triad can
be obtained, with 4-021D containing 67 groups, 5-021U contain-
ing 71 groups, 6-021C containing 67 groups, 7-111D containing 18
groups, 8-111U containing 41 groups, 9-030T containing 49 groups,
10-030C containing two groups, 12-120D containing 19 groups,
13-120U containing seven groups, and 14-120C containing seven
groups. As a result, the feature vector has a total of 338 dimensions.
3.5 Classification
Machine learning divides the knowledge structure by simulating
the human learning method of the existing content, which effec-
tively improves the learning efficiency. Since it can accurately and
efficiently predict once trained, it has both accuracy and scalability
[49]. In our paper, we choose certain widely used algorithms (i.e.,
k-nearest neighbor (KNN) [16], random forest (RF) [13], decision tree
(DT) [43], adaptiva boosting (Adaboost) [20], and gradient boosting
decision tree (GDBT) [21]) to commence our evaluations.

We perform feature extraction on all clone pairs and non-clone
pairs to obtain similarity vectors. All the similarity vectors with
labels are put into a machine learning model for training, and the
obtained model is saved. Two methods to be detected are processed
in the above three phases and their similarity vector will be fed into
the model to obtain an output of zero (non-clone) or one (clone).
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4 EXPERIMENTS
In this section, we discuss the following five questions:
• RQ1: What is the detection effectiveness of Tritor when using dif-
ferent machine learning algorithms?
• RQ2: Can Tritor outperform other code clone detectors?
• RQ3: Does semantic enhancement on AST improve clone detection?
• RQ4: What is the runtime overhead of Tritor when detecting clones?
• RQ5: Why is Tritor effective in detecting semantic code clones?

4.1 Experimental Settings
4.1.1 Datasets. Similar to previous work, we conduct experiments
on two datasets: GCJ and BCB. The programs in the GCJ dataset
[61] are derived from an online programming competition held by
Google and contain 1,669 projects from 12 different competition
problems which are written by different programmers. So projects
of the same competing problem are almost syntactically different
but semantically similar, and we treat them as clone pairs. Projects
that solve different problems are not similar, and we regard them
as non-clone pairs. As a result, we obtain 275,570 semantic clone
pairs and 1,116,376 non-clone pairs. We randomly select 270,000
pairs from all non-clone pairs to balance our dataset.

The second dataset is the popular large code clone benchmark
BCB dataset [2], which contains over eight million labeled clone
pairs from 25,000 systems. The reason why we choose the BCB
dataset is that the code granularity of their clone pairs is function-
level, which is in line with the detection granularity of Tritor. More-
over, the clone pairs in BCB are assigned different clone types to
facilitate our observation of the effectiveness in detecting different
types of clones. However, due to the unclear boundary between
Type-3 and Type-4, it is further divided into three subclasses by
similarity scores measured by line-level and token-level as follows:
i) Strongly Type-3 (ST3) with the similarity between 70-100%, ii)
Moderately Type-3 (MT3) with the similarity between 50-70%, and
iii) Weakly Type-3/Type-4 (WT3/T4) with the similarity between 0-
50%. We randomly select 270,000 clone pairs from the eight million
clone pairs since the number of non-clone code pairs is 270,000.
The clone pairs we select include 48,116 clone pairs of Type-1 (T1),
4,234 clone pairs of Type-2 (T2), 21,395 clone pairs of ST3, 86,341
clone pairs of MT3, and 109,914 clone pairs of WT3/T4.
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Figure 8: The F1 scores by using different depth parameters of
different machine learning algorithms

4.1.2 Implementations. We use Javalang [8] to obtain AST in
the AST generation and enhancement phase as the programming
language of our dataset is Java. In the classification phase, we use
Sklearn [7] to implement KNN, RF, DT, Adaboost, and GDBT classi-
fication algorithms. We run all experiments on a server with 8 cores

of CPU and a GTX 1080 GPU. For recording the experimental effects,
we adopt ten-fold cross-validations for training and validation.
4.1.3 Comparative Systems. In order to make our evaluation more
comprehensive, we select some representative work from a large
number of code clone detection tools to conduct comparative exper-
iments. Specifically, we select two token-based code clone detectors
(i.e., SourcererCC [47] and RtvNN [56]), four tree-based methods (i.e.,
Deckard [28], ASTNN [60], TBCNN [41], and CDLH [55]), and three
graph-based methods (i.e., SCDetector [58], DeepSim [61], and FCCA
[25]). SourcererCC [47] is a popular token-based code clone detector
which can scale to big code. RtvNN [56] is a popular RNN-based
code clone detector which encodes source code tokens and ASTs.
Deckard [28] is a popular AST-based code clone detector which clus-
ters the vectors of AST subtree. ASTNN [60] is a popular AST-based
code clone detector which splits a large tree into certain statement
trees and trains an RNN model to detect code clones. TBCNN [41]
is a popular AST-based clone detection detector by using a convo-
lutional neural network. CDLH [55] is a popular AST-based clone
detection tool with a long short-term memory network. SCDetector
[58] is a popular graph-based code clone detector which extracts
the control flow graph of a method and applies centrality analysis
to detect code clones. DeepSim [61] is an advanced graph-based
clone detection tool by using a deep neural network. FCCA [25] is
an advanced graph-based clone detection tool by using hybrid code
representations with high accuracy. For the parameter settings [9]
of these tools, we select the parameters reported in their published
papers since they can perform best with these parameters.
4.1.4 Metrics. To measure the detection effectiveness of all detec-
tors, we adopt widely used metrics such as Precision (P), Recall (R),
and F-measure (F1). These metrics are described on our website [9].
4.2 RQ1: Comparison of Different Methods
To achieve higher precision and recall in detecting semantic clones,
we measure the classification performance of different machine
learning algorithms and select the best one for subsequent experi-
ments. We choose five commonly used machine learning algorithms
(i.e., KNN, RF, DT, Adaboost, and GDBT) for training and testing.
They are popular algorithms that are often used in classification
problems and can achieve good results in previous work [24, 57].
For KNN, there has been a lot of work demonstrating that neighbor
parameter selects one and three are the most widely used and can
achieve good results [24, 57]. Therefore, we first select the parame-
ters that allow other machine learning models to obtain the best
results. The F1 scores achieved by RF, DT, Adaboost, and GBDT
machine learning algorithms on the BCB and GCJ datasets with
different depth parameters are presented in Figure 8. We can see
that RF, Adaboost, and GDBT achieve the highest F1 scores with
depth parameters of 64, 8, and 16, respectively. However, DT does
not have the same parameter value for achieving the highest F1
score on both datasets. Since DT is more stable when the parameter
is 32, we choose 32 as the parameter for DT. Therefore, the neighbor
parameters of KNN are selected as one and three because they are
the most commonly used. The depth parameter of RF, DT, Adaboost,
and GDBT is selected as 64, 32, 8, and 16 respectively, as they can
achieve the highest F1 scores.

Observing the F1 score, precision, and recall shown in Figure 9,
we see that the GDBT algorithm has the best results on the BCB
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Figure 9: F1 score, Precision, and Recall of Tritor using different
machine learning classification methods

dataset, with RF algorithm being the next best. For example, the
GDBT algorithm and RF algorithm have an F1 score of 98.57% and
97.97%, while the other four scores are 96.74%, 96.00%, 95.33%, and
97.84% on the BCB dataset. However the detection effectiveness
of all models decreases on GCJ dataset, some algorithms such as
DT decrease even more. This is due to the fact that DT does not
handle more complex semantic clone classification very well. As an
improvement to DT, RF algorithm is relatively outstanding. Because
RF consists of multiple decision trees actually. A test sample can
obtain the most probable classification among the classification
results of each decision tree in the random forest. GDBT has the
best results, but the time overhead of GDBT is much higher than
that of RF, for instance, 19.8 times higher on BCB. So we choose
the RF algorithm for the subsequent experiments.

Summary: The difference in F1 scores between GDBT and RF is
small, but the time overhead of GDBT is much higher than that of RF,
so we choose the RF algorithm for the subsequent experiments.
4.3 RQ2: Overall Effectiveness
4.3.1 Results on Google Code Jam. First, we conduct experiments
on the GCJ dataset to evaluate the effectiveness of Tritor. As we
mentioned earlier, clone pairs on the GCJ dataset are naturally se-
mantically similar, and almost unlikely to be syntactically similar.
Therefore, we treat all similar pairs as semantic clones (i.e., Type-4
clone) and run experiments on these pairs to evaluate the effective-
ness of Tritor in detecting semantic clones. Table 1 presents the
detection results of nine comparative systems and Tritor.

Table 1: Results of clone detection on GCJ and BCB datasets

Group Method GCJ BCB
R P F1 R P F1

Token-based SourcererCC 0.11 0.43 0.17 0.07 0.98 0.14
RtvNN 0.90 0.20 0.33 0.01 0.95 0.01

Graph-based
SCDetector 0.87 0.81 0.82 0.92 0.97 0.94
DeepSim 0.82 0.71 0.76 0.98 0.97 0.98
FCCA 0.90 0.95 0.92 0.92 0.98 0.95

Tree-based

Deckard 0.44 0.45 0.44 0.06 0.93 0.12
ASTNN 0.87 0.95 0.91 0.94 0.92 0.93
TBCNN 0.89 0.91 0.90 0.81 0.90 0.85
CDLH 0.70 0.46 0.55 0.74 0.92 0.82

Our tool Tritor 0.92 0.93 0.92 0.97 0.99 0.98

For token-based approaches: SourcererCC has both low recall
and precision. This is because SourcererCC is a token-based code
clone detector, which only considers the overlapping similarity
of tokens between two methods (i.e., the ratio of the number of
identical tokens shared by two methods to the maximum number
of tokens of the two methods) and lacks the consideration of any

semantic information, so it does not perform well on a dataset
with all semantic clones like GCJ. The recall of RtvNN is high, but
the precision is low. This is because RtvNN computes a simple
Euclidean distance metric for only the tokens and ASTs of a code
by using recurrent neural networks to measure the similarity of
code pairs. However, the distances between most pairs computed
by this method do not differ significantly (i.e., only between 2.0 to
2.8). Changing the threshold can increase the precision but decrease
the recall. Therefore, RtvNN cannot have a high F1 score.

For tree-based approaches: Compared to other tree-based meth-
ods, the detection results of Deckard and CDLH are not satisfactory.
This is because Deckard uses vectors to carry syntactic information
in the parse tree, it finds the vectors’ nearest neighbors by clus-
tering, which requires the feature vectors at the root of the parse
tree to be very close. However, most code clone pairs have different
parser tree structures, leading a poor precision and recall on the
GCJ dataset. CDLH learns hash functions, structural information,
and code fragments by using an AST-based long short-term mem-
ory network. But the representations are all lexical and syntactic,
leading to low detection performance. The other two tree-based
methods ASTNN and TBCNN have a comparatively good capability
of detecting semantic clones. ASTNN splits each large AST into lots
of small sentence trees and encodes these sentence trees as vectors.
Then ASTNN selectively stores more important node information
by using BiGRU and RvNN encoders, so ASTNN has a high preci-
sion. But the segmentation of the AST may lead to some semantics
loss, which in turn results in a relatively low recall. TBCNN has
good detection results because it captures the structural features of
the AST very well by sliding the convolutional kernels. However,
one weakness of the convolutional layer is that it cannot capture
long-range contextual information. In this way, if the AST is deep
or has many nodes, the operation of converting the AST into a
binary tree exacerbates the problem of a long-term dependence on
the original semantics of the source code.

For graph-based approaches: SCDetector converts the CFG of
the method into semantic tokens with graph details and then feeds
these semantic tokens into a Siamese network to train a model to
detect code clone pairs, so SCDetector is good at detecting semantic
clones. DeepSim uses a deep learning model to learn binary ma-
trix abstracted from the variables, basic blocks of CFG, and the
relationships between them. As these representations contain code
semantics, DeepSim is proficient at detecting semantic clones. FCCA
feeds the comprehensive hybrid code representation into a deep
learning model with an attention mechanism. The combination of
structured representations (i.e., tokens) and unstructured represen-
tations (i.e., AST and CFG) enables FCCA to detect most semantic
code clones with a high degree of precision.
4.3.2 Results on BigCloneBench. In this subsection, we analyze
the effectiveness of detecting all types of clone pairs on the BCB
dataset and make a comparison with our comparative tools. Table
1 presents the detection results.

As can be seen from the performance of the results shown in
Table 1, Tritor outperforms most of the other detectors in precision
and F1 score, indicating that Tritor is also good at detecting code
clones on BCB dataset. Different from the results on GCJ, Sourcer-
erCC, Deckard, and RtvNN all have high precision and low recall.
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This is because these tools can only detect code clones that are
textually or syntactically similar. Thus, they are only able to detect
syntactically similar clone pairs (i.e., T1 and T2) in BCB, but not
semantic similarity. Moreover, we also observe that the detection
results on BCB are almost always better than those on GCJ. This is
because the clone pairs in the BCB dataset are constructed by ex-
perts deliberately. Apart fromminor differences, the code structures
are very similar and can be easily detected. On the other hand, the
clone pairs in the GCJ dataset are answers given by different pro-
grammers to the same competition question and have a completely
different code structure, which makes them difficult to detect.

Table 2: F1 for each clone type on BCB
Group Method T1 T2 ST3 MT3 T4

Token-based SourcererCC 1.00 1.00 0.65 0.20 0.02
RtvNN 1.00 0.97 0.6 0.03 0.00

Graph-based
SCDetector 1.00 1.00 0.97 0.97 0.94
DeepSim 0.99 0.99 0.99 0.98 0.95
FCCA 1.00 1.00 0.99 0.97 0.95

Tree-based

Deckard 0.73 0.71 0.54 0.21 0.02
ASTNN 1.00 1.00 0.99 0.98 0.92
TBCNN 1.00 1.00 0.93 0.80 0.86
CDLH 1.00 1.00 0.94 0.88 0.82

Our tool Tritor 1.00 1.00 1.00 0.99 0.95

Next, we analyze how the clone detector performs in detecting
each of the five types of clones and compare it to the advanced
code clone detection technique in terms of F1 scores. We select
the number of clone pairs and non-clone pairs for each type as
described in the experimental dataset in subsection 4.1. Table 2
shows the F1 scores for Tritor and nine comparative systems for
detecting five types of code clones. We can see that Tritor is supe-
rior to other clone detectors in detecting each type of code clones.
Particularly when detecting WT3/T4, the F1 scores of SourcererCC,
RtvNN, Deckard, TBCNN, and CDLH are 2%, 0%, 2%, 86%, and 82%
respectively, while Tritor can reach an F1 score of 95%. This demon-
strates that Tritor can detect semantic clones comprehensively and
precisely. SCDetector, DeepSim, FCCA, and ASTNN also perform
well in detecting WT3/T4 clones. However, they all require GPUs
to complete the complex deep neural network training. For Tritor,
we only need CPU to train simple machine learning models for
classification, which means that Tritor requires less computational
resources than SCDetector, DeepSim, FCCA, and ASTNN.

The reason for Tritor’s good ability to detect semantic clones
lies in three aspects. First, the semantically enhanced AST contains
more semantic information, thus enhancing the Tritor’s ability to
detect semantic clones. Second, we regard the enhanced AST as a
social network, and measure the similarity between two methods
by analyzing the relationship among three nodes in the network,
avoiding the high overheads associated with tree matching while
preserving the details of the tree structure. Thirdly, instead of de-
tecting code clones directly by threshold after obtaining similarity,
our method puts the similarity vector into a machine learning clas-
sifier for clone detection. The use of machine learning algorithms
allows our approach to be highly accurate and scalable.

Summary:Compared to most code clone detectors, Tritor performs
well in detecting code clones on both GCJ dataset and BCB dataset,
especially in detecting semantic clones. Moreover, Tritor only needs

CPU for classification, which means that Tritor has a much faster
speed than those graph-based approaches.
4.4 RQ3: The Significance of SE-AST
To check whether the augmented data flow and control flow on
AST can contribute to Tritor or not, we perform an ablation experi-
ment. In the experiment, we perform the same feature extraction
operation on both the original AST and the SE-AST with the added
data flow and control flow, then they are both fed into the RF ma-
chine learning algorithm for training and testing. We record their
respective detection results in Table 3.

Table 3: Recall, Precision, and F1 of original AST and semantically
enhanced AST in detecting clones

Dataset AST R P F1

GCJ SE-AST 0.92 0.93 0.92
Original AST 0.89 0.90 0.90

BCB_ALL SE-AST 0.97 0.99 0.98
Original AST 0.96 0.98 0.97

BCB_WT3/T4 SE-AST 0.92 0.99 0.95
Original AST 0.89 0.98 0.93

Table 3 illustrates the recall, precision, and F1 scores on the two
datasets, respectively. For BCB dataset, we not only record the com-
parative results when analyzing the whole dataset (i.e., BCB_ALL),
but also collect the results when detecting semantic code clones
(i.e., BCB_WT3/T4). It can be seen that SE-AST has better results in
detecting clones on both BCB and GCJ datasets. For example, on
the GCJ dataset, when we use the original AST for clone detection,
the F1 score is only 90%. After enhancing the AST, the F1 score
can increase to 92%. The main reason for this improvement is that
ASTs contain mainly syntactic information about the program, and
the added data flow and control flow enrich the semantic informa-
tion of the AST to a large extent. Since semantic clones are almost
syntactically different, their ASTs are likely to be different. The
semantically enhanced AST can contain the same semantic infor-
mation in the Type-4 clones, which is more similar. The second
reason is that there are only two kinds of triads 4-021D and 6-021C
in Figure 1 in the original AST, while the semantically enhanced
AST contains 10 kinds of triads. The increase in the types of triads
also allows the similarity of the two graphs to be measured from
more perspectives. The response in the dimension of the feature
is that the original AST obtains an 112-dimensional feature vector,
while the semantically enhanced AST obtains a 338-dimensional
feature vector. The increase of this dimension can measure similar-
ity from more angles, which improves the effect of clone detection
to a certain extent.

Summary: SE-AST has better results in detecting clones on both
BCB and GCJ datasets. The two reasons for this improvement are that
the added edges enrich the semantic information of the AST to a large
extent and the increase in the types of triads also allows the similarity
of the two graphs to be measured from more perspectives.
4.5 RQ4: Scalability
In this subsection, we run all experiments to compare the running
overhead of Tritor on a server with an 8 cores CPU and a GTX
1080 GPU to test its scalability. Similar to previous work [24, 47,
57, 58, 62], we randomly select one million code pairs from the
GCJ dataset for the experiment. A total of 10 random selections are
made, recording the time overhead each time and using the average
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as the final time overhead. The time overhead for each method is
presented in Table 4, including training time and prediction time.
For Tritor, the training time consists of the processing time for the
preliminary steps and the time to train the model.

Table 4: Runtime on analyzing one million code pairs
Group Method Training Prediction

Token-based SourcererCC - 16s
RtvNN 5,206s 35s

Graph-based
SCDetector 2,937s 139s
DeepSim 13,545s 34s
FCCA 56,769s 91s

Tree-based

Deckard - 72s
ASTNN 16,096s 2,894s
TBCNN 41,168s 86s
CDLH 45,317s 90s

Our tool Tritor 467s 20s

For clone detectors that are not based on deep learning algo-
rithms (i.e., SourcererCC and Deckard), their prediction time is zero,
and the prediction time is the time for all processes to detect clones.
For other seven comparative systems, their training phases require
GPUs as they are deep learning-based methods. However, even
though they have GPUs to accelerate the training phase and the
testing phase, their time overheads are still higher than that of Tritor
using only CPUs. Such results demonstrate that Tritor is more scal-
able than RtvNN, SCDetector, DeepSim, FCCA, ASTNN, TBCNN, and
CDLH. For ASTNN, which is also tree-based and has good capability
for code clone detection, it takes a total of 18,990 seconds (16,096
seconds for training and 2,894 seconds for testing) to complete
the entire training and testing phase. While Tritor consumes only
487 seconds (467 seconds for training and 20 seconds for testing)
to complete the whole procedure. Overall, Tritor is about 39 (i.e.,
(16, 096 + 2, 894)/(467 + 20) = 38.99) times faster than ASTNN.

Summary: Tritor spends more time than SourcererCC because
of the consideration of AST construction. However, because of social
network-based triads model and the use of a machine learning al-
gorithm, Tritor is more scalable than RtvNN, SCDetector, DeepSim,
FCCA, ASTNN, TBCNN, and CDLH.
4.6 RQ5: Interpretability
To explore why Tritor is effective in detecting semantic clones, we
extract the importance of each feature of the similarity vector. Due
to the interpretability of the RF algorithm, we extract the weight of
each feature in the vector and sort them according to the weight, so
that we can clarify which features are more important in detecting
semantic code clones. Due to space limitations, we only show the
top 20 features in the 338-dimensional vector obtained on the GCJ
dataset in Table 5.

By observing the ranking of feature importance, we find two
obvious phenomenons: The first is that different types of triads
have different levels of importance. According to our observations,
only Type 6-021C, Type 5-021U, Type 4-021D, Type 8-111U, and
Type 9-030T appear in the top 20 features in terms of importance,
and the number of occurrences is uneven. For example, Type 6-
021C appears most frequently (ten times), followed by Type 5-
021U, which appears four times. This phenomenon suggests that
the structure of these five types of triads is more important for
preserving program semantics in SE-AST. This is because the triads
of Type 6-021C and Type 4-021D are typical structures that already

Table 5: Top 20 features of Tritor in detecting semantic clones
R Feature Name W% R Feature Name W%
1 BinaryOperation_6 3.31 11 Operator_5 1.81
2 DecimalInteger_6 2.97 12 MemberReference_4 1.79
3 Literal_6 2.97 13 MemberReference_5 1.77
4 Operator_6 2.63 14 BlockStatement_9 1.70
5 DecimalInteger_5 2.44 15 BinaryOperation_8 1.69
6 MemberReference_6 2.43 16 ForControl_4 1.68
7 StatementExpression_6 2.27 17 ForStatement_6 1.66
8 BlockStatement_6 2.11 18 ForStatement_8 1.65
9 BasicType_6 2.07 19 ForControl_6 1.59
10 BinaryOperation_4 1.94 20 BasicType_5 1.58

exist in the AST, these two structures support the entire framework
of the AST and therefore carry a large number of program details
contained in the AST. The triads of Type 5-021U usually contain
additional data flow edges. DecimalInteger_5-021U and Operator_5-
021U, which occur in Table 5, are usually the type of leaf node and
contain additional NextToken edges, indicating that the addition of
data flow is significant in detecting semantic clones. The triads of
Type 8-111U contain the two bidirectional edges we add between
the conditions and the body ofWhile and For loops, and the triads of
Type 9-030T usually contain the edgeswe add between the subnodes
of a BlockStatement node to indicate the sequential execution of
the statement. The high importance of these two types of triads
indicates that the addition of edges to these two types of control
flow plays an important role in detecting semantic clones.

The second phenomenon is that three node types are more im-
portant among the top 20 weighted features, with BinaryOperation
and MemberReference appearing three times each, and DecimalInte-
ger appearing twice in the top five features. This suggests that these
three node types are particularly important for detecting semantic
code clones because they can well reflect the semantic information
of the code. BinaryOperation represents a binary operation (e.g.,
“i>=0”), which is usually found in conditional judgments such as If
statements,While and For conditional judgment statements. The
functionalities implemented by these three statements are impor-
tant for the embodiment of semantics in the methods, and therefore
BinaryOperation has a high importance.MemberReference is usually
linked to the Identifier node type. It is associated with the use of
variables and carries information about the data flow to a large ex-
tent. Therefore, it plays an important role in detecting code clones.
DecimalInteger is a kind of constant. It is possible to be in the posi-
tion of the leaf node, so it will be related to the data flow. It may also
appear in statements such as assignment statements or conditional
judgment statements which are related to control flow. Therefore,
having both data flow and control flow information is extremely
important for detecting semantic clones, allowing DecimalInteger
to appear twice in the top five ranking of importance.

To give a more visual representation of the effectiveness of these
features, we reorder the similarity vectors according to the impor-
tance of the features from highest to lowest. Then we sequentially
take the top n (n from 1 to 338) features, and record the F1 scores for
vectors of different lengths in Figure 10. It can be seen that when
only one feature of highest importance is used for classification,
the F1 score can reach 0.68. As the number of features continues
to increase, the detection effect is getting better and better, and
when the number of features reaches around 100 (less than 1/3), the
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Figure 10: F1 scores of Tritor when selecting different numbers of
features

F1 score can already be maintained at a relatively high level. This
phenomenon indicates that the first 100 features can well meet the
needs of clone detection. In the future, we plan to apply different
feature selection algorithms to select the most important features
to improve scalability without compromising accuracy.

Similar to the distribution of the top 20 weighted features, we
find that the distribution of the top 100 weighted features is also
consistent with the two phenomena described above. First, the
importance of triads types is also in accordance with that in the top
20 in terms of weight. Type 6-021C and Type 4-021D appear most
frequently in the top 100 weighted features with 30 occurrences.
Type 5-021U, Type 8-111U, and Type 9-030T appear 13, 11, and 12
times, respectively, which is relatively balanced. Moreover, we also
find Type 12-120D, which does not appear in the top 20 weighted
features, appearing four times among the top 100 weighted features.
Similar to Type 8-111U, the structure of Type 12-120D comes from
the addition of two bidirectional edges between the condition and
the body of While and For loops. The reason that Type 12-120D is
not as important as Type 8-111U is that the structure of Type 12-
120D only includes the parent node that points to both the condition
node and the body node, but not the subsequent nodes of them.
As a result, the semantic information in the subsequent nodes is
not included in the Type 12-120D, so the Type 12-120D contains
relatively little semantic information and is less important.

Second, the importance of node type is also consistent with the
top 20 weighted features. BinaryOperation and MemberReference
continue to be of high importance with five occurrences, respec-
tively. Besides them, ForStatement and BlockStatement also appear
five times, respectively. These two node types also appear quite
frequently in the top 20 weighted features. This is because ForState-
ment embodies control flow information, and the nodes and edges
it connects to reflect semantic information explicitly. BlockState-
ment adds sequential execution edges between its child nodes, also
reflecting control flow information and enhancing semantic entail-
ment. In contrast to the fact that DecimalInteger appears twice in
the top five features, DecimalInteger appears only three times in the
top 100 weighted features, not continuing its previous importance.
We suspect that this is because DecimalInteger is usually a leaf
node, and leaf nodes are the edges of the tree, which are inherently
limited in frequency of occurrence. As a result, DecimalInteger does
not appear frequently in the top 100 weighted features.

Summary: According to the features’ importance, the top 100
important features can well meet the needs of clone detection. Some
specific types of triads and nodes have a higher degree of impor-
tance. This phenomenon applies commonly to features in the top 20
in importance as well as to features in the top 100 in importance.

5 DISCUSSIONS
5.1 Threats to Validity
The first threat comes from the dataset. The code pairs in the BCB
dataset are constructed by experts deliberately. Apart from minor
differences, the code structures are very similar and can be easily
detected. It would be biased if we only use the results on the BCB
dataset to represent the effectiveness of the detection of the whole
open source project. To alleviate the impact, we add experiments
on the GCJ dataset, which contains 1,669 projects from 12 different
competition problems that are written by different programmers.

The second threat comes from the token type. A total of 15 token
types were chosen to allow tokens to be grouped into fixed groups.
If the number of token types parsed by Javalang is not clear, the
selection of these types may be variable and lead to inaccurate
groupings. To alleviate the impact, we analyze all the token types in
the BCB dataset and the GCJ dataset to select the token types that
occur frequently and add a Null type to represent the remaining
types that occur rarely.

The third threat comes from the time overheads. When calcu-
lating the time overhead of Tritor, we cannot obtain absolutely
accurate data due to the different machine statuses, such as CPU
usage. To alleviate the impact of this threat, we evaluate our tool
ten times and report the average runtime overhead in the paper.

The fourth threat comes from the interpretability. All analyses
in RQ5 are run on the GCJ dataset and to alleviate the impact,
we add experiments on the BCB dataset. The results show that
the distribution of both triads types and node types in the top
100 important features are generally consistent with the results of
the experiments on GCJ. Only some minor deviations are due to
differences in code between datasets. The detailed data comparison
has been placed on our website [9] for page limitation reasons.

The fifth threat comes from the ratios of test sets. The project
codes to be detected in real world do not have a balanced test set
(i.e., equal number of cloned pairs and non-cloned pairs). Biases
may exist by using different proportions of the test set. To alleviate
the impact of this threat, we perform experiments on seven test
sets with different ratios of clone and non-clone pairs to investigate
the sensitivity of Tritor. The results show that as the proportion
of non-clone pairs increases, the precision and F1 scores become
progressively lower, recall remains a relatively stable score. But
even so, when the ratio of clone to non-clone pairs is 1:4, Tritor is
still able to achieve a high F1 score of 96.92% with only 1% fluctua-
tion, demonstrating that Tritor still has stable performance against
variations in the ratio of the test set. Due to space constraints, the
results of the experiment are not presented in the paper and can be
found on our website [9].
5.2 Limitation and Future Work
In our paper, we mainly focus on code clone detection in the Java
language. However, with a little modification, our method can be
extended to other programming languages. For example, in the
AST extraction phase, we can use pycparser [3] or joern [6] to
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extract AST for C source code. We can count the types of nodes and
triads, complete the extraction of triads and then extract similarity
features to detect code clones in C source code. In the future work,
our method will be extended to C code to detect code clones.

In this paper, we use Jaccard similarity to obtain the feature
vectors of the two methods and use the random forest algorithm to
train the classifier. In our future work, we will try other similarity
calculation methods and other machine learning algorithms to
achieve better detection results. For the comparison system, since
many of the advanced tools are not open source, we only select
nine open source tools for comparison. In the future work, we will
select more tools for more intensive comparison.

Furthermore, we can observe from Figure 10 that using only the
top 100 features in terms of importance is sufficient to achieve a
high level of effectiveness in detecting semantic code clones. The
detection is slightly reduced again due to the interference caused
by the inclusion of less important features. Therefore, in our future
work, we may use different feature selection techniques to find the
most suitable combination of these features to make Tritor more
scalable and effective for semantic code clone detection.

In addition, to ensure the comprehensiveness of our experiments,
we choose five common machine learning algorithms. These ma-
chine learning models have many parameters, leading to a wide
range of parameter combinations that are challenging to compre-
hensively cover in the experiments. Among them, the depth pa-
rameter has attracted considerable attention. Therefore, we focus
on assessing the influence of depth parameters on detection per-
formance. In the future work, we plan to conduct testing of other
parameters to explore the optimal parameter combinations that
yield better results. In addition, it is important to note that the
experiments for parameter selection are conducted on the BCB and
GCJ datasets. However, we are uncertain about the performance
of these parameters on other datasets. In the future work, we in-
tend to conduct testing on diverse datasets to select parameter
configurations that are more suitable and applicable.

Finally, Tritor may not be superior to some baselines, such as
Tailor [39] and FA-AST [54]. Due to the fact that our model lacks
some automatic extraction of semantic information compared to
graph neural network (GNN), our results do not surpass them. How-
ever, the results of our tool are sufficient to outperform the majority
of semantic clone detection methods. Furthermore, as our tool is
based on machine learning, it does not require GPU and supports
interpretability. In contrast, neither Tailor nor FA-AST support in-
terpretation and also require a GPU to train and test. Therefore, the
advantage of Tritor is higher scalability and interpretability. In the
future, we intend to use ensemble learning approach [5] to improve
the effectiveness of our tools, striving to achieve higher results.
6 RELATEDWORK
In this section, we introduce the related works of code clone detec-
tion techniques. Among them, text-based and token-based methods
are mostly scalable, while tree-based and graph-based tools are
mostly capable of detecting semantic clones.

Text-based and token-based approaches require little runtime
overhead and can be extended to large-scale clone detection as they
do not involve much analysis of the source code. For text-based
clone detection methods [19, 27, 30, 33, 34, 44, 46, 59], the core

idea of them is to treat the code as normal text to compare the
similarity. Ducasse et al. use a string matching method to calculate
the similarity of code lines [19]. Roy et al. use a similarity calculation
method of the longest common subsequence to detect clones [46].
The token-based approaches [22, 23, 26, 32, 37, 47, 53] perform
lexical analysis of source code to obtain tokens, and detect clones
by finding common tokens. SourcererCC [47] detects clones by
calculating the proportion of overlapping tokens. The text-based
and token-based methods rarely consider the program semantics
and the logic of the code fragment, as a result, these methods do
not have the ability to detect semantic clones.

Code clone detectors which can detect semantic clones are es-
sentially tree-based and graph-based. These methods detect clones
by analysing intermediate representations (e.g., PDGs, CFGs, and
ASTs) with semantic information. The tree-based clone detection
techniques [15, 28, 29, 38, 42, 55, 60] perform static analysis of
source code to extract parse trees or abstract syntax trees, then use
tree matching to detect similar tree structures and thereby detect
clones. Deckard [28] clusters the similar vectors obtained from AST
using locality sensitive hashing to detect clones for any language
with grammatical regulations. CDLH [55] normalizes the AST into
a binary tree before encoding the tree representations to vectors
using Tree-LSTM [51]. ASTNN [60] encodes each subtree that is
divided according to predefined rules into vectors and integrates
these vectors into a final vector using the bidirectional RNN model.
The graph-based clone detection techniques [35, 36, 52, 58, 61, 62]
represent the programs to graph representations, such as CFG and
PDG. Most techniques use subgraph matching to detect clones (e.g.,
[35] and [36]), but the subgraph matching usually spends a lot of
time to detect, so CCSharp [52] reduces the overhead by modifying
the graph structure and filtering the feature vectors. CCGraph [62]
uses some numerical features to categorize PDG and compute the
similarity of the strings to reduce the runtime overhead.

Compared with these methods, our method regards the seman-
tically enhanced AST as a social network and extracts similarity
features by analyzing the different relationships among three nodes
in the network. The use of triads and the machine learning model
makes our code clone detector has both accuracy and scalability.
7 CONCLUSION
In this paper, we propose a scalable semantic code clone detector
based on semantically enhanced AST. To avoid the high overhead of
tree matching, we regard the semantically enhanced AST as a social
network and build a novel triads model to represent the tree details.
We design a code clone detector (i.e., Tritor) with accuracy and
scalability by training a machine learning classifier. We evaluate
Tritor and other nine state-of-the-art code clone detection systems
on GCJ [1] and BCB [2, 50] datasets. The experimental results show
that Tritor has ideal detection performance and strong scalability. In
analyzing code clones, Tritor is about 39 times faster than another
current state-of-the-art AST-based code clone detector ASTNN.
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