
VulCNN: An Image-inspired Scalable Vulnerability Detection
System

Yueming Wu∗†
Huazhong University of Science and

Technology, China
wuyueming@hust.edu.cn

Deqing Zou∗†‡
Huazhong University of Science and

Technology, China
deqingzou@hust.edu.cn

Shihan Dou
Fudan University, China
shihandou@foxmail.com

Wei Yang
University of Texas at Dallas, United

States
wei.yang@utdallas.edu

Duo Xu∗
Huazhong University of Science and

Technology, China
u201714569@hust.edu.cn

Hai Jin†§
Huazhong University of Science and

Technology, China
hjin@hust.edu.cn

ABSTRACT
Since deep learning (DL) can automatically learn features from
source code, it has been widely used to detect source code vulnera-
bility. To achieve scalable vulnerability scanning, some prior stud-
ies intend to process the source code directly by treating them as
text. To achieve accurate vulnerability detection, other approaches
consider distilling the program semantics into graph representa-
tions and using them to detect vulnerability. In practice, text-based
techniques are scalable but not accurate due to the lack of program
semantics. Graph-based methods are accurate but not scalable since
graph analysis is typically time-consuming.

In this paper, we aim to achieve both scalability and accuracy on
scanning large-scale source code vulnerabilities. Inspired by exist-
ing DL-based image classification which has the ability to analyze
millions of images accurately, we prefer to use these techniques
to accomplish our purpose. Specifically, we propose a novel idea
that can efficiently convert the source code of a function into an
image while preserving the program details. We implement Vul-
CNN and evaluate it on a dataset of 13,687 vulnerable functions and
26,970 non-vulnerable functions. Experimental results report that
VulCNN can achieve better accuracy than eight state-of-the-art vul-
nerability detectors (i.e., Checkmarx, FlawFinder, RATS, TokenCNN,
VulDeePecker, SySeVR, VulDeeLocator, andDevign). As for scalability,
VulCNN is about four times faster than VulDeePecker and SySeVR,
about 15 times faster than VulDeeLocator, and about six times faster
than Devign. Furthermore, we conduct a case study on more than

∗Hubei Engineering Research Center on Big Data Security, School of Cyber Science
and Engineering, HUST, Wuhan, 430074, China
†National Engineering Research Center for Big Data Technology and System, Services
Computing Technology and System Lab, HUST, Wuhan, 430074, China
‡Corresponding author
§Cluster and Grid Computing Lab, School of Computer Science and Technology, HUST,
Wuhan, 430074, China

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510229

25 million lines of code and the result indicates that VulCNN can
detect large-scale vulnerability. Through the scanning reports, we
finally discover 73 vulnerabilities that are not reported in NVD.

CCS Concepts
• Security and privacy→ Vulnerability scanners.

Keywords
Vulnerability Detection, CNN, Large Scale, Image

ACM Reference Format:
Yueming Wu, Deqing Zou, Shihan Dou, Wei Yang, Duo Xu, and Hai Jin.
2022. VulCNN: An Image-inspired Scalable Vulnerability Detection System.
In 44th International Conference on Software Engineering (ICSE ’22), May
21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3510003.3510229

1 INTRODUCTION
Recently, various cyberspace security incidents [2, 3] such as
hacker extortion, botnet attacks, and user information leakage
have occurred frequently. As an important part of cyberspace,
vulnerabilities in software systems have brought serious security
threats to cyberspace. In 2020, Synopsys Open Source Security and
Risk Analysis (OSSRA) examined audit data from 1,250+ commercial
codebases and revealed that 70% of the code in these codebases
were open-source. Moreover, 75% of these open-source codebases
contained open source security vulnerabilities, and nearly half
contained high-risk vulnerabilities [1]. Therefore, it is urgent
to carry out large-scale and intelligent software vulnerabilities
detection methods to better protect software security.

In general, source code vulnerability detection methods can be
divided into two main categories, that is, the code-similarity-based
methods [27, 32, 37, 39, 46] and the pattern-based methods [5, 6, 12,
24, 41, 43, 47, 56, 57]. Vulnerability detectionmethods based on code
similarity are mainly used to detect vulnerabilities caused by code
cloning. When used to detect vulnerabilities not caused by code
cloning, it will lead to a high false negative rate [41]. Traditional
pattern-based vulnerability detection methods [5, 6, 12] rely on
experts to manually define vulnerability rules or characteristics to
describe vulnerabilities. These approaches are not only subjective
but also difficult to achieve a low false positive rate and a low false
negative rate at the same time [40, 41].

https://doi.org/10.1145/3510003.3510229
https://doi.org/10.1145/3510003.3510229
https://doi.org/10.1145/3510003.3510229


ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yueming Wu, Deqing Zou, Shihan Dou, Wei Yang, Duo Xu, and Hai Jin

In recent years, due to the automatic feature extraction of
deep learning (DL), it has been widely used to detect source code
vulnerability. These DL-based techniques [24, 40, 41, 43, 47, 56, 57]
belong to the second category of methods (i.e., pattern-based
methods). They do not require experts to manually define features
and can automatically generate vulnerability patterns. For example,
some prior studies [41, 47] treat the program source code as text
and apply techniques in the field of natural language processing to
detect vulnerability. The detection performance of these text-based
methods is not ideal since they ignore the program semantics of
source code. To address the issue, researchers conduct program
analysis to distill the program semantics of source code into a
graph representation and perform graph analysis (e.g., graph neural
network) to detect vulnerability. These graph-based techniques [24,
56] can achieve higher effectiveness on detecting vulnerability,
however, their scalability is muchworse than text-basedmethods. In
addition, almost all these methods only focus on labeling a function
as either vulnerable or not, and cannot pinpoint which lines of code
may be more likely to be vulnerable.

In this paper, we aim to achieve accuracy and scalability
simultaneously on detecting vulnerabilities from large-scale source
code. Our key idea is derived from DL-based image classification,
which can process millions of images while maintaining high
accuracy, and the classification results can be interpreted by
visualization techniques. Specifically, we mainly address one major
challenge in our paper.

• How to efficiently convert the source code of a function into an
image while preserving the program details?

To tackle the challenge, we first conduct program analysis
to distill the program semantics of a function into a program
dependency graph (PDG) which contains both control-flow and data-
flow details of source code. After obtaining the PDG of a function,
we treat it as a social network and apply centrality analysis on
the network to attach the graph structural information to each
line of code. In social network analysis, centrality analysis [25, 31]
has been proposed to measure the importance of a node within
the network. Specifically, we leverage three different centralities
(i.e., degree centrality [25], katz centrality [31], and closeness
centrality [25]) to commence our image transformation. There
are two main reasons for using three centralities. First, different
centralities canmaintain the graph properties from different aspects
[52]. Second, an image generally has three channels (i.e., red, green,
and blue) and they work together to produce a complete image.
The output of centrality analysis is an image while preserving the
graph details from three aspects. Given generated images, we then
train a Convolutional Neural Network (CNN) [34, 36] model and
use it to detect vulnerability. To pinpoint the vulnerable lines of
code in a function, we use a deep visualization technique (i.e., Class
Activation Map [20]) on our images to obtain the corresponding
heatmaps, these heatmaps can help security analysts understand
why the function is labeled as a vulnerability.

We implement VulCNN and evaluate it on a dataset of 40,657
functions which consists of 13,687 vulnerable functions and 26,970
non-vulnerable functions. Evaluation results show that VulCNN can
achieve better effectiveness than eight comparative vulnerability
detectors (i.e., Checkmarx [5], FlawFinder [6], RATS [12], TokenCNN

[47], VulDeePecker [41], SySeVR [40], VulDeeLocator [38], and
Devign [56]). Furthermore, VulCNN is more than six times faster
than another state-of-the-art graph-based vulnerability detection
tool (i.e., Devign). To validate the ability of VulCNN on large-scale
vulnerability scanning, we conduct a case study on more than 25
million lines of code. Through the scanning reports, we finally
discover 73 vulnerabilities that are not reported in NVD. Among
them, 17 have been “silently” patched by vendors in the latest
version of corresponding products, four vulnerabilities have been
deleted, and the other 52 still exist in the products.We have reported
these vulnerabilities to their vendors and hope that they can be
patched as soon as possible.

In summary, this paper makes the following contributions:
• We propose a novel idea that can efficiently convert the
source code of a function into an image while preserving the
program details.
• We design and implement a prototype system, VulCNN 1, a
scalable graph-based vulnerability detection system.
• We conduct evaluations on a dataset of 13,687 vulnerable
functions and 26,970 non-vulnerable functions. Experimental
results report that VulCNN is superior to eight state-of-
the-art vulnerability detectors (i.e., Checkmarx, FlawFinder,
RATS, TokenCNN, VulDeePecker, SySeVR, VulDeeLocator, and
Devign).
• We conduct a case study on more than 25 million lines
of code to validate the ability of VulCNN on large-scale
vulnerability scanning. Through the scanning results, we
discover 73 vulnerabilities that are not reported in NVD.

Paper organization. The remainder of the paper is organized as
follows. Section 2 presents the motivation of our paper. Section 3
introduces our system. Section 4 reports the experimental results.
Section 5 discusses the future work. Section 6 describes the related
work. Section 7 concludes the present paper.

2 MOTIVATION
We all know that a function consists of multiple lines of code, which
together implement the program semantics (i.e., functionality) of
the function. However, the semantic contribution of different lines
of code is different. For example, some code is just a simple variable
definition, while some code implements the core algorithm of
the function. Obviously, the latter contributes more semantics.
Therefore, we raise a question: “How to find out the contribution of
different lines of code in the function to the program semantics?"

To answer it, we select a buffer overflow vulnerability function
as our example. To maintain the program semantics, we consider
extracting both control-flow and data-flow details by static anal-
ysis. Specifically, we leverage Joern [53] to obtain the program
dependency graph (PDG) of the vulnerability in Figure 1. Each
node in the PDG corresponds to a line of code in the vulnerability.
Red lines and blue lines show the data flows and control flows
between different lines of code in the function, respectively. To
simply display the PDG of the vulnerability, we replace each line
of code with a numbered circular node. Eight lines of code in the
function correspond to eight circular nodes as shown in Figure 1.
In graph theory, an adjacency matrix is a square matrix used to
1https://github.com/CGCL-codes/VulCNN



VulCNN: An Image-inspired Scalable Vulnerability Detection System ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

v1*d1

v2*d2

vn*dn

degree centrality

v1*b1

v2*b2

vn*bn

v1*c1

v2*c2

vn*cn

betweenness centrality

closeness centralityv1node1:sentence1

node2:sentence2

……

noden:sentencen

Program 

Function

Function 

Source Code

CNN 

Self-Attention

Vulnerability 

Metrics

Program 

Dependency 

Graph

Control Flow 

Data Flow 

Code 

Property 

Graph

Degree Centrality

Betweenness Centrality

Closeness Centrality

Fusion 

Layer
Classification

0

1

CNN 

Graph 

Extraction

Program 

Dependency Graph

line1

line2 line3

line4

line6

line5

Sentence 

Embedding

Program 

Dependency Graph

vec1

vec2 vec3

vec4

vec6

vec5

Centrality 

Analysis

vec1

vec2 vec3

vec4

vec6

vec5

CNN 

Classifier

0

1

v1*d1

v6*d6

degree

v1*b1

v6*b6

v1*c1

v6*c6

betweenness

closeness

line1

line2

line3

line4

line6

line5

Graph Extraction

Program 

Dependency Graph

line1

line2 line3

line4

line6

line5

Sentence 

Embedding

Program 

Dependency Graph

vec1

vec2 vec3

vec4

vec6

vec5

CNN 

Classification

0 or 1

Function 

Source Code

line1

line2

line3

line4

line6

line5

Image Generation

v1*d1

v2*d2

…

v6*d6

degree

v1*b1

v2*b2

…

v6*b6

v1*c1

v2*c2

…

v6*c6

katz

closeness

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        /* POTENTIAL FLAW: Possible 

buffer overflow if data is larger than 

sizeof(dest)-strlen(dest)*/

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Input: Source Code of a Function

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Step1: Remove comments

void bad()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = badSource(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        printLine(VAR1);

    }

}

Step2: Map user-defined variables

void FUN1()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = FUN2(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        FUN3(VAR1);

    }

}

Step3: Map user-defined functions

char * VAR1;

char VAR2[100];

VAR1 = VAR2;

VAR1 = FUN2(VAR1);

 char VAR3[50] = "";

strncat(VAR3, VAR1, strlen(VAR1));

VAR3[50-1] = '\0'; 

FUN3(VAR1);

VAR2

VAR3

VAR1

VAR1

VAR1

VAR3

Original Program Dependency Graph

vector1

vector2

vector3

vector4

vector5

vector6

vector7

vector8

New Program Dependency Graph

vector1: 1 

vector2: 3

vector3: 4

vector4: 5

vector5: 4

vector6: 4

vector7: 3

vector8: 2

degree
degree 

centrality

1/7=0.14

3/7=0.43

4/7=0.57

5/7=0.71

4/7=0.57

4/7=0.57

3/7=0.43

2/7=0.29

0.14*vector1

0.43*vector2

0.57*vector3

0.71*vector4

0.57*vector5

0.57*vector6

0.43*vector7

0.29*vector8

……

katz centrality

……

closeness centrality

k1*vector1

……

k8*vector8

c1*vector1

……

c8*vector8

0.14*vector1

0.43*vector2

0.57*vector3

0.71*vector4

0.57*vector5

0.57*vector6

0.43*vector7

0.29*vector8

k1*vector1

k2*vector2

k3*vector3

k4*vector4

k5*vector5

k6*vector6

k7*vector7

k8*vector8

c1*vector1

c2*vector2

c3*vector3

c4*vector4

c5*vector5

c6*vector6

c7*vector7

c8*vector8

Image

Sentence Embedding Image Generation

Output: An Image

Graph ExtractionInput: Normalized Source Code

void FUN1()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = FUN2(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        FUN3(VAR1);

    }

}

Source Code

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        /* POTENTIAL FLAW: Possible 

buffer overflow if data is larger than 

sizeof(dest)-strlen(dest)*/

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Input: Source Code of a Function

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Step1: Remove comments

Step2: Map user-defined variables

void FUN1()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = FUN2(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        FUN3(VAR1);

    }

}

Step3: Map user-defined functions

void bad()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = badSource(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        printLine(VAR1);

    }

}

char * data;

char dataBuffer[100];

data = dataBuffer;

data = badSource(data);

 char dest[50] = "";

strncat(dest, data, strlen(data));

dest[50-1] = '\0'; 

printLine(data);

dataBuffer

dest

data

data

data

dest

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

1

2

3

4

5

6

7

8

1

2

6

8

3

4

5

7

0 1 0 00 0 0 0

0 0 0 02 0 0 0

0 0 0 00 2 0 0

0 0 1 10 0 1 0

0 0 2 00 0 0 1

0 0 0 00 0 0 1

0 0 0 10 0 0 0

0 0 0 00 0 0 0

1 2 6 83 4 5 7

In

Degree

Out

Degree

0 1 3 22 2 1 2

1

2

1

0

2

3

3

1

Source Code Program Dependency Graph Adjacency Matrix

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {  char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Out

Degree

In

Degree
Degree

0

1

3

2

2

2

1

2

1

2

1

0

2

3

3

1

1

3

4

2

4

5

4

3

char * data;

char dataBuffer[100];

data = dataBuffer;

data = badSource(data);

 char dest[50] = "";

strncat(dest, data, strlen(data));

dest[50-1] = '\0'; 

printLine(data);

dataBuffer

dest

data

data

data

dest

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, 

strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Source Code Program Dependency Graph

Adjacency Matrix

1

2

6

8

3

4

5

7

0 1 0 00 0 0 0

0 0 0 02 0 0 0

0 0 0 00 2 0 0

0 0 1 10 0 1 0

0 0 2 00 0 0 1

0 0 0 00 0 0 1

0 0 0 10 0 0 0

0 0 0 00 0 0 0

1 2 6 83 4 5 7

In

Degree

Out

Degree

0 1 3 22 2 1 2

1

2

1

0

2

3

3

1

1

2

3

4

5

6

7

8

Figure 1: The program dependency graph (PDG) and corre-
sponding adjacency matrix of a vulnerability

represent a finite graph [4]. Therefore, to represent the PDG of the
vulnerability, we compute the corresponding adjacency matrix and
describe it in Figure 1. The elements of the matrix indicate whether
pairs of nodes are adjacent or not in the graph. Since our PDG is a
directed graph, an element represents the number of directed edges
between two different nodes. For example, node 3 has two edges
pointing to node 4, while node 4 has no edges pointing to node 3.
Therefore, the corresponding values between node 3 and node 4 in
the matrix are two and zero, respectively.

After obtaining the adjacency matrix of the PDG, we find that
when we sum a row in the matrix, the value obtained corresponds
to the out-degree of the node. Moreover, when we sum a column,
the value obtained is the in-degree of the node. For example, the
sum of the row of node 4 is three (i.e., 1+1+1=3), which indicates
that the out-degree of node 4 is three. To better illustrate our insight,
we present the in-degrees, out-degrees, and degrees of all lines of
code of the vulnerability in Figure 2. Through the results in Figure
2, we find that the degrees of different lines of code are basically
different. It is reasonable because there are different relationships

v1*d1

v2*d2

vn*dn

degree centrality

v1*b1

v2*b2

vn*bn

v1*c1

v2*c2

vn*cn

betweenness centrality

closeness centralityv1node1:sentence1

node2:sentence2

……

noden:sentencen

Program 

Function

Function 

Source Code

CNN 

Self-Attention

Vulnerability 

Metrics

Program 

Dependency 

Graph

Control Flow 

Data Flow 

Code 

Property 

Graph

Degree Centrality

Betweenness Centrality

Closeness Centrality

Fusion 

Layer
Classification

0

1

CNN 

Graph 

Extraction

Program 

Dependency Graph

line1

line2 line3

line4

line6

line5

Sentence 

Embedding

Program 

Dependency Graph

vec1

vec2 vec3

vec4

vec6

vec5

Centrality 

Analysis

vec1

vec2 vec3

vec4

vec6

vec5

CNN 

Classifier

0

1

v1*d1

v6*d6

degree

v1*b1

v6*b6

v1*c1

v6*c6

betweenness

closeness

line1

line2

line3

line4

line6

line5

Graph Extraction

Program 

Dependency Graph

line1

line2 line3

line4

line6

line5

Sentence 

Embedding

Program 

Dependency Graph

vec1

vec2 vec3

vec4

vec6

vec5

CNN 

Classification

0 or 1

Function 

Source Code

line1

line2

line3

line4

line6

line5

Image Generation

v1*d1

v2*d2

…

v6*d6

degree

v1*b1

v2*b2

…

v6*b6

v1*c1

v2*c2

…

v6*c6

katz

closeness

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        /* POTENTIAL FLAW: Possible 

buffer overflow if data is larger than 

sizeof(dest)-strlen(dest)*/

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Input: Source Code of a Function

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Step1: Remove comments

void bad()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = badSource(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        printLine(VAR1);

    }

}

Step2: Map user-defined variables

void FUN1()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = FUN2(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        FUN3(VAR1);

    }

}

Step3: Map user-defined functions

char * VAR1;

char VAR2[100];

VAR1 = VAR2;

VAR1 = FUN2(VAR1);

 char VAR3[50] = "";

strncat(VAR3, VAR1, strlen(VAR1));

VAR3[50-1] = '\0'; 

FUN3(VAR1);

VAR2

VAR3

VAR1

VAR1

VAR1

VAR3

Original Program Dependency Graph

vector1

vector2

vector3

vector4

vector5

vector6

vector7

vector8

New Program Dependency Graph

vector1: 1 

vector2: 3

vector3: 4

vector4: 5

vector5: 4

vector6: 4

vector7: 3

vector8: 2

degree
degree 

centrality

1/7=0.14

3/7=0.43

4/7=0.57

5/7=0.71

4/7=0.57

4/7=0.57

3/7=0.43

2/7=0.29

0.14*vector1

0.43*vector2

0.57*vector3

0.71*vector4

0.57*vector5

0.57*vector6

0.43*vector7

0.29*vector8

……

katz centrality

……

closeness centrality

k1*vector1

……

k8*vector8

c1*vector1

……

c8*vector8

0.14*vector1

0.43*vector2

0.57*vector3

0.71*vector4

0.57*vector5

0.57*vector6

0.43*vector7

0.29*vector8

k1*vector1

k2*vector2

k3*vector3

k4*vector4

k5*vector5

k6*vector6

k7*vector7

k8*vector8

c1*vector1

c2*vector2

c3*vector3

c4*vector4

c5*vector5

c6*vector6

c7*vector7

c8*vector8

Image

Sentence Embedding Image Generation

Output: An Image

Graph ExtractionInput: Normalized Source Code

void FUN1()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = FUN2(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        FUN3(VAR1);

    }

}

Source Code

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        /* POTENTIAL FLAW: Possible 

buffer overflow if data is larger than 

sizeof(dest)-strlen(dest)*/

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Input: Source Code of a Function

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Step1: Remove comments

Step2: Map user-defined variables

void FUN1()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = FUN2(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        FUN3(VAR1);

    }

}

Step3: Map user-defined functions

void bad()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = badSource(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        printLine(VAR1);

    }

}

char * data;

char dataBuffer[100];

data = dataBuffer;

data = badSource(data);

 char dest[50] = "";

strncat(dest, data, strlen(data));

dest[50-1] = '\0'; 

printLine(data);

dataBuffer

dest

data

data

data

dest

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

1

2

3

4

5

6

7

8

1

2

6

8

3

4

5

7

0 1 0 00 0 0 0

0 0 0 02 0 0 0

0 0 0 00 2 0 0

0 0 1 10 0 1 0

0 0 2 00 0 0 1

0 0 0 00 0 0 1

0 0 0 10 0 0 0

0 0 0 00 0 0 0

1 2 6 83 4 5 7

In

Degree

Out

Degree

0 1 3 22 2 1 2

1

2

1

0

2

3

3

1

Source Code Program Dependency Graph Adjacency Matrix

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {  char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Out

Degree

In

Degree
Degree

0

1

3

2

2

2

1

2

1

2

1

0

2

3

3

1

1

3

4

2

4

5

4

3

char * data;

char dataBuffer[100];

data = dataBuffer;

data = badSource(data);

 char dest[50] = "";

strncat(dest, data, strlen(data));

dest[50-1] = '\0'; 

printLine(data);

dataBuffer

dest

data

data

data

dest

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, 

strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Source Code Program Dependency Graph

Adjacency Matrix

1

2

6

8

3

4

5

7

0 1 0 00 0 0 0

0 0 0 02 0 0 0

0 0 0 00 2 0 0

0 0 1 10 0 1 0

0 0 2 00 0 0 1

0 0 0 00 0 0 1

0 0 0 10 0 0 0

0 0 0 00 0 0 0

1 2 6 83 4 5 7

In

Degree

Out

Degree

0 1 3 22 2 1 2

1

2

1

0

2

3

3

1

1

2

3

4

5

6

7

8

…

an image: 3*128*100

10 region sizes: 1-10
32 filters for each 

region size
totally 10*32 filters

max pool: 10*32
fully 

connected 
layer: 320

vulnerable 
or not…

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, 

strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

char * data;

char dataBuffer[100];

data = dataBuffer;

data = badSource(data);

char dest[50] = "";

strncat(dest, data, strlen(data));

dest[50-1] = '\0';

printLine(data);

source code generated heatmap

the redder the color, the more 

likely it is that the line is 

vulnerable code

Figure 2: The in-degrees, out-degrees, and degrees of all lines
of code in Figure 1

(i.e., control-flows and data-flows) between different lines of code,
and the vulnerability is triggered based on these relationships. If we
directly process these codes by treating them as text, the degrees
of all lines of code are one, which may decrease the vulnerability
detection accuracy.

In one word, a graph can be represented by its adjacency matrix,
the matrix can be described by degrees of all nodes. Therefore,
computing the degrees of code in a function may be a great
candidate to retain the graph details. In practice, the degree of
a node in a graph is originally used to quantify its importance. It
has been widely used in social network analysis [25]. The higher the
degree, themore important the person. Meanwhile, different lines of
code have different degrees. If we treat each line of code as a person,
the control-flow and data-flow relationships as the communications
between persons, then the corresponding PDG can be regarded as
a social network. The higher the degree of a person, the more other
persons communicated with him, and the greater his importance
within the PDG social network. Therefore, we can leverage the
importance of a line of code as a form of the contribution of program
semantics. In other words, the more important a line of code is, the
more it may contribute to implementing the program semantics
(i.e., functionality) of the function. Based on the observation, we
design VulCNN by analyzing the importance of all lines of code.

3 SYSTEM
In this section, we introduce VulCNN, a novel and efficient source
code vulnerability detection system.

3.1 Overview
As shown in Figure 3, VulCNN consists of four main phases:
Graph Extraction, Sentence Embedding, Image Generation, and
Classification.
• Graph Extraction: Given the source code of a function,
we first normalize them and then perform static analysis to
extract the program dependency graph of the function.
• Sentence Embedding: Each node in the program depen-
dency graph corresponds to a line of code in the function.
We regard a line of code as a sentence and embed them into
a vector.
• Image Generation: After sentence embedding, we apply
centrality analysis to obtain the importance of all lines of



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yueming Wu, Deqing Zou, Shihan Dou, Wei Yang, Duo Xu, and Hai Jin

code and multiply them by the vectors one by one. The
output of this phase is an image.
• Classification: Our final phase focuses on classification.
Given generated images, we first train a CNN model and
then use it to detect vulnerability.

v1*d1

v2*d2

vn*dn

degree centrality

v1*b1

v2*b2

vn*bn

v1*c1

v2*c2

vn*cn

betweenness centrality

closeness centralityv1node1:sentence1

node2:sentence2

……

noden:sentencen

Program 

Function

Function 

Source Code

CNN 

Self-Attention

Vulnerability 

Metrics

Program 

Dependency 

Graph

Control Flow 

Data Flow 

Code 

Property 

Graph

Degree Centrality

Betweenness Centrality

Closeness Centrality

Fusion 

Layer
Classification

0

1

CNN 

Graph 

Extraction

Program 

Dependency Graph

line1

line2 line3

line4

line6

line5

Sentence 

Embedding

Program 

Dependency Graph

vec1

vec2 vec3

vec4

vec6

vec5

Centrality 

Analysis

vec1

vec2 vec3

vec4

vec6

vec5

CNN 

Classifier

0

1

v1*d1

v6*d6

degree

v1*b1

v6*b6

v1*c1

v6*c6

betweenness

closeness

line1

line2

line3

line4

line6

line5

Graph 

Extraction

Program 

Dependency 

Graph

line1

line2 line3

line4

line6

line5

Sentence 

Embedding

Program 

Dependency 

Graph

vec1

vec2 vec3

vec4

vec6

vec5

Classification

0 or 1

 Source Code

line1

line2

line3

line4

line6

line5

Image Generation

v1*d1

v2*d2

…

v6*d6

degree

v1*b1

v2*b2

…

v6*b6

v1*c1

v2*c2

…

v6*c6

katz

closeness

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        /* POTENTIAL FLAW: Possible 

buffer overflow if data is larger than 

sizeof(dest)-strlen(dest)*/

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Input: Source Code of a Function

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Step1: Remove comments

void bad()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = badSource(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        printLine(VAR1);

    }

}

Step2: Map user-defined variables

void FUN1()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = FUN2(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        FUN3(VAR1);

    }

}

Step3: Map user-defined functions

char * VAR1;

char VAR2[100];

VAR1 = VAR2;

VAR1 = FUN2(VAR1);

 char VAR3[50] = "";

strncat(VAR3, VAR1, strlen(VAR1));

VAR3[50-1] = '\0'; 

FUN3(VAR1);

VAR2

VAR3

VAR1

VAR1

VAR1

VAR3

Original Program Dependency Graph

vector1

vector2

vector3

vector4

vector5

vector6

vector7

vector8

New Program Dependency Graph

vector1: 1 

vector2: 3

vector3: 4

vector4: 5

vector5: 4

vector6: 4

vector7: 3

vector8: 2

degree
degree 

centrality

1/7=0.14

3/7=0.43

4/7=0.57

5/7=0.71

4/7=0.57

4/7=0.57

3/7=0.43

2/7=0.29

0.14*vector1

0.43*vector2

0.57*vector3

0.71*vector4

0.57*vector5

0.57*vector6

0.43*vector7

0.29*vector8

……

katz centrality

……

closeness centrality

k1*vector1

……

k8*vector8

c1*vector1

……

c8*vector8

0.14*vector1

0.43*vector2

0.57*vector3

0.71*vector4

0.57*vector5

0.57*vector6

0.43*vector7

0.29*vector8

k1*vector1

k2*vector2

k3*vector3

k4*vector4

k5*vector5

k6*vector6

k7*vector7

k8*vector8

c1*vector1

c2*vector2

c3*vector3

c4*vector4

c5*vector5

c6*vector6

c7*vector7

c8*vector8

Image

Sentence Embedding Image Generation

Output: An Image

Graph ExtractionInput: Normalized Source Code

void FUN1()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = FUN2(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        FUN3(VAR1);

    }

}

Source Code

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        /* POTENTIAL FLAW: Possible 

buffer overflow if data is larger than 

sizeof(dest)-strlen(dest)*/

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Input: Source Code of a Function

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Step1: Remove comments

Step2: Map user-defined variables

void FUN1()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = FUN2(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        FUN3(VAR1);

    }

}

Step3: Map user-defined functions

void bad()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = badSource(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        printLine(VAR1);

    }

}

char * data;

char dataBuffer[100];

data = dataBuffer;

data = badSource(data);

 char dest[50] = "";

strncat(dest, data, strlen(data));

dest[50-1] = '\0'; 

printLine(data);

dataBuffer

dest

data

data

data

dest

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

1

2

3

4

5

6

7

8

1

2

6

8

3

4

5

7

0 1 0 00 0 0 0

0 0 0 02 0 0 0

0 0 0 00 2 0 0

0 0 1 10 0 1 0

0 0 2 00 0 0 1

0 0 0 00 0 0 1

0 0 0 10 0 0 0

0 0 0 00 0 0 0

1 2 6 83 4 5 7

In

Degree

Out

Degree

0 1 3 22 2 1 2

1

2

1

0

2

3

3

1

Source Code Program Dependency Graph Adjacency Matrix

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {  char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Out

Degree

In

Degree
Degree

0

1

3

2

2

2

1

2

1

2

1

0

2

3

3

1

1

3

4

2

4

5

4

3

char * data;

char dataBuffer[100];

data = dataBuffer;

data = badSource(data);

 char dest[50] = "";

strncat(dest, data, strlen(data));

dest[50-1] = '\0'; 

printLine(data);

dataBuffer

dest

data

data

data

dest

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, 

strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Source Code Program Dependency Graph

Adjacency Matrix

1

2

6

8

3

4

5

7

0 1 0 00 0 0 0

0 0 0 02 0 0 0

0 0 0 00 2 0 0

0 0 1 10 0 1 0

0 0 2 00 0 0 1

0 0 0 00 0 0 1

0 0 0 10 0 0 0

0 0 0 00 0 0 0

1 2 6 83 4 5 7

In

Degree

Out

Degree

0 1 3 22 2 1 2

1

2

1

0

2

3

3

1

1

2

3

4

5

6

7

8

…

an image: 3*128*100

10 region sizes: 1-10
32 filters for each 

region size
totally 10*32 filters

max pool: 10*32
fully 

connected 
layer: 320

vulnerable 
or not…

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, 

strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

char * data;

char dataBuffer[100];

data = dataBuffer;

data = badSource(data);

char dest[50] = "";

strncat(dest, data, strlen(data));

dest[50-1] = '\0';

printLine(data);

source code generated heatmap

the redder the color, the more 

likely it is that the line is 

vulnerable code

Figure 3: System overview of VulCNN

3.2 Graph Extraction and Sentence Embedding
VulCNN aims to achieve accuracy and scalability simultaneously
on detecting vulnerabilities, therefore, we first apply static analysis
to distill the program semantics of source code into a graph repre-
sentation. Due to the coarse granularity of file-level vulnerability
detection, we focus on detecting vulnerability at amore fine-grained
level (i.e., function-level) since a function can also implement a spe-
cific task. Before extracting the graph representation of a function,
we first abstract and normalize the source code. Particularly, we
use three levels of normalization which make VulCNN resilient to
common code modifications while preserving program semantics.

v1*d1

v2*d2

vn*dn

degree centrality

v1*b1

v2*b2

vn*bn

v1*c1

v2*c2

vn*cn

betweenness centrality

closeness centralityv1node1:sentence1

node2:sentence2

……

noden:sentencen

Program 

Function

Function 

Source Code

CNN 

Self-Attention

Vulnerability 

Metrics

Program 

Dependency 

Graph

Control Flow 

Data Flow 

Code 

Property 

Graph

Degree Centrality

Betweenness Centrality

Closeness Centrality

Fusion 

Layer
Classification

0

1

CNN 

Graph 

Extraction

Program 

Dependency Graph

line1

line2 line3

line4

line6

line5

Sentence 

Embedding

Program 

Dependency Graph

vec1

vec2 vec3

vec4

vec6

vec5

Centrality 

Analysis

vec1

vec2 vec3

vec4

vec6

vec5

CNN 

Classifier

0

1

v1*d1

v6*d6

degree

v1*b1

v6*b6

v1*c1

v6*c6

betweenness

closeness

line1

line2

line3

line4

line6

line5

Graph Extraction

Program 

Dependency Graph

line1

line2 line3

line4

line6

line5

Sentence 

Embedding

Program 

Dependency Graph

vec1

vec2 vec3

vec4

vec6

vec5

CNN 

Classification

0 or 1

Function 

Source Code

line1

line2

line3

line4

line6

line5

Image Generation

v1*d1

v2*d2

…

v6*d6

degree

v1*b1

v2*b2

…

v6*b6

v1*c1

v2*c2

…

v6*c6

katz

closeness

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        /* POTENTIAL FLAW: Possible 

buffer overflow if data is larger than 

sizeof(dest)-strlen(dest)*/

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Input: Source Code of a Function

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Step1: Remove comments

void bad()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = badSource(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        printLine(VAR1);

    }

}

Step2: Map user-defined variables

void FUN1()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = FUN2(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        FUN3(VAR1);

    }

}

Step3: Map user-defined functions

char * VAR1;

char VAR2[100];

VAR1 = VAR2;

VAR1 = FUN2(VAR1);

 char VAR3[50] = "";

strncat(VAR3, VAR1, strlen(VAR1));

VAR3[50-1] = '\0'; 

FUN3(VAR1);

VAR2

VAR3

VAR1

VAR1

VAR1

VAR3

Program Dependency Graph

vector1

vector2

vector3

vector4

vector5

vector6

vector7

vector8

Program Dependency Graph

vector1: 1 

vector2: 3

vector3: 4

vector4: 5

vector5: 4

vector6: 4

vector7: 3

vector8: 2

degree
degree 

centrality

1/7=0.14

3/7=0.43

4/7=0.57

5/7=0.71

4/7=0.57

4/7=0.57

3/7=0.43

2/7=0.29

0.14*vector1

0.43*vector2

0.57*vector3

0.71*vector4

0.57*vector5

0.57*vector6

0.43*vector7

0.29*vector8

……

katz centrality

……

closeness centrality

k1*vector1

……

k8*vector8

c1*vector1

……

c8*vector8

0.14*vector1

0.43*vector2

0.57*vector3

0.71*vector4

0.57*vector5

0.57*vector6

0.43*vector7

0.29*vector8

k1*vector1

k2*vector2

k3*vector3

k4*vector4

k5*vector5

k6*vector6

k7*vector7

k8*vector8

c1*vector1

c2*vector2

c3*vector3

c4*vector4

c5*vector5

c6*vector6

c7*vector7

c8*vector8

Image

Sentence Embedding Image Generation

Output: An Image

Graph ExtractionInput: Normalized Source Code

void FUN1()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = FUN2(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        FUN3(VAR1);

    }

}

Source Code

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        /* POTENTIAL FLAW: Possible 

buffer overflow if data is larger than 

sizeof(dest)-strlen(dest)*/

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Input: Source Code of a Function

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Step1: Remove comments

Step2: Map user-defined variables

void FUN1()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = FUN2(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        FUN3(VAR1);

    }

}

Step3: Map user-defined functions

void bad()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = badSource(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        printLine(VAR1);

    }

}

Figure 4: Steps of source code normalization in VulCNN

Figure 4 shows the detailed transformations of a function at
varying normalization levels.
• Step1: Remove the comments in the source code because
they have nothing to do with program semantics.
• Step2: Map user-defined variables to symbolic names in a
one-to-one manner (e.g., , VAR1).
• Step3:Map user-defined functions to symbolic names in a
one-to-one manner (e.g., , FUN1).

After abstracting the source code, we then leverage an open-
source code analysis platform for C/C++, Joern [11, 53], to extract
the program dependency graph (PDG) of the function. PDG is a
graph representation that contains both data-flow and control-flow
details of the source code. Each node in a PDG corresponds to a
line of code in the function. We treat a line of code as a sentence
and apply sentence embedding to transform it into a fixed-length
vector. Specifically, we make use of a widely used method (i.e.,
sent2vec [45]) to complete our sentence embedding. It adopts a
simple but efficient unsupervised objective to train distributed
representations of sentences. Using the sent2vec [45] model, we can
transform a line of code into its corresponding vector representation
whose dimension is 128 in our paper.

To better illustrate the detailed steps involved in our proposed
method, we provide an example in Figure 5. Red lines and blue lines
in Figure 5 represent data flows and control flows between different
lines of code in a function, respectively.

3.3 Image Generation
After graph extraction and sentence embedding, we can obtain a
new PDG where each node is a vector representation. In this phase,
we aim to efficiently convert the new PDG into an image while
considering the contributions of different lines of code to program
semantics. To complete our purpose, we regard the new PDG as
a social network and apply social network centrality analysis to
obtain the importance of all lines of code. Centrality concepts were
first developed in social network analysis whose original purpose
is to measure the importance of a node in the network. Centrality
analysis has been used in many different areas (e.g., biological
network [28] and transportation network [26]), these successful
applications have validated the effectiveness of network analysis.
In fact, there have been proposed many different types of centrality
to quantify the importance of a node in a network from different
aspects, for example:
• Degree centrality [25] of a node is the fraction of nodes it
is connected to. The degree centrality values are normalized
by dividing by the maximum possible degree in a graph 𝑁 -1
where 𝑁 is the number of nodes in the graph.

𝑥𝑖 =
𝑑𝑒𝑔(𝑖)
𝑁 − 1 (1)

Note that 𝑑𝑒𝑔(𝑖) is the degree of node 𝑖 .
• Katz centrality [31] computes the centrality for a node
based on the centrality of its neighbors. The Katz centrality
for node 𝑖 is

𝑥𝑖 = 𝛼
∑︁
𝑗

𝐴𝑖 𝑗𝑥 𝑗 + 𝛽 (2)



VulCNN: An Image-inspired Scalable Vulnerability Detection System ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

v1*d1

v2*d2

vn*dn

degree centrality

v1*b1

v2*b2

vn*bn

v1*c1

v2*c2

vn*cn

betweenness centrality

closeness centralityv1node1:sentence1

node2:sentence2

……

noden:sentencen

Program 

Function

Function 

Source Code

CNN 

Self-Attention

Vulnerability 

Metrics

Program 

Dependency 

Graph

Control Flow 

Data Flow 

Code 

Property 

Graph

Degree Centrality

Betweenness Centrality

Closeness Centrality

Fusion 

Layer
Classification

0

1

CNN 

Graph 

Extraction

Program 

Dependency Graph

line1

line2 line3

line4

line6

line5

Sentence 

Embedding

Program 

Dependency Graph

vec1

vec2 vec3

vec4

vec6

vec5

Centrality 

Analysis

vec1

vec2 vec3

vec4

vec6

vec5

CNN 

Classifier

0

1

v1*d1

v6*d6

degree

v1*b1

v6*b6

v1*c1

v6*c6

betweenness

closeness

line1

line2

line3

line4

line6

line5

Graph Extraction

Program 

Dependency Graph

line1

line2 line3

line4

line6

line5

Sentence 

Embedding

Program 

Dependency Graph

vec1

vec2 vec3

vec4

vec6

vec5

CNN 

Classification

0 or 1

Function 

Source Code

line1

line2

line3

line4

line6

line5

Image Generation

v1*d1

v2*d2

…

v6*d6

degree

v1*b1

v2*b2

…

v6*b6

v1*c1

v2*c2

…

v6*c6

katz

closeness

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        /* POTENTIAL FLAW: Possible 

buffer overflow if data is larger than 

sizeof(dest)-strlen(dest)*/

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Input: Source Code of a Function

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Step1: Remove comments

void bad()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = badSource(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        printLine(VAR1);

    }

}

Step2: Map user-defined variables

void FUN1()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = FUN2(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        FUN3(VAR1);

    }

}

Step3: Map user-defined functions

char * VAR1;

char VAR2[100];

VAR1 = VAR2;

VAR1 = FUN2(VAR1);

 char VAR3[50] = "";

strncat(VAR3, VAR1, strlen(VAR1));

VAR3[50-1] = '\0'; 

FUN3(VAR1);

VAR2

VAR3

VAR1

VAR1

VAR1

VAR3

Original Program Dependency Graph

vector1

vector2

vector3

vector4

vector5

vector6

vector7

vector8

New Program Dependency Graph

vector1: 1 

vector2: 3

vector3: 4

vector4: 5

vector5: 4

vector6: 4

vector7: 3

vector8: 2

degree
degree 

centrality

1/7=0.14

3/7=0.43

4/7=0.57

5/7=0.71

4/7=0.57

4/7=0.57

3/7=0.43

2/7=0.29

0.14*vector1

0.43*vector2

0.57*vector3

0.71*vector4

0.57*vector5

0.57*vector6

0.43*vector7

0.29*vector8

……

katz centrality

……

closeness centrality

k1*vector1

……

k8*vector8

c1*vector1

……

c8*vector8

0.14*vector1

0.43*vector2

0.57*vector3

0.71*vector4

0.57*vector5

0.57*vector6

0.43*vector7

0.29*vector8

k1*vector1

k2*vector2

k3*vector3

k4*vector4

k5*vector5

k6*vector6

k7*vector7

k8*vector8

c1*vector1

c2*vector2

c3*vector3

c4*vector4

c5*vector5

c6*vector6

c7*vector7

c8*vector8

Image

Sentence Embedding Image Generation

Output: An Image

Graph ExtractionInput: Normalized Source Code

void FUN1()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = FUN2(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        FUN3(VAR1);

    }

}

Source Code

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        /* POTENTIAL FLAW: Possible 

buffer overflow if data is larger than 

sizeof(dest)-strlen(dest)*/

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Input: Source Code of a Function

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Step1: Remove comments

Step2: Map user-defined variables

void FUN1()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = FUN2(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        FUN3(VAR1);

    }

}

Step3: Map user-defined functions

void bad()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = badSource(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        printLine(VAR1);

    }

}

Figure 5: An example to illustrate how to convert the source code of a function into an image

Note that 𝐴 is the adjacency matrix of the graph 𝐺 with
eigenvalues 𝜆. The parameter 𝛽 controls the initial centrality
and

𝛼 <
1

𝜆𝑚𝑎𝑥

(3)

Katz centrality computes the relative influence of a node
within a graph by measuring the number of the immediate
neighbors (first-degree nodes) and also all other nodes in the
graph that connect to the node under consideration through
these immediate neighbors.
• Closeness centrality [25] indicates how close a node is to
all other nodes in the network. It is calculated as the average
of the shortest path length from the node to every other
node in the graph. The smaller the average shortest distance
of a node, the greater the closeness centrality of the node.

𝑥𝑖 =
𝑁 − 1∑
𝑖≠𝑗 𝑑 (𝑖, 𝑗)

(4)

Note that 𝑑 (𝑖, 𝑗) is the distance between nodes 𝑖 and 𝑗 , and
𝑁 is the number of nodes in the graph.

Because an image generally has three channels (i.e., red, green,
and blue) and they work together to produce a complete image. We
select three different centralities (i.e., degree centrality [25], katz
centrality [31], and closeness centrality [25]) to correspond to the
three channels. These three centralities can compute the importance
of all lines of code in a function from three different aspects. By this,
we can achieve complete consideration of different lines of code’s
contribution to a function’s program semantics. Algorithm 1 shows
the entire process of VulCNN of how to convert a function into
an image. As shown in Figure 5 and Algorithm 1, we first perform
degree centrality analysis on all nodes in the new PDG to collect
the degree centralities of all nodes (i.e., vectors). All vectors are
then arranged one by one according to the number of lines of code
after multiplying by the corresponding degree centrality. We call
these arranged new vectors the “degree channel”. Similarly, after
applying katz centrality and closeness centrality analysis on the
new PDG, we can obtain the other two “channels” which are “katz
channel” and “closeness channel”. Finally, these three channels are
used to produce an image.

Algorithm 1 Converting the source code of a function into an
image
Input: 𝐹 : Source code of a function;
Output: 𝐼 : An image.
1: nF ← CodeNormalization(𝐹 )
2: PDG← GraphExtraction(𝑛𝐹 )
3: V ← ObtainNodes(PDG)
4: for each 𝑣 ∈ 𝑉 do
5: vector ← SentenceEmbedding(v)
6: degreeCentrality← DegreeCentralityAnalysis(vector, PDG)
7: degreeChannel.add(degreeCentrality ∗ vector)
8: katzCentrality← KatzCentralityAnalysis(vector, PDG)
9: katzChannel.add(katzCentrality ∗ vector)
10: closenessCentrality ← ClosenessCentralityAnalysis(vector,

PDG)
11: closenessChannel.add(closenessCentrality ∗ vector)
12: end for
13: I ← ImageGeneration(degreeChannel, katzChannel, closeness-

Channel)
14: return 𝐼

In brief, the input of image generation phase is a new PDG, where
each node is an embedded vector, and the output is an image with
the importances of all lines of code.

3.4 Classification
Deep learning [35] is a complexmachine learning algorithm that has
achieved results in many areas (e.g., speech and image recognition)
far beyond previous related technologies. The advantage of deep
learning is to use unsupervised or semi-supervised feature learning
and efficient hierarchical feature extraction algorithms to replace
manual feature acquisition. In the field of image processing,
Convolutional Neural Network (CNN) [34, 36] has been the focus
since it not only does not require manual image preprocessing but
also can use its unique fine-grained feature extraction to reach a
level close to humans.



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yueming Wu, Deqing Zou, Shihan Dou, Wei Yang, Duo Xu, and Hai Jin

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � �

� � �

� � �

� � �

� � �

� � �

� � 	

� � 


� � �

� � �

� � �

�
�

�


 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Figure 6: The Cumulative Distribution Function (CDF) of the
total number of lines of code in a function

After image generation phase, the source code of a function
is converted into an image. Given an image, we intend to train
a CNN model first and then use it to detect vulnerability. Since
CNN takes equal-size images as input while the number of lines
of code in different functions is different, we need to make an
adjustment. To find a more suitable threshold to produce fixed-size
images, we select our experimental dataset in Section 4 (i.e., 40,657
functions) as the test object and record the number of lines of code
of all these functions. Figure 6 shows the Cumulative Distribution
Function (CDF) of the number of lines of code in these functions.
From the results in Figure 6, it can be observed that more than
99% of the functions have less than 200 lines of code. In reality, we
have experimented with different thresholds (i.e., 50-200 lines of
code) on detecting vulnerability. Considering the detection accuracy
and corresponding runtime overhead2, we finally choose 100 lines
of code as the threshold to generate our input images. When the
number of lines of code in a function is less than 100, we pad zeros
to the end of the vectors. When a function has more than 100
lines of code, we delete the ending part of vectors. The size of the
image we input is 3∗100∗128, where 3 corresponds to three channels
(i.e., “degree channel”, “katz channel”, and “closeness channel”), 100
corresponds to the threshold of code lines, and 128 represents the
dimension of a sentence vector.

Table 1: Parameter settings in VulCNN

parameters settings
loss function Cross Entropy Loss

activation function ReLU
optimizer Adam
batch size 32

learning rate 0.001
epoch num 100

2More details are in Section 4.2.

v1*d1

v2*d2

vn*dn

degree centrality

v1*b1

v2*b2

vn*bn

v1*c1

v2*c2

vn*cn

betweenness centrality

closeness centralityv1node1:sentence1

node2:sentence2

……

noden:sentencen

Program 

Function

Function 

Source Code

CNN 

Self-Attention

Vulnerability 

Metrics

Program 

Dependency 

Graph

Control Flow 

Data Flow 

Code 

Property 

Graph

Degree Centrality

Betweenness Centrality

Closeness Centrality

Fusion 

Layer
Classification

0

1

CNN 

Graph 

Extraction

Program 

Dependency Graph

line1

line2 line3

line4

line6

line5

Sentence 

Embedding

Program 

Dependency Graph

vec1

vec2 vec3

vec4

vec6

vec5

Centrality 

Analysis

vec1

vec2 vec3

vec4

vec6

vec5

CNN 

Classifier

0

1

v1*d1

v6*d6

degree

v1*b1

v6*b6

v1*c1

v6*c6

betweenness

closeness

line1

line2

line3

line4

line6

line5

Graph Extraction

Program 

Dependency Graph

line1

line2 line3

line4

line6

line5

Sentence 

Embedding

Program 

Dependency Graph

vec1

vec2 vec3

vec4

vec6

vec5

CNN 

Classification

0 or 1

Function 

Source Code

line1

line2

line3

line4

line6

line5

Image Generation

v1*d1

v2*d2

…

v6*d6

degree

v1*b1

v2*b2

…

v6*b6

v1*c1

v2*c2

…

v6*c6

katz

closeness

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        /* POTENTIAL FLAW: Possible 

buffer overflow if data is larger than 

sizeof(dest)-strlen(dest)*/

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Input: Source Code of a Function

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Step1: Remove comments

void bad()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = badSource(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        printLine(VAR1);

    }

}

Step2: Map user-defined variables

void FUN1()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = FUN2(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        FUN3(VAR1);

    }

}

Step3: Map user-defined functions

char * VAR1;

char VAR2[100];

VAR1 = VAR2;

VAR1 = FUN2(VAR1);

 char VAR3[50] = "";

strncat(VAR3, VAR1, strlen(VAR1));

VAR3[50-1] = '\0'; 

FUN3(VAR1);

VAR2

VAR3

VAR1

VAR1

VAR1

VAR3

Original Program Dependency Graph

vector1

vector2

vector3

vector4

vector5

vector6

vector7

vector8

New Program Dependency Graph

vector1: 1 

vector2: 3

vector3: 4

vector4: 5

vector5: 4

vector6: 4

vector7: 3

vector8: 2

degree
degree 

centrality

1/7=0.14

3/7=0.43

4/7=0.57

5/7=0.71

4/7=0.57

4/7=0.57

3/7=0.43

2/7=0.29

0.14*vector1

0.43*vector2

0.57*vector3

0.71*vector4

0.57*vector5

0.57*vector6

0.43*vector7

0.29*vector8

……

katz centrality

……

closeness centrality

k1*vector1

……

k8*vector8

c1*vector1

……

c8*vector8

0.14*vector1

0.43*vector2

0.57*vector3

0.71*vector4

0.57*vector5

0.57*vector6

0.43*vector7

0.29*vector8

k1*vector1

k2*vector2

k3*vector3

k4*vector4

k5*vector5

k6*vector6

k7*vector7

k8*vector8

c1*vector1

c2*vector2

c3*vector3

c4*vector4

c5*vector5

c6*vector6

c7*vector7

c8*vector8

Image

Sentence Embedding Image Generation

Output: An Image

Graph ExtractionInput: Normalized Source Code

void FUN1()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = FUN2(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        FUN3(VAR1);

    }

}

Source Code

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        /* POTENTIAL FLAW: Possible 

buffer overflow if data is larger than 

sizeof(dest)-strlen(dest)*/

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Input: Source Code of a Function

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Step1: Remove comments

Step2: Map user-defined variables

void FUN1()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = FUN2(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        FUN3(VAR1);

    }

}

Step3: Map user-defined functions

void bad()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = badSource(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        printLine(VAR1);

    }

}

char * data;

char dataBuffer[100];

data = dataBuffer;

data = badSource(data);

 char dest[50] = "";

strncat(dest, data, strlen(data));

dest[50-1] = '\0'; 

printLine(data);

dataBuffer

dest

data

data

data

dest

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

1

2

3

4

5

6

7

8

1

2

6

8

3

4

5

7

0 1 0 00 0 0 0

0 0 0 02 0 0 0

0 0 0 00 2 0 0

0 0 1 10 0 1 0

0 0 2 00 0 0 1

0 0 0 00 0 0 1

0 0 0 10 0 0 0

0 0 0 00 0 0 0

1 2 6 83 4 5 7

In

Degree

Out

Degree

0 1 3 22 2 1 2

1

2

1

0

2

3

3

1

Source Code Program Dependency Graph Adjacency Matrix

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {  char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Out

Degree

In

Degree
Degree

0

1

3

2

2

2

1

2

1

2

1

0

2

3

3

1

1

3

4

2

4

5

4

3

char * data;

char dataBuffer[100];

data = dataBuffer;

data = badSource(data);

 char dest[50] = "";

strncat(dest, data, strlen(data));

dest[50-1] = '\0'; 

printLine(data);

dataBuffer

dest

data

data

data

dest

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, 

strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Source Code Program Dependency Graph

Adjacency Matrix

1

2

6

8

3

4

5

7

0 1 0 00 0 0 0

0 0 0 02 0 0 0

0 0 0 00 2 0 0

0 0 1 10 0 1 0

0 0 2 00 0 0 1

0 0 0 00 0 0 1

0 0 0 10 0 0 0

0 0 0 00 0 0 0

1 2 6 83 4 5 7

In

Degree

Out

Degree

0 1 3 22 2 1 2

1

2

1

0

2

3

3

1

1

2

3

4

5

6

7

8

…

an image: 3*128*100

10 region sizes: 1-10
32 filters for each 

region size
totally 10*32 filters

max pool: 10*32
fully 

connected 
layer: 320

vulnerable 
or not…

Figure 7: CNN classification of VulCNN

After generating fixed-size images, we then train a CNN model
using these images. As shown in Figure 7, we use different
convolution filters with a shape of𝑚∗128, so that each filter can
span the entire space of the sentence embedding. The filter size𝑚
determines the number of sequential sentences considered together.
In VulCNN, we select 10 filter sizes (i.e., 1 to 10), and each size has 32
feature maps to extract the features of different parts of the image.
After max pooling, the length of our fully connected layer is 320.
The descriptions of parameters used in VulCNN are illustrated in
Table 1. The whole model uses rectified linear units (i.e., ReLU [23])
as the non-linear activation function. Moreover, the loss function
used in our CNN to penalize the incorrect classification is cross-
entropy loss. We train the CNN using Adam [33] with a learning
rate of 0.001. After obtaining a trained CNN model, we then use it
to flag new functions as either vulnerable or not.

To interpret the detection results, we leverage Gradient-weighted
Class Activation Mapping++ (Grad-CAM++) [20, 49] as our vi-
sualization technique to pinpoint the vulnerable lines of code.
Grad-CAM++ is a class-discriminative localization technique that
generates visual explanations for any CNN-based network without
changing the architecture or retraining. According to the intensity
of the color in the heatmap, we can know which lines of code may
be more likely to be vulnerable.

4 EXPERIMENTS
In this section, we aim to answer the following research questions:
• RQ1: What is the detection performance of VulCNN when
detecting source code vulnerability?
• RQ2: What is the runtime overhead of VulCNN when detecting
source code vulnerability?
• RQ3: Can VulCNN achieve large-scale vulnerability scanning?

4.1 Experiment Settings
We first collect a dataset from Software Assurance Reference Dataset
(SARD) [14] which is a project maintained by National Institute
of Standards and Technology (NIST) [9]. SARD contains a large
number of production, synthetic, and academic security flaws or



VulCNN: An Image-inspired Scalable Vulnerability Detection System ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

vulnerabilities (i.e., bad functions) and many good functions. In our
paper, we focus on detecting vulnerability in C/C++, therefore, we
only select functions written in C/C++ in SARD. Data obtained
from SARD consists of 12,303 vulnerable functions and 21,057
non-vulnerable functions. Moreover, since the synthetic programs
in SARD may not be realistic, we collect another dataset from
real-world software. For real-world vulnerabilities, we consider
National Vulnerability Database (NVD) [10] as our collection
source. We finally obtain 1,384 vulnerable functions that belong to
different open-source software written in C/C++. For real-world
non-vulnerable functions, we randomly select a part of the dataset
in [42] which contains non-vulnerable functions from several open-
source projects. Our final dataset consists of 13,687 vulnerable
functions and 26,970 non-vulnerable functions.

Four phases (i.e., graph extraction, sentence embedding, image
generation, and classification) in VulCNN are implemented by
using Joern [53], sent2vec [45], networkx [15], and pytorch [16],
respectively, We run all experiments on a server with 16 cores of
CPU and a GTX 1080Ti GPU. For dataset, we first randomly divide
it into ten subsets, then the seven subsets are used to train a CNN
model, the other two subsets are used to validate, and the final
subset is used to test. The metrics used to measure the effectiveness
of VulCNN are the same as others [39, 41, 56]. For example, true
positive (TP) reports the number of functions that are correctly
classified as vulnerable and true negative (TN) shows the number
of functions that are correctly detected as non-vulnerable.

4.2 Detection Performance

6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0

7 8

7 9

8 0

8 1

8 2

8 3

8 4

Acc
ura

cy 
(%)

T h e  n u m b e r  o f  l i n e s  o f  c o d e  t o  g e n e r a t e  a n  i m a g e

Figure 8: The detection performance of VulCNN with
different thresholds to construct an image

We first present the detection performance of VulCNN under
different thresholds (i.e., the number of lines of code to produce our
images). Because more than 99% of the functions in Figure 6 have
less than 200 lines of code, we focus on the thresholds below 200
lines. Specifically, we select a total of 10 thresholds (i.e., 50, 60, 70, 80,
90, 100, 120, 150, 170, 200 lines) to commence our evaluations. The
experimental results are presented in Figure 8, through the results,

we see that the threshold is positively correlated with detection
accuracy, the larger the threshold, the higher the accuracy. However,
when the threshold reaches 100 lines, the growth of accuracy
becomes small. On the one hand, since the detection accuracy of
VulCNN with 100 lines of code is almost the highest. On the other
hand, the greater the threshold, the larger the image, and the more
the memory required. Therefore, we select 100 lines of code as our
final threshold to generate the input images.

We then compare VulCNN with several vulnerability detection
tools, including one commercial static vulnerability detection tool
(i.e., Checkmarx [5]), two open-source static analysis tools (i.e.,
FlawFinder [6] and RATS [12]), and five deep learning-based vulner-
ability detection approaches (i.e., TokenCNN 3 [47], VulDeePecker
[41], SySeVR [40], VulDeeLocator [38], and Devign [56]).

� � 
 � � 
 
 � � � � � � �
� �

� �

� �

� �

� �

� �

	 �

� � �

�
�


��

��


�
��

��
��

	
�


��

� � � � � � � � � �
� � � � � � � � � � �
� 
 � � �
� � � � � � � � �
� 
 � � � � � 	 � � � � �
� �  � � 
 

� 
 � � � � � � � � � � � �
� � � � � � �
� 
 � � � � �
� 
 � � � � � � � �

Figure 9: True Positive Rate (TPR), True Negative Rate (TNR),
and Accuracy of Checkmarx, FlawFinder, RATS, TokenCNN,
VulDeePecker, SySeVR, VulDeeLocator, Devign, and VulCNN
on detecting vulnerability

As for the commercial tool (i.e., Checkmarx) and two open-
source static analysis tools (i.e., FlawFinder and RATS), the detection
performance in Figure 9 shows that their True Positive Rates (TPRs)
and True Negative Rates (TNRs) are not ideal. For example, the TPR
of Checkmarx is only 31.9%, which means that Checkmarx can only
detect 31.9% of vulnerabilities in our labeled dataset. Such results
are reasonable because these tools depend on rules or patterns
defined by human experts. In practice, there are different types
of vulnerabilities, and the patterns of each type are different. In
other words, experts can not define all patterns of all vulnerabilities,
resulting in poor detection performance.

As for TokenCNN, it first conducts lexical analysis to transform
the source code into a token sequence and then embeds them
into fixed-length vector representations. Finally, these vectors are
fed into a Convolutional Neural Network (CNN) model to train
a vulnerability detector. Since it does not consider any program
semantics, it performs worse than VulCNN. As for VulDeePecker and
SySeVR, they both collect code gadgets by slicing programs and then
transform them into corresponding vector representations. Finally,
these vectors are used to train a Bidirectional Recurrent Neural
3For more convenient discussion, we call the method TokenCNN since it takes tokens
as input and detects vulnerability by training a CNN model.



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yueming Wu, Deqing Zou, Shihan Dou, Wei Yang, Duo Xu, and Hai Jin

Network (BRNN) model to detect vulnerability. The difference
between these two systems is that VulDeePecker only conducts
data flow analysis to slice programs while SySeVR considers both
control flow and data flow to obtain the program slices. Obviously,
SySeVR performs better than VulDeePecker because it contains more
program semantics. However, they do not consider the different
contributions of different lines of code to the program semantics,
but treat all lines of code in a slice as text and directly apply
BRNN to train a vulnerability detector. This is the reason why
they detect less vulnerability than VulCNN. As for VulDeeLocator,
it first compiles a program to a LLVM bitcode file and then
extracts Intermediate Representation (IR) slices to retain the program
semantics. Finally, these IR slices are used to detect vulnerability
by training a BRNN model. Since IR contains more program
details than source code, VulDeeLocator can distinguish more
vulnerability than VulDeePecker and SySeVR. However, similar to
VulDeePecker and SySeVR, VulDeeLocator also treat the slices as text,
resulting lower performance than VulCNN. As for Devign, it first
applies complex program analysis to extract a graph representation
that contains comprehensive program semantics and then uses a
general graph neural network to detect vulnerability. The detection
performance of Devign is almost the same as that of VulCNN.
However, due to the complexity of the generated graph, it cannot
be extended to large-scale vulnerability scanning. But VulCNN
can, because it uses centrality analysis to convert time-consuming
graphic analysis into efficient image scanning.

To check whether the use of centrality analysis contributes
to VulCNN on detecting vulnerability or not, we construct an-
other experiment. More specifically, after sentence embedding, we
directly feed the sentence vectors into a CNN model to train a
classifier without multiplying by the centrality. We call the method
as VulCNN-wc (i.e., VulCNN without centrality) and show the
experiment result in Figure 9. Through the figure, we can see
that VulCNN is superior to VulCNN-wc, which indicates that the
consideration of centrality of different lines of code in a function
can improve the detection accuracy on vulnerability detection.

v1*d1

v2*d2

vn*dn

degree centrality

v1*b1

v2*b2

vn*bn

v1*c1

v2*c2

vn*cn

betweenness centrality

closeness centralityv1node1:sentence1

node2:sentence2

……

noden:sentencen

Program 

Function

Function 

Source Code

CNN 

Self-Attention

Vulnerability 

Metrics

Program 

Dependency 

Graph

Control Flow 

Data Flow 

Code 

Property 

Graph

Degree Centrality

Betweenness Centrality

Closeness Centrality

Fusion 

Layer
Classification

0

1

CNN 

Graph 

Extraction

Program 

Dependency Graph

line1

line2 line3

line4

line6

line5

Sentence 

Embedding

Program 

Dependency Graph

vec1

vec2 vec3

vec4

vec6

vec5

Centrality 

Analysis

vec1

vec2 vec3

vec4

vec6

vec5

CNN 

Classifier

0

1

v1*d1

v6*d6

degree

v1*b1

v6*b6

v1*c1

v6*c6

betweenness

closeness

line1

line2

line3

line4

line6

line5

Graph Extraction

Program 

Dependency Graph

line1

line2 line3

line4

line6

line5

Sentence 

Embedding

Program 

Dependency Graph

vec1

vec2 vec3

vec4

vec6

vec5

CNN 

Classification

0 or 1

Function 

Source Code

line1

line2

line3

line4

line6

line5

Image Generation

v1*d1

v2*d2

…

v6*d6

degree

v1*b1

v2*b2

…

v6*b6

v1*c1

v2*c2

…

v6*c6

katz

closeness

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        /* POTENTIAL FLAW: Possible 

buffer overflow if data is larger than 

sizeof(dest)-strlen(dest)*/

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Input: Source Code of a Function

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Step1: Remove comments

void bad()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = badSource(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        printLine(VAR1);

    }

}

Step2: Map user-defined variables

void FUN1()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = FUN2(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        FUN3(VAR1);

    }

}

Step3: Map user-defined functions

char * VAR1;

char VAR2[100];

VAR1 = VAR2;

VAR1 = FUN2(VAR1);

 char VAR3[50] = "";

strncat(VAR3, VAR1, strlen(VAR1));

VAR3[50-1] = '\0'; 

FUN3(VAR1);

VAR2

VAR3

VAR1

VAR1

VAR1

VAR3

Original Program Dependency Graph

vector1

vector2

vector3

vector4

vector5

vector6

vector7

vector8

New Program Dependency Graph

vector1: 1 

vector2: 3

vector3: 4

vector4: 5

vector5: 4

vector6: 4

vector7: 3

vector8: 2

degree
degree 

centrality

1/7=0.14

3/7=0.43

4/7=0.57

5/7=0.71

4/7=0.57

4/7=0.57

3/7=0.43

2/7=0.29

0.14*vector1

0.43*vector2

0.57*vector3

0.71*vector4

0.57*vector5

0.57*vector6

0.43*vector7

0.29*vector8

……

katz centrality

……

closeness centrality

k1*vector1

……

k8*vector8

c1*vector1

……

c8*vector8

0.14*vector1

0.43*vector2

0.57*vector3

0.71*vector4

0.57*vector5

0.57*vector6

0.43*vector7

0.29*vector8

k1*vector1

k2*vector2

k3*vector3

k4*vector4

k5*vector5

k6*vector6

k7*vector7

k8*vector8

c1*vector1

c2*vector2

c3*vector3

c4*vector4

c5*vector5

c6*vector6

c7*vector7

c8*vector8

Image

Sentence Embedding Image Generation

Output: An Image

Graph ExtractionInput: Normalized Source Code

void FUN1()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = FUN2(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        FUN3(VAR1);

    }

}

Source Code

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        /* POTENTIAL FLAW: Possible 

buffer overflow if data is larger than 

sizeof(dest)-strlen(dest)*/

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Input: Source Code of a Function

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Step1: Remove comments

Step2: Map user-defined variables

void FUN1()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = FUN2(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        FUN3(VAR1);

    }

}

Step3: Map user-defined functions

void bad()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = badSource(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        printLine(VAR1);

    }

}

char * data;

char dataBuffer[100];

data = dataBuffer;

data = badSource(data);

 char dest[50] = "";

strncat(dest, data, strlen(data));

dest[50-1] = '\0'; 

printLine(data);

dataBuffer

dest

data

data

data

dest

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

1

2

3

4

5

6

7

8

1

2

6

8

3

4

5

7

0 1 0 00 0 0 0

0 0 0 02 0 0 0

0 0 0 00 2 0 0

0 0 1 10 0 1 0

0 0 2 00 0 0 1

0 0 0 00 0 0 1

0 0 0 10 0 0 0

0 0 0 00 0 0 0

1 2 6 83 4 5 7

In

Degree

Out

Degree

0 1 3 22 2 1 2

1

2

1

0

2

3

3

1

Source Code Program Dependency Graph Adjacency Matrix

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {  char dest[50] = "";

        strncat(dest, data, strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Out

Degree

In

Degree
Degree

0

1

3

2

2

2

1

2

1

2

1

0

2

3

3

1

1

3

4

2

4

5

4

3

char * data;

char dataBuffer[100];

data = dataBuffer;

data = badSource(data);

 char dest[50] = "";

strncat(dest, data, strlen(data));

dest[50-1] = '\0'; 

printLine(data);

dataBuffer

dest

data

data

data

dest

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, 

strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Source Code Program Dependency Graph

Adjacency Matrix

1

2

6

8

3

4

5

7

0 1 0 00 0 0 0

0 0 0 02 0 0 0

0 0 0 00 2 0 0

0 0 1 10 0 1 0

0 0 2 00 0 0 1

0 0 0 00 0 0 1

0 0 0 10 0 0 0

0 0 0 00 0 0 0

1 2 6 83 4 5 7

In

Degree

Out

Degree

0 1 3 22 2 1 2

1

2

1

0

2

3

3

1

1

2

3

4

5

6

7

8

…

an image: 3*128*100

10 region sizes: 1-10
32 filters for each 

region size
totally 10*32 filters

max pool: 10*32
fully 

connected 
layer: 320

vulnerable 
or not…

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, 

strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

char * data;

char dataBuffer[100];

data = dataBuffer;

data = badSource(data);

char dest[50] = "";

strncat(dest, data, strlen(data));

dest[50-1] = '\0';

printLine(data);

As a result, one more character will be added to the string, while the terminal null will be written 

outside the buffer.

source code generated heatmap

the redder the color, the more 

likely it is that the line is 

vulnerable code

Figure 10: The visualization of a detected buffer overflow
vulnerability

Furthermore, since VulCNN is an image-based vulnerability
detection system, we can interpret the detection results by using
CNN visualization techniques. In this paper, we take Gradient-
weighted Class Activation Mapping++ (Grad-CAM++) [20] as an
example to visualize our detection results. Figure 10 shows the

visualization of a detected buffer overflow vulnerability. This
vulnerability can be triggered when ‘data’ is larger than ‘sizeof(dest)
- strlen(dest)’. In this case, the terminal null will be written outside
the buffer. Through Figure 10, we see that the color of code
‘strncat(dest, data, strlen(data));’ is the reddest, which means that
this line of code is more likely to be vulnerable code. This result is
in line with expectations.

4.3 Runtime Overhead
In this section, we perform a comprehensive evaluation on runtime
overhead of VulCNN by using our 40,657 functions (i.e., 13,687
vulnerable functions and 26,970 non-vulnerable functions). Given
a new function, VulCNN consists of four main steps to complete
the classification: Graph Extraction, Sentence Embedding, Image
Generation, and Classification.

4.3.1 Graph Extraction. Given the source code of a function, the
first step of VulCNN is to extract the PDG of it. Figure 11 presents
the runtime overheads of graph extraction on our dataset, in which
more than 95% functions can be obtained the graphs in three
seconds. On average, it takes 1.71 seconds to construct a PDG of a
function.

4.3.2 Sentence Embedding. The second step of VulCNN is to embed
all lines of code into corresponding fixed-length vectors. As shown
in Figure 11, this phase is very fast, it only requires about 0.000489
seconds to complete the sentence embedding of a PDG.

4.3.3 Image Generation. After embedding all lines of code into
vector representations, the third step of VulCNN is to apply
centrality analysis to transform the new PDG into an image. Figure
11 presents the runtime overheads of VulCNN in this step. More
than 98% PDGs are able to be converted into images in one second,
and the average runtime overhead of this phase is 0.26 seconds.
Such result indicates that VulCNN can efficiently transform a PDG
into an image.

4.3.4 Classification. The final step of VulCNN is to detect vulnera-
bility using a trained CNN model. CNN classification is the fastest
of all phases in VulCNN, it only consumes about 41 microseconds
to complete the classification of an image.

In addition, we also compare the scalability ofVulCNN with other
comparative systems. We exclude the comparison of Checkmarx,
FlawFinder, and RATS since they are not deep-learning-based
methods and perform worse than the other five deep-learning-
based approaches. Figure 12 shows the average runtime overheads
of TokenCNN, VulDeePecker, SySeVR, VulDeeLocator, Devign, and
VulCNN. As for TokenCNN, because it only applies simple lexical
analysis to obtain the source code tokens and uses a CNN model
to detect vulnerability, it is the fastest. On average, it only takes
0.25 seconds to finish the analysis of a function in our dataset. As
for VulDeePecker and SySeVR, their slice generation phase needs
to extract the control flow graph (CFG), program dependency graph
(PDG), and function call graph (FCG), resulting in lower scalability
than VulCNN. As for VulDeeLocator, as it is a LLVM-IR-based
vulnerability detection system, the source code needs to be compiled
first. The compilation phase consumes lots of time, making it
difficult to detect vulnerability on a large scale. As for Devign, it



VulCNN: An Image-inspired Scalable Vulnerability Detection System ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

� � � � � � � 	 
 � � �
� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � 	

� � 


� � �

� � �

�
�

�


 � � � � � � � � � � � 
 � � � � � 	 � � � � � � � � � � � � �

� 	 � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �
� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � 	

� � 


� � �

� � �

�
�

�

�  � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


 � � � � 
 � � � � 	 � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �
� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � 	

� � 


� � �

� � �

�
�

�

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


 
 	 � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � 	

� � 


� � �

� � �

�
�

�

� � � � � � � � � � � � 
 � � � 
 � � � � � � � � � � � � � � � � �

� � � � � � � 	 � � � � � � 
 � � � � � � � �

Figure 11: The Cumulative Distribution Function (CDF) of runtime overheads of VulCNN on different phases (seconds)

� � � �

� � 	 	 � �

� � � �

� � � �

� � 
 �

� � � � � � � �

	 � � � � � � � � � � �

� � � � 	 �
	 � � � � � � � � 
 � � �

� � � � 
 �
	 � � � � �

�

�

� �

� �

� �

� �

� �

�
�


���
	�

�
�	

�

	�

��
��

	�
�


��
�

Figure 12: Comparative runtime overheads of TokenCNN,
VulDeePecker, SySeVR, VulDeeLocator, Devign, and VulCNN

combines different code representations (i.e., abstract syntactic tree
(AST), control flow graph (CFG), data flow graph (DFG), and natural
code sequence (NSC)) to achieve accurate vulnerability analysis.
Due to the heavy-weight extraction of these code representations,
Devign consumes more runtime than VulCNN.

In summary, although VulCNN is not as scalable as TokenCNN,
it is about four times faster than VulDeePecker and SySeVR, about
15 times faster than VulDeeLocator, and about six times faster than
Devign.

4.4 Case Study
The original goal of our paper is to achieve accuracy and scalability
simultaneously on detecting vulnerabilities from large-scale source
code. Therefore, in this subsection, we conduct a case study to
examine the ability of VulCNN on real-world large-scale vulnera-
bility detection. We select three widely used open-source products
as our test objects: Libav [8], Xen [17], and Seamonkey [13]. The
versions of these products include both several old versions and the
latest version. By this, we can report whether vulnerabilities in old
versions have been “silently” patched in the latest version or not.

Table 2: Summary of our tested open-source software

OpenSource Software #Files #Functions #Lines of Code
Libav-0.8.21 996 8,198 437,857
Libav-9.21 1,135 8,917 471,691
Libav-11.12 1,343 9,807 552,768
Libav-12.3 1,509 10,760 625,034
Xen-4.12.0 4,225 61,693 2,464,062
Xen-4.13.0 4,988 68,400 2,783,561
Xen-4.14.0 5,151 71,230 2,872,957

Seamonkey-2.32 11,600 153,122 6,495,189
Seamonkey-2.53.4 15,369 208,106 8,798,738

Total 46,316 600,233 25,501,857

Table 2 presents the summary of our collected products, the total
number of functions that can be successfully analyzed by Joern [53]
in these products is 600,233. In other words, VulCNN analyzes a
total of 600,233 functions, with a total of more than 25 million lines
of code.

Due to a large amount of these codes, we adopt parallel
processing to analyze them. Specifically, we process ten functions
at a time. The total processing runtime overheads are presented in
Figure 13, it can be observed that the most time-consuming phase is
to extract the PDG of functions, this phase occupies more than 87%
of the total processing runtime. After generating the PDGs of these
600 thousand functions, we can transform them into corresponding
images in about 253 minutes. Such high efficiency indicates that
VulCNN has the ability to scan large-scale source code to discover
new vulnerabilities.

In practice, our scanning results are also encouraging since
we discover 73 vulnerabilities. Specifically, we first train a CNN
model using our collected labeled 40,657 functions including 13,687
vulnerable functions and 26,970 non-vulnerable functions. Then the
generated 600,233 images from more than 25 million lines of code
in Table 2 are fed into the trained CNN model. After collecting all
warnings reported by VulCNN, we then conduct manual analysis
to compare them with our collected real vulnerabilities one by
one. If the two are found to belong to the same pattern, it will be
judged to be a real vulnerability. The analysis result shows that
73 warnings correspond to patterns of known vulnerabilities in



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yueming Wu, Deqing Zou, Shihan Dou, Wei Yang, Duo Xu, and Hai Jin

Table 3: 26 Vulnerabilities discovered by VulCNN from the latest versions of our selected products

Target product CVE ID Vulnerable product reported Vulnerability release date Vulnerable file in the target product

Libav 12.3

CVE-2011-3893 FFmpeg 11/11/2011 libavcodec/vorbis.c

CVE-2013-0845 FFmpeg 12/07/2013 libavcodec/alsdec.c

CVE-2013-0856 FFmpeg 12/07/2013 libavcodec/alac.c

CVE-2015-6820 FFmpeg 09/05/2015 libavcodec/aacsbr.c

CVE-2015-6822 FFmpeg 09/05/2015 libavcodec/sanm.c

CVE-2015-8662 FFmpeg 12/23/2015 libavcodec/jpeg2000dwt.c

CVE-2018-1999010 FFmpeg 07/23/2018 libavformat/mms.c

CVE-2018-1999011 FFmpeg 07/23/2018 libavformat/asfdec.c

SeaMonkey 2.53.4

CVE-2007-5947 Firefox 11/13/2007 .../base/nsDocShell.cpp

CVE-2008-2805 Firefox, SeaMonkey 07/07/2008 .../generic/HyperTextAccessible.cpp

CVE-2008-2805 Firefox, SeaMonkey 07/07/2008 .../generic/Accessible.cpp

CVE-2009-2663 Firefox 08/04/2009 .../lib/vorbis_analysis.c

CVE-2009-3071 Firefox 09/10/2009 .../cxx/TestCrashCleanup.cpp

CVE-2009-3071 Firefox 09/10/2009 .../cxx/TestInterruptErrorCleanup.cpp

CVE-2010-0174 Firefox, Thunderbird, SeaMonkey 04/05/2010 .../pingsender/pingsender_win.cpp

CVE-2014-9672 FreeType 02/08/2015 .../mac/ftmac.c

CVE-2014-9675 FreeType 02/08/2015 .../lzw/ftlzw.c

CVE-2014-9675 FreeType 02/08/2015 .../bzip2/ftbzip2.c

CVE-2016-3189 Bzip2 06/30/2016 .../src/decompress.c

CVE-2016-3189 Bzip2 06/30/2016 .../bzip2-1.0.6/bzip2recover.c

CVE-2016-3189 Bzip2 06/30/2016 .../bzip2-1.0.6/decompress.c

CVE-2018-5097 Firefox, Thunderbird 06/11/2018 .../xslt/txMozillaTextOutput.cpp

CVE-2018-5181 Firefox 06/11/2018 .../widget/nsDragServiceProxy.cpp

Xen 4.14.0

CVE-2011-3346 QEMU 04/01/2014 .../scsi/scsi-disk.c

CVE-2013-4532 QEMU 01/02/2020 .../hw/stellaris_enet.c

CVE-2016-2841 QEMU 06/16/2016 .../hw/ne2000.c

� � � �

� � � �

� � �

� � � �

� � � � � � �

� � � � �
� � � � � 
 � � � �

� � � � � � 
 �
� � 	 � � � � � �

� � � � �
� � � � � � � � � �

� � �
� � � � � � 
 � 
 � � � � �

� � � � �
�

� � �

� � �

� � �

� � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

�
��

�
�
��

�
��


	
��

��
�

�

�

��
��

�

� � � � �

� � � � � �

� � � � �	 � � � � �

�

�

Figure 13: The total runtime overheads of VulCNN on
processing more than 25 million lines of code

NVD. Among these detected vulnerabilities, 17 of them have been
“silently” patched by vendors in the latest version of corresponding
products, codes of four vulnerabilities have been deleted, and the
other 52 of them still exist in the products. We have reported these
vulnerabilities to their vendors and hope that they can release a
patched version as soon as possible.

Due to the limited page, we show the detection results on old
versions of products in our website4 and only present the results
(i.e., Table 3) on three newest versions in this subsection. The details
of our discovered vulnerabilities include the corresponding CVE
ID in NVD, vulnerable products reported in NVD, the release data
in NVD, and the vulnerable file in the target product. From six
old versions of our selected products, we detect 47 vulnerabilities.
From three latest versions of these products, VulCNN discovers 26
vulnerabilities.

5 DISCUSSION
5.1 Threats to Validity
Labeled functions in SARD are from synthetic programs. These syn-
thetic functions may not be representative of the entire programs.
To mitigate the threat, we add some real-world vulnerabilities from
NVD and non-vulnerable functions from open-source products
into our dataset. The selection of the maximum number of lines
of a function to produce an equal-size image may cause some
inaccuracies. We mitigate the threat by researching the number
of lines of code for more than 40,000 functions to find a better

4https://github.com/CGCL-codes/VulCNN



VulCNN: An Image-inspired Scalable Vulnerability Detection System ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

threshold. Also, inaccuracies in detecting vulnerabilities on open-
source products (i.e., Libav, Xen, and Seamonkey) are inevitable
since VulCNN may cause some false positives. The threat is miti-
gated by deeply comparing the pattern of detected vulnerabilities
with the pattern of real-world vulnerabilities in NVD.

5.2 Discussion
5.2.1 The selection of comparative tools. We first select candidates
based on whether the tool is open source, and then filter based on
the type of technique used by the tool. Finally, we select one token-
based tool (i.e., TokenCNN ), one slice-based tool (i.e., VulDeePecker),
one bitcode-based tool (i.e., VulDeeLocator), and one graph-based
tool (i.e., Devign). Note that since SySeVR is the improved version of
VulDeePecker, we select it as one of the comparative tools as well.
Moreover, to achieve a more comprehensive comparison, we also
select three traditional rule-based tools (i.e., Checkmarx, FlawFinder,
and RATS).

5.2.2 The relationship between centrality measures and the colors of
image channels. The purpose of constructing an image is to facilitate
the use of image-based model (i.e., CNN) for vulnerability detection
while preserving the program details. Thus, our function image has
three layers (the same format as regular images), but there is no
rigid correspondence between three colors in regular images and
three centrality measures in function images.

5.2.3 Future work. From the results in Figure 13, we see that the
most time-consuming phase of VulCNN is to extract the PDG of
functions, this phase occupies more than 87% of the total processing
runtime. In our future work, we plan to design a new static
analysis tool or try other static analysis tools (e.g., Frama-C [7]) to
achieve more efficient PDG generation. In VulCNN, we select degree
centrality, katz centrality, and closeness centrality to commence
our image transformation. In practice, other different centralities
can also be adopted to retain the graph details. We plan to use
different combinations of different centralities to find a suitable
combination to achieve more effective image transformation in
VulCNN. Moreover, since most vulnerability detection systems
are closed source, we only compare VulCNN with eight tools (i.e.,
Checkmarx, FlawFinder, RATS, TokenCNN, VulDeePecker, SySeVR,
VulDeeLocator, and Devign). We will conduct detailed comparative
analysis on more systems in our future work. Although VulCNN
can maintain better effectiveness than comparative tools, its TNR
is not ideal. In other words, some of our detected vulnerabilities
may be false positives. In our future work, we plan to leverage
directed fuzzing [19, 21] on our detected vulnerabilities to mitigate
the situation.

6 RELATEDWORK
There have been proposed many different vulnerability detection
methods, which can be classified into two main categories: code-
similarity-based and pattern-based.

As for similarity-based methods, the similarity can be measured
from different aspects, such as string-based [27, 32], tree-based [29,
46], token-based [30, 48], graph-based [37], and their hybrid-
based [39]. However, they can only detect cloned vulnerabilities

and can not detect new vulnerabilities [41]. To tackle the challenge,
pattern-based techniques have been designed.

According to the degree of automation, pattern-based work can
be divided into three subcategories. 1) Manual methods: Human
experts manually generate the vulnerability patterns and use
them to detect new vulnerabilities. In practice, the detection
effectiveness of these tools (e.g., Checkmarx [5], FlawFinder [6],
and RATS [12]) is poor since experts can not generate all patterns
of different vulnerabilities. Results in Figure 9 also demonstrate
the situation. 2) Semi-automatic methods [18, 50, 51, 55]: Human
experts first extract certain features (e.g., subtrees and API sym-
bols [54], imports and function calls [44]) and then feed them to
traditional machine learning models (e.g., support vector machine
and k-nearest neighbor) to detect vulnerability. 3) More automatic
methods (i.e., deep-learning-based methods): Since deep learning
can automatically extract features from source code, it has been
used to detect source code vulnerability [22, 24, 40, 41, 43, 47, 56, 57].
For example, VulDeePecker [41] first collects code gadgets by slicing
programs and then transform them into corresponding vector
representations. Finally, it uses these vectors to train a Bidirectional
Long Short Term Memory (BLSTM) model to detect vulnerability.
muVulDeePecker [57] uses the program processing method in
VulDeePecker [41] and adds a code attention to detect multi-class
vulnerability. Devign [56] applies a general graph neural network
to detect vulnerability. It contains a novel convolutional module
that can effectively extract useful features from the learned rich
node representation for graph-level classification. DeepWukong
[22] distills the program semantics into a program dependency
graph and splits it into several subgraphs according to the program
points of interest. Then these subgraphs are fed into a graph neural
network to train a vulnerability detector.

7 CONCLUSION
In this paper, we propose a novel idea that can efficiently transform
the source code of a function into an image while preserving
the program semantics. By this, we design a scalable graph-
based vulnerability detection system (i.e., VulCNN ). The evaluation
results on a dataset of 13,687 vulnerable functions and 26,970 non-
vulnerable functions report that VulCNN is superior to eight state-
of-the-art vulnerability detectors (i.e., Checkmarx [5], FlawFinder
[6], RATS [12], TokenCNN [47], VulDeePecker [41], SySeVR [40],
VulDeeLocator [38], and Devign [56]). To validate the ability of
VulCNN on large-scale vulnerability scanning, we conduct a case
study on more than 25 million lines of code. Through the scanning
results, we discover 73 vulnerabilities that are not reported in NVD.
We have reported them to their vendors and hope that they can be
patched as soon as possible.

ACKNOWLEDGEMENTS
We would thank the anonymous reviewers for their insightful
comments to improve the quality of the paper. This work is
supported by the Key Program of National Science Foundation
of China under Grant No. U1936211 and partially supported by
NSF grant CCF-2146443. We also acknowledge support for research
from Siemens and Alipay.



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yueming Wu, Deqing Zou, Shihan Dou, Wei Yang, Duo Xu, and Hai Jin

REFERENCES
[1] 2020. 5 key takeaways from the 2020 Open Source Security and Risk Analysis

report. https://securityboulevard.com/2020/05/5-key-takeaways-from-the-2020-
open-source-security-and-risk-analysis-report.

[2] 2020. The Exactis Breach: 5 Things You Need to Know. https://blog.infoarmor.c
om/individuals-and-families/the-exactis-breach-5-things-you-need-to-know.

[3] 2020. WannaCry ransomware attack. https://en.wikipedia.org/wiki/WannaCry
_ransomware_attack.

[4] 2021. Adjacency Matrix. https://en.wikipedia.org/wiki/Adjacency_matrix/.
[5] 2021. Checkmarx. https://www.checkmarx.com/.
[6] 2021. FlawFinder. http://www.dwheeler.com/flawfinde/r.
[7] 2021. Frama-C. http://frama-c.com/.
[8] 2021. Libav. https://libav.org/.
[9] 2021. National Institute of Standards and Technology. https://www.nist.gov/.
[10] 2021. National Vulnerability Database. https://nvd.nist.gov.
[11] 2021. Open-source code analysis platform for C/C++ based on code property

graphs. https://joern.io/.
[12] 2021. Rough Audit Tool for Security. https://code.google.com/archive/p/rough-

auditing-tool-for-security/.
[13] 2021. Seamonkey. https://www.seamonkey-project.org/.
[14] 2021. Software Assurance Reference Dataset. https://samate.nist.gov/SRD/index.

php.
[15] 2021. Software for complex networks (Networkx). http://networkx.github.io.
[16] 2021. Tensors and Dynamic neural networks in Python with strong GPU

acceleration (PyTorch). https://pytorch.org.
[17] 2021. Xen. https://xenproject.org/xen-project-archives/.
[18] Michael Backes, Boris Köpf, and Andrey Rybalchenko. 2009. Automatic discovery

and quantification of information leaks. In Proceedings of the 2009 IEEE Symposium
on Security and Privacy (S&P’09). 141–153.

[19] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSACConference
on Computer and Communications Security (CCS’17). 2329–2344.

[20] Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N.
Balasubramanian. 2018. Grad-cam++: Generalized gradient-based visual
explanations for deep convolutional networks. In Proceedings of the 2018 IEEE
Winter Conference on Applications of Computer Vision (WACV’18). 839–847.

[21] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng Wu,
and Yang Liu. 2018. Hawkeye: Towards a desired directed grey-box fuzzer. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (CCS’18). 2095–2108.

[22] Xiao Cheng, HaoyuWang, Jiayi Hua, Guoai Xu, and Yulei Sui. 2021. DeepWukong:
Statically detecting software vulnerabilities using deep graph neural network.
ACM Transactions on Software Engineering and Methodology 30, 3 (2021), 1–33.

[23] George E. Dahl, Tara N. Sainath, and Geoffrey E. Hinton. 2013. Improving deep
neural networks for LVCSR using rectified linear units and dropout. In Proceedings
of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP’13). 8609–8613.

[24] Xu Duan, Jingzheng Wu, Shouling Ji, Zhiqing Rui, Tianyue Luo, Mutian Yang,
and Yanjun Wu. 2019. VulSniper: Focus your attention to shoot fine-grained
vulnerabilities. In Proceedings of the 2019 International Joint Conference on
Artificial Intelligence (IJCAI’19). 4665–4671.

[25] Linton C. Freeman. 1978. Centrality in social networks conceptual clarification.
Social Networks 1, 3 (1978), 215–239.

[26] Roger Guimera, Stefano Mossa, Adrian Turtschi, and Luis A. Nunes Amaral. 2005.
The worldwide air transportation network: Anomalous centrality, community
structure, and cities’ global roles. Proceedings of the National Academy of Sciences
102, 22 (2005), 7794–7799.

[27] Jiyong Jang, Abeer Agrawal, and David Brumley. 2012. ReDeBug: Finding
unpatched code clones in entire OS distributions. In Proceedings of the 2012
IEEE Symposium on Security and Privacy (S&P’12). 48–62.

[28] Hawoong Jeong, Sean P. Mason, Albert L. Barabási, and Zoltan N. Oltvai. 2001.
Lethality and centrality in protein networks. Nature 411, 6833 (2001), 41–42.

[29] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
Deckard: Scalable and accurate tree-based detection of code clones. In Proceedings
of the 29th International Conference on Software Engineering (ICSE’07). 96–105.

[30] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A
multilinguistic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering 28, 7 (2002), 654–670.

[31] Leo Katz. 1953. A new status index derived from sociometric analysis.
Psychometrika 18, 1 (1953), 39–43.

[32] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. 2017. VUDDY: A
scalable approach for vulnerable code clone discovery. In Proceedings of the 2017
IEEE Symposium on Security and Privacy (S&P’17). 595–614.

[33] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980 (2014).

[34] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet
classification with deep convolutional neural networks. In Proceedings of the

2012 Advances in Neural Information Processing Systems (NIPS’12). 1097–1105.
[35] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature

521, 7553 (2015), 436–444.
[36] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-

based learning applied to document recognition. IEEE 86, 11 (1998), 2278–2324.
[37] Jingyue Li and Michael D. Ernst. 2012. CBCD: Cloned buggy code detector. In

Proceedings of the 34th International Conference on Software Engineering (ICSE’12).
310–320.

[38] Zhen Li, Deqing Zou, Shouhuai Xu, Zhaoxuan Chen, Yawei Zhu, and Hai Jin.
2021. Vuldeelocator: a deep learning-based fine-grained vulnerability detector.
IEEE Transactions on Dependable and Secure Computing (2021), 1–17.

[39] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie Hu. 2016.
VulPecker: An automated vulnerability detection system based on code similarity
analysis. In Proceedings of the 32nd Annual Conference on Computer Security
Applications (ACSAC’16). 201–213.

[40] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan Chen. 2021.
SySeVR: A framework for using deep learning to detect software vulnerabilities.
IEEE Transactions on Dependable and Secure Computing (2021), 1–15.

[41] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, and Yuyi Zhong. 2018.
VulDeePecker: A deep learning-based system for vulnerability detection. In
Proceedings of the 2018 Network and Distributed System Security Symposium
(NDSS’18). 1–15.

[42] Guanjun Lin, Wei Xiao, Jun Zhang, and Yang Xiang. 2019. Deep learning-
based vulnerable function detection: A benchmark. In Proceedings of the 2019
International Conference on Information and Communications Security (ICICS’19).
219–232.

[43] Guanjun Lin, Jun Zhang, Wei Luo, Lei Pan, and Yang Xiang. 2017. POSTER:
Vulnerability discovery with function representation learning from unlabeled
projects. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (CCS’17). 2539–2541.

[44] Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas Zeller.
2007. Predicting vulnerable software components. In Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS’07). 529–540.

[45] Matteo Pagliardini, Prakhar Gupta, andMartin Jaggi. 2017. Unsupervised learning
of sentence embeddings using compositional n-gram features. arXiv preprint
arXiv:1703.02507 (2017).

[46] Nam H. Pham, Tung Thanh Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen.
2010. Detection of recurring software vulnerabilities. In Proceedings of the 2010
International Conference on Automated Software Engineering (ASE’10). 447–456.

[47] Rebecca Russell, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur
Ozdemir, Paul Ellingwood, and Marc McConley. 2018. Automated vulnerability
detection in source code using deep representation learning. In Proceedings of
the 2018 IEEE International Conference on Machine Learning and Applications
(ICMLA’18). 757–762.

[48] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.
Lopes. 2016. SourcererCC: Scaling code clone detection to big-code. In Proceedings
of the 38th International Conference on Software Engineering (ICSE’16). 1157–1168.

[49] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. 2017. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In Proceedings of the 2017
IEEE International Conference on Computer Vision (ICCV’17). 618–626.

[50] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David A. Wagner. 2001.
Detecting format string vulnerabilities with type qualifiers. In Proceedings of the
2001 USENIX Security Symposium (USENIX Security’01). 201–220.

[51] Lwin Khin Shar, Lionel C. Briand, and Hee Beng Kuan Tan. 2014. Web application
vulnerability prediction using hybrid program analysis and machine learning.
IEEE Transactions on Dependable and Secure Computing 12, 6 (2014), 688–707.

[52] Yueming Wu, Xiaodi Li, Deqing Zou, Wei Yang, Xin Zhang, and Hai Jin. 2019.
MalScan: Fastmarket-widemobilemalware scanning by social-network centrality
analysis. In Proceedings of the 34th International Conference on Automated Software
Engineering (ASE’19). 139–150.

[53] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling
and discovering vulnerabilities with code property graphs. In Proceddings of the
2014 IEEE Symposium on Security and Privacy (S&P’14). 590–604.

[54] Fabian Yamaguchi, Markus Lottmann, and Konrad Rieck. 2012. Generalized
vulnerability extrapolation using abstract syntax trees. In Proceedings of the 28th
Annual Computer Security Applications Conference (ACSAC’12). 359–368.

[55] Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and Konrad Rieck. 2015.
Automatic inference of search patterns for taint-style vulnerabilities. In
Proceedings of the 2015 IEEE Symposium on Security and Privacy (S&P’15). 797–812.

[56] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019.
Devign: Effective vulnerability identification by learning comprehensive program
semantics via graph neural networks. In Proceedings of the 2019 Advances in Neural
Information Processing Systems (NIPS’19). 10197–10207.

[57] Deqing Zou, Sujuan Wang, Shouhuai Xu, Zhen Li, and Hai Jin. 2019.
𝜇VulDeePecker: A deep learning-based system for multiclass vulnerability
detection. IEEE Transactions on Dependable and Secure Computing 18, 5 (2019),
1–13.

 https://securityboulevard.com/2020/05/5-key-takeaways-from-the-2020-open-source-security-and-risk-analysis-report
 https://securityboulevard.com/2020/05/5-key-takeaways-from-the-2020-open-source-security-and-risk-analysis-report
https://blog.infoarmor.com/individuals-and-families/the-exactis-breach-5-things-you-need-to-know
https://blog.infoarmor.com/individuals-and-families/the-exactis-breach-5-things-you-need-to-know
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/Adjacency_matrix/
https://www.checkmarx.com/
http://www.dwheeler.com/flawfinde/r
http://frama-c.com/
https://libav.org/
https://www.nist.gov/
https://nvd.nist.gov
https://joern.io/
https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://www.seamonkey-project.org/
https://samate.nist.gov/SRD/index.php
https://samate.nist.gov/SRD/index.php
http://networkx.github.io
https://pytorch.org
https://xenproject.org/xen-project-archives/

	Abstract
	1 INTRODUCTION
	2 MOTIVATION
	3 SYSTEM
	3.1 Overview
	3.2 Graph Extraction and Sentence Embedding
	3.3 Image Generation
	3.4 Classification

	4 EXPERIMENTS
	4.1 Experiment Settings
	4.2 Detection Performance
	4.3 Runtime Overhead
	4.4 Case Study

	5 DISCUSSION
	5.1 Threats to Validity
	5.2 Discussion

	6 RELATED WORK
	7 CONCLUSION
	REFERENCES

