
OSSFP: Precise and Scalable C/C++ Third-Party
Library Detection using Fingerprinting Functions

Jiahui Wu∗, Zhengzi Xu∗§, Wei Tang†, Lyuye Zhang∗, Yueming Wu∗, Chengyue Liu ∗,
Kairan Sun∗, Lida Zhao∗, Yang Liu∗

∗School of Computer Science and Engineering, Nanyang Technological University, Singapore
jiahui004@e.ntu.edu.sg, zhengzi.xu@ntu.edu.sg, zh0004ye@e.ntu.edu.sg, wuyueming21@gmail.com,

liuchengyuechina@gmail.com, sunk0013@e.ntu.edu.sg, lida001@e.ntu.edu.sg, yangliu@ntu.edu.sg
†School of Software, Tsinghua University, China, tang-w17@mails.tsinghua.edu.cn

Abstract—Third-party libraries (TPLs) are frequently used in
software to boost efficiency by avoiding repeated developments.
However, the massive using TPLs also brings security threats
since TPLs may introduce bugs and vulnerabilities. Therefore,
software composition analysis (SCA) tools have been proposed
to detect and manage TPL usage. Unfortunately, due to the
presence of common and trivial functions in the bloated feature
dataset, existing tools fail to precisely and rapidly identify TPLs
in C/C++ real-world projects. To this end, we propose OSSFP, a
novel SCA framework for effective and efficient TPL detection in
large-scale real-world projects via generating unique fingerprints
for open source software. By removing common and trivial
functions and keeping only the core functions to build the
fingerprint index for each TPL project, OSSFP significantly
reduces the database size and accelerates the detection process. It
also improves TPL detection accuracy since noises are excluded
from the fingerprints. We applied OSSFP on a large data set
containing 23,427 C/C++ repositories, which included 585,683
versions and 90 billion lines of code. The result showed that it
could achieve 90.84% of recall and 90.34% of precision, which
outperformed the state-of-the-art tool by 35.31% and 3.71%,
respectively. OSSFP took only 0.12 seconds on average to identify
all TPLs per project, which was 22 times faster than the other
tool. OSSFP has proven to be highly scalable on large-scale
datasets.

I. INTRODUCTION

Third-party libraries (TPLs) have been rapidly developed as
open source software. DéjàVu [1] has shown that developers
tend to clone the source code of different TPLs into their
software projects to prevent repetitively developing existing
similar functions and to enhance the efficiency of the software
development cycle. However, these copied TPLs may also in-
troduce severe security issues, such as Common Vulnerabilities
and Exposures (CVE), to the software, which endanger the
project development. Therefore, it is critical for developers
to track the TPLs in projects so that they can rapidly detect
and fix existing related security issues. Software composition
analysis (SCA) tools are proposed to detect the TPLs so that
developers can understand and manage the security risks.

The main algorithm of SCA is to generate a unique and
robust signature for each TPL, and match the signature in
the target software to test the TPL presence. As the number
of TPLs grows, how to generate the signature to accurately

§ Zhengzi Xu is the corresponding author.

and efficiently detect TPLs in large-scale datasets has become
a challenge for SCA tools. Existing tools propose different
approaches to address the problem, but none of them can
completely solve it. First, OSSPolice [2] improves the match-
ing efficiency via using lightweighted features, such as the
directory structures and folder names, as the signatures to de-
tect the TPLs. However, these kinds of features are not robust
and can be easily modified by the developers. Therefore, this
approach would produce a lot of false negatives if the directory
structure or names of TPLs is changed in the target projects. To
use more robust features, code clone-based approaches, such
as SourcererCC [3], uses token-based index generated from
source code as the signatures. It improves the robustness of
the signature since developers rarely change all the copied
functions in the software. However, not all the functions
are unique to the regarding TPLs such as functions copied
from other TPLs. Therefore, this approach will yield false
alarms in the presence of nested code clones. For example, if
TPLa copies the code of TPLb into its repositories as nested
code clones and the target project also uses some code of
TPLb, SourcererCC will report both of TPLa and TPLb in its
detection results even if only TPLb is used in the target project.

The state-of-the-art C/C++ TPL detection tool CENTRIS [4]
tries to ensure the uniqueness of the generated signature by
eliminating function clones in the nested reused TPLs. It
removes all the duplicated clones among TPLs in its pre-
collected database by keeping only the code with the oldest
time tag as the original copy. However, after the cloned
function elimination, there are still large number of common
and trivial functions which are not representative enough to
be a signature to identify a TPL. For example, it is difficult
to determine the originality of some simple functions such as
a function containing the body of ”return 0”. Both project A
and project B may contain these common and trivial functions
without cloning them from each other.

Unfortunately, CENTRIS is unaware of the existence of
common and trivial functions, thus noise is brought into
the features generated from all the functions. To mitigate
the problem, CENTRIS compromises to set a pre-defined
threshold and only reports a TPL when the ratio of matched
function signatures exceeds it, which brings three undesirable
consequences. First, utilizing a pre-defined threshold for TPL



detection would still introduce false positives and false nega-
tives. For example, if the threshold is set too high, CENTRIS
will fail to report those TPLs of which only a small part of
the code is copied in the target project. On the other hand,
a low threshold will cause many false alarms for mapping
those common and trivial functions within the target projects to
the pre-collected TPLs. Second, as CENTRIS has to calculate
the matched ratios between the target project and each TPL,
the searching time would unnecessarily increase linearly as
the growth of total number of TPLs. Third, without removing
those common and trivial functions, CENTRIS requires more
storage space to save the features.

Failing to handle the nested TPLs as well as common
and trivial functions, the accuracy and performance of the
existing approaches are negatively affected in detecting C/C++
TPLs. Based on the limitations of the existing approaches, we
have summarized three requirements for SCA tools to achieve
accurate and rapid TPL detection. Requirement 1 (R1): SCA
tools should generate representative signatures for accurate
TPL matching and detection. Most of the functions in the TPLs
do not contain the core logic. Instead, they are functions copied
from the other TPLs or common and trivial functions. Utilizing
these functions as fingerprints to detect TPLs would generate
numerous false positives when they are falsely mapped to the
functions in the target projects. Therefore, it is important to
summarize distinguishing signatures to ensure the detection
precision. Requirement 2 (R2): SCA tools should avoid using
thresholds in predicting the TPL existence. The proportion of
the TPL functions being cloned into projects could range from
nearly 0% to 100%. When the TPLs are partially used, setting
a predefined threshold to detect TPLs would cause a high
false negative rate. Requirement 3 (R3): SCA tools should be
capable of maintaining good performance on detection with a
large-scale TPL database. As more TPLs have been developed,
the search space is increased correspondingly. Therefore, it is
critical to ensure the scalability in terms of feature size and
time efficiency.

To this end, we propose OSSFP, an SCA framework
to perform rapid and accurate TPL detection on large-scale
projects to address the existing challenges. First, for R1,
to generate representative features and signatures for TPL
detection, OSSFP chooses to distinguish the core functions,
which possess the real values of the TPL, in the projects.
Specifically, it divides the functions into four categories, clone
function, supporting function, common function, and core
function. By filtering out the first three types of functions,
it can generate unique fingerprints for the TPLs based on
only the core functions. Second, for R2, OSSFP abandons
the predefined threshold and utilizes the fingerprint index built
from the core functions to detect TPLs. OSSFP ensures that
each TPL will have its unique fingerprints so that if any of
the fingerprints are detected in the target project, it has high
confidence to report the existence of TPL reuse. Therefore,
the partially used TPLs will not be missed. Furthermore,
OSSFP can also maintain a high precision rate by reducing
the noises in the fingerprints, which are caused by supporting

and common functions. Third, for R3, OSSFP improves the
scalability by using core functions, which account for 1.06%
of the total functions, to build the feature index. It reduces the
size of the TPL search spaces by 98.94%, and improves its
performance in TPL detection by utilizing the feature index.

We applied OSSFP to construct a TPL fingerprinting
database with 23,427 real-world C/C++ repositories from
GitHub. Furthermore, we manually verified 896 TPLs and built
the ground truth testing data for evaluation experiments. The
experimental results show that OSSFP can achieve 90.34% for
precision and 90.84% for recall, which outperforms CENTRIS
by 3.71% and 35.31%, respectively. OSSFP took 0.12 seconds
on average to identify all TPLs per project, which was 22
times faster than CENTRIS. With the help of our industry
collaborator, OSSFP was integrated as a commercial tool 1

for detecting C/C++ TPLs.
The main contributions of this paper are as follows:
• We proposed an SCA framework OSSFP, which pro-

vides rapid and accurate TPL detection for large-scale
projects via selecting core functions from each TPL and
generating unique fingerprints from these core functions.

• We implemented OSSFP and applied it to construct
a large-scale TPL fingerprinting database with 23,427
C/C++ repositories, which include 585,683 versions and
90 billion lines of code.

• We conducted experiments to show that OSSFP outper-
forms the state-of-the-art SCA tools by achieving 90.34%
precision and 90.84% recall on detecting 896 TPLs in 100
software projects. The results also show that OSSFP is
highly scalable, which takes 0.12 seconds on average to
detect all TPLs in one project.

II. RELATED WORKS

Software Composition Analysis (SCA) tools are proposed
to report TPLs within the target projects. Code clone detection
algorithms are proposed for mapping the target source code
to the pre-collected code, which can be used as the basic
approach for TPL detection. These two types of related works
are discussed in the following subsections.

A. Software Composition Analysis

SCA tools have been developed to handle different sce-
narios to enhance their accuracy. Commercial tools like
OWASP [5] and Sonatype [6] utilize the SBOM (software
bill of materials) files to list the third-party libraries. Since
there is no unified BOM file exists in the open source C/C++
repositories, these commercial tools can not be applied to
source code detection. LibD [7] and ATVHunter [8] and
LibScout [9] and LibPecker [10] and OSSPolice [2] targets
at detecting TPLs in Android applications and focus on the
binary level. Xiao et al. [11]–[19] utilizes the vulnerable code
snippets to identify vulnerable TPLs in the target projects.
These tools involve only the vulnerable TPLs which consist
only a small part of the open source field. There are also

1Free trial at https://scantist.io

https://scantist.io


some commercial tools such as BlackDuck [20] and Snyk
CLI that try to identify the TPLs by code clone detection
while do not eliminate the common and trivial functions. When
ignoring these types of functions, the state-of-the-art C/C++
TPL detection tool CENTRIS also fails to yield a promising
result, though it tries to balance its precision and recall by
setting a pre-defined threshold.

B. Code Clone Detection

When utilizing signature generated from source code for
detecting TPLs, code clone detection algorithms are the most
fundamental and relevant approaches. Code clone refers to the
duplication of source code, which can be divided into four
types [21]–[24]. Code clone detection algorithms [3], [25]–
[45] have been rapidly developed to precisely and efficiently
detect all clone types of reused source code. When applying
these algorithms in detecting clone functions, they can match
the similar or duplicated function pairs between the target
project and the pre-collected libraries with high accuracy and
high efficiency. However, if the mapped functions from the
pre-collected libraries are not representative and the source
libraries of these mapped functions are directly reported as the
reused TPLs of the target projects, it would generate numerous
false positive cases in the detection result. The nested TPLs
mentioned in the Sec. I is one typical situation that causes high
false positives when applying the code clone algorithm for
TPL detection. Thus, the characteristic of TPLs usage needs to
be considered before applying code clone detection algorithms
for TPL detection.

III. BACKGROUND

A. Terminology

In this section, we define the terms used in the paper to
avoid confusion.
Repository. Repositories refer to the storage location of the
software packages. This paper focuses on GitHub repositories,
of which software packages are stored on the GitHub platform.
Library and Third-party library. Libraries are reusable
components that support certain functionalities during code
development. Third-party libraries denote libraries that are
developed to be shared and used in other software programs.
They are usually open source and may be hosted as a GitHub
repository.
Partially Used TPL. When only part of the source code of
the TPL is utilized in the projects, we refer to the TPL as a
partially used TPL. Partially used TPLs are common in open
source projects. They are usually introduced when developers
only need sub-modules of the TPLs in their projects.
Project. A software project is similar to a software reposi-
tory. It can be a TPL or a real-world application containing
commercial code. This paper refers to the project as the target
software, which may contain multiple TPLs.
Version. A version of a library refers to a release tag of the
GitHub repository. If the GitHub repository has not released
any tags, the current commit will be used as the one and only
version for the library.

B. Function Definition

Our key algorithm is to determine the core functions in
the TPLs to build the fingerprint. Thus, we have classified
functions in the repositories into four categories. In this
section, we will give the formal definitions and examples for
each of the category.
Clone Function.: Clone functions are the ones that are not
created on their own but imported via copying from other
libraries. For example, in the project Chromium [46] , all
the functions in the file /third party/libpng/png.c (4dc9e5e)2

are clone functions. The code in the file is not developed by
Chromium community but is imported from a TPL named
LibPNG [47].
Supporting Function.: Supporting functions are the ones that
do not contain any core logic or algorithm. For example,
Listing 1 presents supporting functions retrieved from network
cryptography TPL OpenSSL (38b051a)3. These functions only
contain a return statement, which do not have logic related to
cryptography and network communications.

long ossl_quic_callback_ctrl(SSL *s, int cmd, void
↪→ (*fp) (void))

{
return 0;

}
long ossl_quic_ctx_callback_ctrl(SSL_CTX *ctx, int

↪→ cmd, void (*fp) (void))
{

return 0;
}

Listing 1: Supporting Function Example from OpenSSL

Common Function.: Common functions are the ones that
contain certain logic but are not exclusive to specific libraries.
These include hashing functions, sorting functions, and mathe-
matical operation functions, which contain certain algorithms.
However, the algorithms are commonly known by developers
and can be re-implemented in different TPLs. Listing 2 shows
a common function in OpenSSH [48] (57ed647)4. It calculates
the absolute value of a float number, which is common
math logic and is not related to cryptography and network
communications. The difference between a common function
and a clone function is that instead of using others code,
developers re-implement and customize the algorithm in a
common function.

static LDOUBLE abs_val(LDOUBLE value)
{

LDOUBLE result = value;
if (value < 0)

result = -value;
return result;

}

Listing 2: Common Functions Example from OpenSSH

2See commit 4dc9e5e4e4cbae3edde77b55839144149ae6ba0a in the
Chromium source tree.

3See commit 38b051a1fedc79ebf24a96de2e9a326ad3665baf in the /ss-
l/quic/quic impl.c of the OpenSSL source tree.

4See commit 2dc328023f60212cd29504fc05d849133ae47355 in the
/openbsd-compat/bsd-snprintf.c of the OpenSSH source tree.



Core Function: Core functions are the ones that implement
the core logic and algorithms of the library. These functions
are unique which contain the intellectual property of the TPLs.
Thus, we use the core functions to generate the fingerprint for
the TPLs.

C. Motivating Example

In an SCA task, we aim to identify a TPL named Strin-
gencoders [49], which is partially copied in the target project
Chromium [46]. In Chromium [46], the source code file
’modp b64.cc’ (196797a)5 from Stringencoders is copied
into the folder ’/third party/modp b64/’ (6db05bf)6. The file
contains three functions, which consist the core algorithm
of Stringencoders to process the strings. However, the rest
parts of Stringencoders, which contain 251 functions, are not
imported.

In this situation, Stringencoders can not be detected by
OSSPolice since OSSPolice use the directory information for
TPL detection, and the directory structure is changed in the
target project. Moreover, since the copy ratio of Stringencoders
is 1.19% (3/251) and has not exceeded the predefined threshold
(10%) set by CENTRIS, it will miss this case. This problem
can not be resolved by directly lowering the threshold since
CENTRIS has shown that if the predefined threshold is set
close to 0%, the false positive rate will be increased signifi-
cantly. To detect the TPL, we propose OSSFP to select only
the core functions to construct the TPL fingerprint. In this case,
the three imported functions are all core functions. If any of the
three functions are matched in Chromium, our tool will report
the detection of Stringencoders. Furthermore, since the three
functions in Chromium are unique, OSSFP will not produce
false positives by mistakenly matching them with fingerprints
in other TPLs.

IV. METHODOLOGY

A. Overview

Figure 1 presents the overview of OSSFP, which consists
of three offline phases to build a comprehensive TPL database
for C/C++ SCA task. First, in the feature generation phase, we
collected the TPL information via cloning all the target GitHub
repositories into the local system. We utilized the git tag as
the version for each repository and then generated features for
each function of each version. Second, in the hash building
phase, we built the library function hash index for each library
by removing duplicate functions between versions and then
built the distinct function hash index by removing duplicate
functions between libraries. Third, in the fingerprint selection
phase, we used different function properties to filter out
clone functions, supporting functions, and common functions.
Last, we kept only core functions for each library, and these
functions would be used as the fingerprint for TPL detection.

5See commit 196797afb2de11ae5381dad7246e25c7eeae2c1a in the strin-
gencoders source tree.

6See commit 6db05bf99752c68e667500675c10399e76f04cc8 in the
Chromium source tree.

B. Feature Generation

Feature of the library refers to the set of the code clone
feature and other code properties of all the functions. In
the feature generation steps, we aim to collect the meta
information of the libraries from the open source repositories
and generate the feature for library. Since GitHub is the most
popular platform [50] for hosting open source repositories and
C/C++ GitHub repositories over 100 stargazers are often used
in previous related works [2], [4], [51], we chose GitHub as
the repositories source for collecting libraries. In total, we have
collected a set of 23,427 links of GitHub repositories via the
official API provided by GitHub. Note that if the repositories
are forked from other original repositories, they would not
be included in our data set. We pull all source code of the
repositories into the local system by the git clone command.
The cloned repositories contain all the history messages of the
source code, including commit time and version tags. Once
the repositories are prepared, the next step is to obtain the
version information. Most GitHub repositories release their
version by tagging specific points in their commit history. For
each repository, we retrieve these tags as their versions. For
those repositories which have not released any git tags, we
used its current main branch as their only version. we chose
Antlr [52] to parse functions within all C source code files.
Antlr is an efficient lexical parser that is compatible with most
programming languages.

To avoid the repetition of parsing the duplicate source code
files between different versions of the same library, we adopted
an incremental approach to enhance the efficiency of generat-
ing function features for repositories. Some repositories like
OpenSSL [53] contain a large number of git tags that may lead
to a long processing time. Between two consecutive GitHub
release tags, there may not be too much difference in the
source code. Thus, we optimized the processing time by only
parsing the differences in source code between consecutive
versions. The information on the difference between two git
tag versions can be quickly retrieved by git log command.

After setting up the meta information and tools, we pro-
ceeded to generate the following features for each function of
each version of each library.

• Function Hash: the MD5 hash value generated from the
function content. To avoid missing mapping of the function
pairs without semantic differences, the function content
will be normalized by removing blank spaces, new line
characters, and comments for calculating the MD5 hash
value. Function hash is the identity we used to group the
functions in the index building phase.

• Author Time: the create time of the function content, which
is retrieved by the git blame command. The git blame
command could show the actual creation time of each line
of the function content. The author time of the function is
the decisive factor for determining if the regarded library is
the original author of the function.

• Lines of Code: the number of lines of the function code,
excluding those blank lines. The lines of code is one of the



Fig. 1: Overview of OSSFP

measurements for function complexity, which will be used
at the Fingerprint Selection Phase.

• Cyclomatic Complexity [54]: the number of linearly inde-
pendent paths within the function content. The Cyclomatic
complexity is also used for measuring function complexity.

• Halstead Volume [55]: a measuring factor for function
complexity which is calculated by the length of the function
content and the number of the vocabulary of the function
content.

C. Index Building

After generating the feature of each function of all versions
of each library, the next phase was to build the distinct hash
index for all the functions with their regarded original author
library. With the distinct hash index, the clone functions in
each repository can be marked out by checking with the hash
index. A function can be determined as a non-cloned function
or called an original function only if its author time is earlier
than those with the same function hash in all other repositories.
Vice versa, if the author time of a function is later than the
other function in a different repository with the same hash
index, it can be recognized as a clone function. The index
building phase aims to mark out the author library of each
function and thus provide the information for each library to
filter the clone functions in the next phase.

To efficiently build the hash index, we divided the process
into two steps. The first step called Library Index Building is to
collect all the function hashes and their author time for each
library, which can be run parallel to reduce the processing
time. In this step, we built the independent hash indexes
for each library which contain function hash value and their
earliest commit time. For different versions of a repository, the
author times of the same function hash of different versions
in the same repositories may vary due to the non-semantic
change in different versions like changing function name or
folder name. To select the earliest author time for each function
hash in a library, we employed the Algorithm 1 to generate
the function hash index of author time.

After building the index of the function hash for each
library, the following step called Hash Index Building is to
build the function hash index for the whole data set. Only
non-clone functions will be stored in the function hash index,
which contains the following information.

• Original Library: the library with the earliest author
time of the same function hash.

Algorithm 1 Library Index Building
Input: LFL ▷ List of Library Feature
Output: LHIL ▷ List of Library Hash Index

1: procedure LIBRARYINDEXGENERATION(LFL)
2: LHIL← ∅
3: for VFL in LFL do ▷ List of Version Feature
4: LHI ← ∅ ▷ Function Hash Index
5: for FL in VFL do ▷ List of Function Feature
6: hv ← FL.hash value
7: ct← FL.commit time
8: if hv not in LHI then
9: LHI.put(hv:ct)

10: else if ct < LHI.hv.commit time then
11: LHI.hv.commit time← ct
12: end if
13: end for
14: LHIL.add(LHI)
15: end for
16: return LHIL
17: end procedure

• Author Time: the creation time of the function content,
which is retrieved by the git blame command.

• Document Frequency: the number of libraries containing
the same function hash.

The function hash index of each library built from the
former step will be used as inputs for building the final
function hash index, as shown in the Algorithm 2. When
iterating each library, we recorded the earliest author time
and the corresponding library for each function hash. The
occurrence frequency of each function hash will also be
recorded as the document frequency for further analysis.

D. Fingerprint Selection

In the last step, we aimed to select the core functions for
each library as its fingerprints. As shown in Figure 2, to select
the core functions, three steps would be adopted to filter the
clone functions, supporting functions, and common functions
sequentially. The first step is to eliminate the clone functions.
The clone functions in each library would be marked out by
checking them with the hash index built in the last phase.
The next step targets the supporting functions, which can be
filtered by utilizing the function complexity. We chose the
maintainability index [56] for measuring the function com-
plexity of each function, which is calculated by the Equation 1.
The last step is to distinguish the common functions from the
core functions. We selected document frequency to denote the
uniqueness of the functions and filter the common functions



Fig. 2: Fingerprint Selection Algorithm

Algorithm 2 Hash Index Building
Input: LHIL ▷ List of Library Hash Index
Output: HI ▷ Final Hash Index

1: procedure INDEXGENERATION(LHIL)
2: HI ← ∅ ▷ Final Hash Index
3: for LHI in LHIL do ▷ Library Hash Index
4: libraryid← LHI.name ▷ Library Id
5: for hv in VFL do ▷ Hash Value
6: ct← V FL.hv.commit time
7: if hv not in HI then
8: HI.hv.commit time← ct
9: HI.hv.doc freq ← 1

10: HI.hv.library ← library id
11: else if ct < HI.hv.commit time then
12: HI.hv.commit time← ct
13: HI.hv.doc freq ← HI.hv.doc freq + 1
14: HI.hv.library ← library id
15: else if ct >= HI.hv.commit time then
16: HI.hv.doc freq ← HI.hv.doc freq + 1
17: end if
18: end for
19: end for
20: return HI
21: end procedure

Algorithm 3 Clone Function Filtering
Input: LHIL ▷ List of Library Hash Index
Input: V FL ▷ List of Functions of Version
Output: V FL ▷ List of Functions of Version

1: procedure CLONEFILTERING(LHIL, V FL)
2: for FF in VFL do ▷ Function Feature
3: HL← LHIL.hv.library
4: if HL != FF.library then
5: V FL.remove(FF)
6: end if
7: end for
8: return V FL
9: end procedure

with it. The algorithm is applied for each version of all
repositories.

Clone Function Filtering. Within the hash index built from
the last phase, each function hash is mapped to one library,
which is marked as the original author of the function. For each
version, if the library of the function hash is not the same as the
one in the hash index, it would be marked as a clone function.
To check if a function is clone function, the regarding function
hash will be searched in the hash index to compare the library
information. Each version of all libraries can be run parallel
to search the hash index. The algorithm for identifying the
clone function can be summarized as Algorithm 3.

The hash index records the library with the earliest author
time for each function hash, but it does not mean that all the
regarded libraries are the actual original libraries for creating

the regarded functions. For example, over 60% of the libraries
contain supporting functions like the one shown Listing 1.
These widely existing functions are not created by copying
from other libraries, and the earliest author library of this
type of function can not be determined by the regarded author
time. However, whether the libraries with this type of function
are marked as the author libraries or not, these functions will
eventually be filtered either in this step or the next step for all
the libraries. At the end of this step, all the clone functions
would be filtered for each library, and only the functions
created by themselves remain.

CENTRIS denotes the clone functions as borrowed code
and tries to eliminate these functions for each library. To
identify the clone function for each library, CENTRIS first
calculates the proportion of the overlapped functions between
two libraries and then utilizes a predefined threshold to deter-
mine if the overlapped functions are clone functions. When
the proportion of the overlapped functions is smaller than
the predefined threshold, these functions will remain in the
non-original library. When the functions from the partially
used TPLs remain as the fingerprints of the library, the
proportion for calculating the overlapped functions between
the regarded library and the target projects would be lessened.
If the lessened proportion is under the predefined threshold
of CENTRIS, false negatives would be produced in the TPL
detection. Thus, using a predefined threshold for determining
the function types, the clone functions from the partially used
TPLs in each library would be falsely ignored.

Supporting Function Filtering. Since supporting functions
do not contain any complex logic, which is different from the
common function and core functions, the second step targets
filtering supporting functions by utilizing this characteristic.
Heuristically, if functions do not contain any complex logic,
their function complexity would be lower than the common
functions and core functions. Furthermore, maintainability
index [56] (MI) is a system of measurement for function
complexity, which is calculated by Equation 1.

MI = 171− 5.2 ∗ ln(HV)− 0.23 ∗ (CC)− 16.2 ∗ ln(LOC)
(1)

HV stands for Halstead Volume, CC stands for Cyclomatic
Complexity, LOC stands for Lines of Code. In the feature
generation steps, since the function parser has retrieved the
function content, the number of lines of code can be directly
calculated by counting the newline characters, while those
empty lines would be excluded. Cyclomatic complexity is
developed to measure the stability and level of confidence



of the program. Thus, with lower Cyclomatic complexity, a
function potentially has less complex logic. The Cyclomatic
complexity can be calculated for each function by Equation 2.

CC = P + 1 (2)

P denotes the number of condition nodes in the control flow
graph generated by the Antlr parser. The number of the
condition nodes can be retrieved in the function parsing step
since Antlr provides the types of nodes for the functions. For
calculating the Halstead Volume, we adopted the following
equation.

HV = (N1 +N2) ∗ log2(n1 + n2) (3)

N1 and N2 denote the total number of operators and the
total number of operands, respectively. Operand in a function
refers to the lexical token that is variable or number or
constant string, while other types of lexical tokens are taken
as operators. And n1 and n2 stand for the the number of
distinct operators and and the number of distinct operands,
respectively. To avoid the repeat operation of the function
parsing, all these three types of function properties would
be obtained in the feature generation phase. As shown in
the equation of calculating the maintainability index, func-
tions with more straightforward logic would have a higher
score on the maintainability index. Thus, after calculating the
maintainability index of each function of a library version, the
supporting functions will be ranked as the highest part in the
increasing order of the scores of the maintainability index. The
proportion of the supporting functions may vary in different
open source projects. A threshold θ1 will be set to filter out
these parts of supporting functions. The effect of the threshold
θ1 will be evaluated in the Section V.

Common Function Filtering. The last step is to filter
out the common functions which are widely used in the
repositories. Common functions with lower complexity may
be filtered in the last step, while some common functions
written with high complexity could not be filtered, such as
functions implementing mathematical algorithms or known
standard network protocols in different application fields.
Heuristically, if the core functions of a library are used,
and these functions depend on the common functions, the
common functions would be used as well. Besides, since
common functions are widely implemented and used within
multiple TPLs which contain different core functions, the
frequency of the existence of these common functions will be
higher than any core functions within one particular library.
Thus, the core functions appeared less to the library than

the common functions. To measure the uniqueness of each
function, inspired by the term frequency–inverse document
frequency (TF/iDF) in information retrieval, we use a similar
approach to distinguish the common functions. We define the
term frequency and document frequency in this work as the
following:

• Term Frequency: the number of functions with the same
function hash in a library.

• Document Frequency: the number of libraries containing
the same function hash.

Since the uniqueness of the functions is measured in terms of
the library level, the term frequency will be set to 1 to ignore
the effect of measuring uniqueness inside one library. Thus,
only the document frequency would be used for measuring
the uniqueness of the functions. The document frequency of
each function hash is already contained in the index building
phase, which can be retrieved by searching the function
hash. Accordingly, the document frequency of the common
functions will be higher than the ones of the core functions
of the same library. If the remaining functions are sorted
in the increasing order of document frequency, the common
functions would appear in the latter part of the function list.
Since the number of common functions in each library may
vary, a threshold θ2 will be set to filter out the common
functions by the rankings of the document frequency in the
libraries. We evaluated the different combinations of the θ1
and θ2 in the Section V.

Finally, by filtering out the clone functions, supporting
functions, and common functions for each library, we ensure
that only the core functions of each library remain in the
database.

E. TPL Detection

When any function from the target project is mapped to the
function of the regarded library in the hash index built from the
core functions, the library would be reported as a TPL of the
project. Unlike CENTRIS, we do not adopt any predefined
threshold for confirming the TPL since all the functions in
our database are unique to the related library and any mapped
function from the database is a prove of using the core logic
of the related library.

V. EVALUATION

A. Research Questions

To evaluate if OSSFP satisfies the three requirements stated
in Section I, we conducted experiments to address three
research questions. Research Question 1 (RQ1) focuses on
evaluating the accuracy of OSSFP and comparing it with the
state-of-the-art CENTRIS. The experiment will demonstrate
if OSSFP can meet the R1 in Sec I (generating represen-
tative signatures for accurate TPL detection) by evaluating
its accuracy. RQ1 will also assess if OSSFP satisfies R2
in Sec I (abandoning pre-defined thresholds) by comparing
its performance with CENTRIS, which utilizes a pre-defined
threshold. Research Question 2 (RQ2) evaluates the scalability
of OSSFP to determine if it meets R3 in Sec I. Finally,
Research Question 3 (RQ3) tests the representativeness of
features generated from core functions and assesses if filtering
other types of functions improves accuracy, in accordance with
R1 in Sec I. The research questions are listed as follows:

• RQ1: What is the accuracy of OSSFP in detecting TPLs
compared to related works?

• RQ2: How is the scalability of OSSFP in terms of time
efficiency and data size?



TABLE I: TPLS DISTRIBUTION OF THE 100 TARGET PROJECTS

Total Min Max Mean Medium

TPLs 896 1 34 9 7

• RQ3: How does each function filtering step contribute to
the accuracy improvement of OSSFP?

B. Experiment Setup

Ground Truth Data Set Construction. Since C/C++ GitHub
repositories do not adopt any BOM (bill of material) file which
lists all its TPLs, we need to build a proper procedure to
construct a ground truth set. We manually examined over 1000
projects and found that nearly 20% of them tend to organize
and put the source code of all the TPLs into folders with
special names, such as ”/3rdparty”, ”/deps” and ”/third party”.
Therefore, we took further steps to build our ground truth data
set on the projects which contain these folders. Specifically, we
developed scripts to go through each sub-folder inside them
and applied the following rules and procedures to establish the
TPL ground truth.
Sub-folder Name Mapping. Some sub-folder names contain
the full library names. We directly map the names together to
identify the TPLs. For example, the sub-folder ’/3rdparty/libz’
is mapped to Zlib [57] library.
Non-source Code Folder Exclusion. If the sub-folder con-
tains only header files or files written in other programming
languages, we will exclude it from the ground truth cases.
Copyright Confirmation. If the copyright information is
stored in the source code files, which usually include ven-
dor name, author name, and library name, we will use the
information to identify and confirm the potential TPLs.
README File Mapping. If the README file exists in the
sub-folder, which contains information of the TPL usage, we
would also use it for mappings with potential TPLs.

Based on the rules, we have examined over 400 C/C++
projects and selected 100 projects, each containing 1 to 34
TPLs. To ensure the correctness of the ground truth, we
employed three advanced software researchers to confirm 896
TPL use cases from the 100 projects. The number of TPLs of
the target projects is shown in the Table I.
Threshold Selection. After collecting the ground truth data
set, we then selected a combination of θ1 and θ2 for selecting
the desired core functions, which are the thresholds for filter-
ing supporting functions and common functions, respectively
mentioned in the Section IV. We randomly selected 80%
projects from the ground truth data set for the experiment
of the parameter selection. To select the most suitable com-
bination thresholds, we conducted experiments on a group of
combination with θ1 ranging in [0.3, 0.4, 0.5, 0.6, 0.7] and θ2
ranging in [0.1, 0.2, 0.3, 0.4, 0.5]. As shown in the Figure 3
, the combinations of θ1 and θ2 distributed differently in the
perspectives of precision and recall.

Figure 3 show that the combinations θ1 and θ2 have counter
effects in precision and recall. To select a combination of θ1
and θ2 for balancing precision and recall, we adopted F1 [58]
which is harmonic mean of the precision and recall.

(a) Precision Distribution for θ1 and θ2

(b) Recall Distribution for θ1 and θ2

Fig. 3: Accuracy Distribution for θ1 and θ2

After calculating the F1 score for each combination, we
select the combination of 0.5 for θ1 and 0.2 for θ2 which has
the highest F1 score of 0.91.
Comparison to State-of-the-Arts. To evaluate the accuracy
of OSSFP, we selected the CENTRIS and Snyk CLI [59]
for comparison. CENTRIS is the state-of-the-art approach for
analyzing C/C++ TPLs. While there are many other SCA tools,
they do not aim at C/C++ source code, and some are not open-
source. For example, ATVHunter [8] and OSSPolice [2] target
Android applications and are difficult to apply to the source
code of C/C++. Snyk CLI is a free commercial tool that can
analyze many programming languages, including C/C++.
Experiment Environment. All our experiments were con-
ducted on Ubuntu 18.04.6 LTS with 2.50GHz Intel(R)
Xeon(R) Gold 6248 CPU and 188G RAM. The compared tools
used their default settings as stated in their paper or website.

C. RQ1: Accuracy Evaluation

In this section, we compared OSSFP with CENTRIS and
Snyk CLI on the ground truth data set. We also discussed
the comparison result and analyze the reason for the false
positive cases and false negative cases. Table II shows that
OSSFP has achieved 90.34% for precision and 90.84% for
recall. Table III shows that OSSFP has both higher precision
and recall than CENTRIS. Since the source code and data
scope of Snyk CLI is not published, we manually checked the
accuracy and analyzed the mapping details provided by it.

Comparison with CENTRIS. Since CENTRIS has pub-
lished its feature set and to ensure the objective of the algo-



TABLE II: COMPARISON WITH DIFFERENT DATA SCOPE

Tool GT TP FP FN Precision Recall

OSSFP (L) 896 814 87 82 90.34% 90.84%
OSSFP (S) 657 607 291 50 67.59% 92.38%

1) L: test with original data scope. S: test with the same data scope with
CENTRIS. GT: number of ground truth cases. TP: true positve cases.
FP: false positive cases. FN: false negative cases.

TABLE III: COMPARISON WITH CENTRIS

SCA Tool GT TP FP FN Precision Recall

CENTRIS 657 375 212 282 63.88% 57.07%
OSSFP 657 607 291 50 67.59% 92.38%

1) GT: number of ground truth cases. TP: true positve cases. FP: false
positive cases. FN: false negative cases.

rithm, we conducted the experiments with the same data scope
as CENTRIS for comparison. For the ground truth data set, we
also excluded those not in the data scope. We ran the detection
logic for the 657 cases within the 100 projects with partially
used TPLs. Table III shows the accuracy of our OSSFP
compared to CENTRIS.OSSFP has both higher precision
and significantly higher recall for the 657 test cases. In this
data scope, both OSSFP and CENTRIS do not achieve high
precision due to the incomplete data set. However, OSSFP
can still achieve much higher recall than CENTRIS because
OSSFP has abandoned the threshold for confirming the TPL
and thus would not miss most of the partially used cases. At
the same time, abandoning the pre-defined threshold would
not significantly lowering our precision since we ensure our
precision by filtering out the common functions and supporting
functions for each library and ensure our recall by keeping core
functions for TPL detection and abandoning the thresholds.

As shown in Table II, by adding more repositories to our
data set, the false positive cases had considerably fallen, and
the accuracy had significantly increased. The main reason for
causing the false positives cases is the lack of complete data
set of C/C++ libraries, as we analyzed later in this section.
The high recall of the OSSFP shows that OSSFP are more
capable of detecting partially used cases while maintaining
higher precision than CENTRIS.
Comparison with Snyk CLI. Since the commercial tool Snyk
CLI does not publish its data set and source code, we used our
ground truth and the mapping result generated by Snyk CLI
to check the accuracy manually. Snyk CLI divides the TPL
detection into two steps. It first generates the hash values for
each file under the target projects. It then sends all the feature
information to their servers for TPLs detection. When the
online processing is done, the local client would retrieve the
result from the server and show the formatted result followed
by the input command. After confirming the total of 896 cases
from the result file generated by Snyk CLI , the precision
and recall of Snyk CLI are 61.98% and 28.63%, respectively.
From the mapping details provided by Snyk CLI, there are
still nested TPLs falsely reported as other TPLs which contain
them.
False Positive Analysis. Although we tried to filter out all the
non-core functions and make sure the selected functions were
unique to the regarded library, some false positive cases still

Fig. 4: False Positive Case (a)

existed for the following reasons. The first reason is the lack of
libraries in our data scope, which concludes 53 false positive
cases. For example, as shown in Figure 4, if library N were not
in our data scope, the TPL N in A would be regarded as part
of the core logic library A in the feature generation phase. In
this situation, if we performed a TPLs detection for the target
project, which contains the source code of library N, we would
falsely report library A as a TPL since the code of library N
had been treated as part of library A. This is also the main
reason why both OSSFP and CENTRIS would suffer from
low precision as evaluated in the previous experiment. The
second reason is the poor version management of the libraries,
which concludes 34 false positive cases in our experiments.
For example, if library B does not release any git tag as its
versions, only the code snapshot of the latest commit would be
used as the only version for feature generation. As shown in
Figure 5, we denote B2 as the latest code snapshot of library
B we collected in our database and B1 as an earlier version of
B2, which is utilized as a TPL of library A. If the source code
of B2 has non-semantic changes compared to B1, the commit
time of the functions of B2 would be later than the commit
time of the functions of B1. In this situation, the source of code
of B1 in library A would not be considered as clone functions
and consequently be considered as part of the core logic of
library A. Thus, when scanning the target project containing
library B, OSSFP would falsely report library A as its TPL
since library A shares the same code with library B in the
target project.

The data scope of 23,427 GitHub Repositories is not a
complete set of C/C++ libraries in the open-source field. Some
C/C++ open source projects are maintained in other source
code hosting platforms like Gitlab, SourceForge, and their
homepages. If we can collect all the related libraries in our data
sets, these problems could be automatically fixed. However, to
the best of our knowledge, there is no existing research aiming
at collecting the complete library and version list for the field
of C/C++ open source projects. We would like to leave it as a
future research to build the open source project roadmaps for
C/C++.
False Negative Analysis. All the false negative cases come
from poor version management of the libraries. Similar to the
second reason for the false positive cases, which is shown
in Figure 5, library B would be a false negative case if
the target project utilized an earlier snapshot of the library.
For example, GoogleTest, which is one of the most popular



Fig. 5: False Positive Case (b)
TABLE IV: FEATURE SIZE OF EACH FILTERING STEP

Steps Total Functions

None 1,366,104,539
Clone Function Filtered 43,573,125
Supporting Function Filtered 26,504,053
Common Function Filtered 14,589,744

open source repositories, does not release any tag between 19
September 2013 and 22 August 2016. In this period, there were
many continuous updates of the source code, whereas some
repositories like FALCONN continued to copy the latest code
of GoogleTest. When GoogleTest finally released the version
on 22 August 2016, the commit time of the functions from
this version might be later than the ones in FALCONN due to
the non-semantic change in this period. On the other hand, if
B1 is falsely recognized as part of library A, some of the core
functions of library A would be filtered if the functions of B1
take the priority place in the Fingerprint Selection algorithm.
In this case, if a sub-module of A is used as in the target
project and the core functions of this sub-module were filtered,
OSSFP cannot correctly report this case.

Answering RQ1: Without utilizing the threshold for TPL
detection, OSSFP was evaluated to have a high precision
of 90.34% and a high recall of 90.84% at the ground truth
data set. Moreover, OSSFP outperformed CENTRIS in
precision and recall by 3.71% and 35.31%, respectively,
while Snyk CLI showed only 61.98% for precision and
28.63% for recall. Thus, the experiments conducted in RQ1
shows that OSSFP meets the R1 and R2 in Sec I.

D. RQ2: Scalability Evaluation

To evaluate the scalability of the OSSFP, we measured the
feature size and the time of prepossessing and TPL detection
compared to CENTRIS.

Feature Size. In our Fingerprint Selection phase, we have
filtered out all the clone, supporting, and common functions.
There is a total of 1,366,104,539 functions of the total 585,683
versions of 23,427 libraries we collected, while we only need
to keep 14,589,744 core functions as the fingerprint of each
library for TPL detection. As shown in the Table IV, OSSFP
only uses only 1.06% of the total functions, while CENTRIS
keeps 2.2% of the total functions. By keeping only half of the
total functions of CENTRIS, we also reached higher precision
and recall than CENTRIS. The largely reduced feature size
proves that OSSFP meets the R3 in Sec I.

TABLE V: TPL DETECTION TIME COMPARISON

Type OSSFP CENTRIS Snyk CLI

Total 12.51 267.14 N.A.
Average 0.12 2.67 N.A.

1) all the time values are measured in seconds.

0%

25%

50%

75%

100%

Base Clone FF Supporting FF Common FF

Precision Recall

Fig. 6: Improving Accuracy With Accumulative Filtering Step Ap-
plied

Time Efficiency. In the TPL detection step, CENTRIS
requires extra steps for calculating the overlapping rate for
each library, and the CENTRIS utilizes more functions as
fingerprints for each library than OSSFP. In terms of the
average time of TPLs detection of each target project, OSSFP
has a much smaller number than CENTRIS, as shown in
Table V. When counting the TPL detection times, we excluded
the time cost by feature generation and database loading. Since
the source code of Snyk CLI is not publicly available and the
time cost by TPL detection can not be independently statistics,
the TPL detection time of Snyk CLI will not be put in the
table. In the feature generation steps, it took about 177 hours to
generate the necessary features for 23,427 libraries, which cost
less than 30 seconds for each library. For the index building
and Fingerprint Selection phase, OSSFP only took 16.5 hours
to perform the algorithm. These processing times imply that
OSSFP is highly scalable to be implemented in large-scale
data sets, which satisfied the R3 in the Sec I.

Answering RQ2: By selecting the core functions for each
library, we significantly reduced the feature size to 1.06%
compared to the feature size generated in the first phase.
OSSFP took only 0.12 seconds on average to identify
all TPLs per project, which was 22 times faster than
CENTRIS. Additionally, OSSFP only took less than 30
seconds to process each library, showing that OSSFP is
efficient enough to apply to large-scale data sets. Thus,
OSSFP conforms the R3 in Sec I in terms of time and
feature size.

E. RQ3: Ablation Study

To evaluate the representativeness of the signature generated
from core functions, we also conducted an ablation experiment
to compare the improving accuracy of utilizing only core
functions with those comprising non-core functions. Since the
clone functions, supporting functions, and common functions
are filtered sequentially in the Fingerprint Selection phase, we



evaluated the accumulative effect of applying each filtering
step. Figure 6 shows the precision and recall of applying
each algorithm of steps, where FF stands for function filtered.
With each filtering step applied, the precision has significantly
increased, which proves that our algorithm has successfully
filtered the non-core functions for each step. And features
generated from the core functions are unique and represen-
tative enough for TPL detection, which shows that OSSFP
conforms the R1 in Sec I. Although the recall has slightly
decreased at filtering steps, it does not means that we filtered
the core functions as we analyzed the false negative cases
in the RQ1. Without removing any non-core functions, the
precision is close to 0 because of the nested TPLs and other
trivial functions. Even with eliminating the clone functions
for each library, the precision is still at a low level because of
the existence of supporting functions and common functions.
When filtering the supporting functions, the precision is still
not sufficiently high. There is a large number of common
functions which cause false positives. After filtering all the
non-core functions, we can achieve high precision and high
recall at the same time.

Answering RQ3: The ablation study shows that the differ-
ent types of non-core functions have a significantly negative
effect on accuracy. After filtering the clone functions, sup-
porting functions, and common functions, OSSFP can pre-
cisely detect the TPLs by utilizing only the core functions.
The ablation experiment proves that features generated
from the selected core functions are highly representative
for TPL detection, which fulfills R1 in Sec I.

F. Discussion

1) Abandon Threshold: By selecting the core functions
for each library for TPLs detection, OSSFP has successfully
abandoned the predefined threshold for SCA and thus achieved
high precision and high recall for detecting those partially used
TPLs. This algorithm is essential for the open source field
of C/C++ since the lack of a standard package manager for
managing the dependency of source code and the existence of
the nested TPL in the open source repositories. The state-
of-the-art approach CENTRIS tried to utilize a predefined
threshold to eliminate the nested TPLs and detect the TPLs for
the target projects. However, the predefined threshold could
not balance the precision and recall for those large projects
with many partially used TPLs. Our experiment result shows
that even in partially used cases, OSSFP can also achieve
high precision and recall. These results implied that OSSFP
has precisely selected the core functions for each library and
thus enhances the accuracy for detecting the partially used
cases.

2) Generalizability: For the popular programming language
like Java, C/C++, Python, and JavaScript, DéjàVu [1] has
shown that 70% of the source code on GitHub are clones
from other original repositories. When utilizing TPLs, source
code copying is common in many programming languages,

even with an official package manager managing the depen-
dency. These findings show that simply applying the code
clone technique for TPL detection would generate numerous
false positive cases. Thus, filtering the non-core functions is
essential for SCA with the code clone technique.

VI. LIMITATION

OSSFP has some limitations that affect its application.
First, OSSFP relies on complete data set of open source
repositories. The lack of a complete data set of open source
repositories and poor version management are the most signif-
icant limitation of our algorithm. As explained in the previous
section, the lack of open source repositories and poor version
management would affect the algorithm and thus generate false
positive and false negative cases. If a shared library was missed
in the data set and it was used as a nested TPL of another
library, it would be falsely treated as part of another library
and further bring the noise to the followed algorithm. To our
best knowledge, there is no automatic way to collect all the
open source repositories on the whole internet, and thus it
would be a research opportunity to find the complete set of
C/C++ open source libraries.

VII. THREATS TO VALIDITY

We manually checked the ground truth for the target projects
to measure the accuracy of the tools selected for comparison.
Because there is no formal BOM (bill of material) file in the
target projects and we do not have a complete list of open
source libraries, there may be some hidden ground truth cases
we have not listed in our ground truth. The problem of the
incomplete data set would affect the accuracy measurement
for both OSSFP and CENTRIS.

VIII. CONCLUSION

In this paper, we propose a novel tool named OSSFP
to analyze the TPLs with high precision and high recall.
By utilizing the function properties, OSSFP has successfully
selected the core functions as fingerprints for each library
and thus enhances the accuracy and efficiency. With these
core functions, OSSFP can outperform the state-of-the-art
approaches for detecting the TPLs.

ACKNOWLEDGEMENTS

This research is partially supported by the National
Research Foundation, Prime Ministers Office, Singapore
under its National Cybersecurity R&D Program (Award
No. NRF2018NCR-NCR005-0001), NRF Investigatorship
NRF-NRFI06-2020-0001, the National Research Foundation
through its National Satellite of Excellence in Trustworthy
Software Systems (NSOE-TSS) project under the National
Cybersecurity R&D (NCR) Grant award no. NRF2018NCR-
NSOE003-0001, the National Research Foundation Singapore
and DSO National Laboratories under the AI Singapore Pro-
gramme (AISG Award No: AISG2-RP-2020-019).



REFERENCES

[1] C. V. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani,
and J. Vitek, “Déjàvu: a map of code duplicates on github,” Proceedings
of the ACM on Programming Languages, vol. 1, no. OOPSLA, pp. 1–28,
2017.

[2] R. Duan, A. Bijlani, M. Xu, T. Kim, and W. Lee, “Identifying open-
source license violation and 1-day security risk at large scale,” in
Proceedings of the 2017 ACM SIGSAC Conference on computer and
communications security, 2017, pp. 2169–2185.

[3] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: Scaling code clone detection to big-code,” in Proceedings
of the 38th International Conference on Software Engineering, 2016,
pp. 1157–1168.

[4] S. Woo, S. Park, S. Kim, H. Lee, and H. Oh, “Centris: A precise
and scalable approach for identifying modified open-source software
reuse,” in 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, 2021, pp. 860–872.

[5] “Owasp,” https://owasp.org/www-project-dependency-track, 2022.
[6] “Sonatype,” https://jeremylong.github.io/DependencyCheck/data/

ossindex.html, 2022.
[7] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and

W. Huo, “Libd: Scalable and precise third-party library detection in
android markets,” in 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE). IEEE, 2017, pp. 335–346.

[8] X. Zhan, L. Fan, S. Chen, F. We, T. Liu, X. Luo, and Y. Liu, “Atvhunter:
Reliable version detection of third-party libraries for vulnerability identi-
fication in android applications,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 2021, pp. 1695–
1707.

[9] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library detection
in android and its security applications,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, 2016,
pp. 356–367.

[10] Y. Zhang, J. Dai, X. Zhang, S. Huang, Z. Yang, M. Yang, and
H. Chen, “Detecting third-party libraries in android applications with
high precision and recall,” in 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2018, pp. 141–152.

[11] Y. Xiao, B. Chen, C. Yu, Z. Xu, Z. Yuan, F. Li, B. Liu, Y. Liu, W. Huo,
W. Zou et al., “Mvp: Detecting vulnerabilities using {Patch-Enhanced}
vulnerability signatures,” in 29th USENIX Security Symposium (USENIX
Security 20), 2020, pp. 1165–1182.

[12] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: Finding copy-paste
and related bugs in large-scale software code,” IEEE Transactions on
software Engineering, vol. 32, no. 3, pp. 176–192, 2006.

[13] L. Jiang, Z. Su, and E. Chiu, “Context-based detection of clone-related
bugs,” in Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, 2007, pp. 55–64.

[14] M. Gabel, J. Yang, Y. Yu, M. Goldszmidt, and Z. Su, “Scalable
and systematic detection of buggy inconsistencies in source code,” in
Proceedings of the ACM international conference on Object oriented
programming systems languages and applications, 2010, pp. 175–190.

[15] N. H. Pham, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Detection
of recurring software vulnerabilities,” in Proceedings of the IEEE/ACM
international conference on Automated software engineering, 2010, pp.
447–456.

[16] Y. Li, Y. Xue, H. Chen, X. Wu, C. Zhang, X. Xie, H. Wang, and Y. Liu,
“Cerebro: context-aware adaptive fuzzing for effective vulnerability
detection,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 533–544.

[17] Z. Xu, B. Chen, M. Chandramohan, Y. Liu, and F. Song, “Spain:
security patch analysis for binaries towards understanding the pain and
pills,” in 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE, 2017, pp. 462–472.

[18] J. Jang, A. Agrawal, and D. Brumley, “Redebug: finding unpatched code
clones in entire os distributions,” in 2012 IEEE Symposium on Security
and Privacy. IEEE, 2012, pp. 48–62.

[19] S. Kim, S. Woo, H. Lee, and H. Oh, “Vuddy: A scalable approach for
vulnerable code clone discovery,” in 2017 IEEE Symposium on Security
and Privacy (SP). IEEE, 2017, pp. 595–614.

[20] “Blackduck,” https://www.synopsys.com/software-integrity/
security-testing/software-composition-analysis.html, 2022.

[21] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” IEEE Transactions on
software engineering, vol. 33, no. 9, pp. 577–591, 2007.

[22] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A
systematic review,” Information and Software Technology, vol. 55, no. 7,
pp. 1165–1199, 2013.

[23] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queen’s School of Computing TR, vol. 541, no. 115, pp. 64–
68, 2007.

[24] Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam, and B. Maqbool, “A
systematic review on code clone detection,” IEEE access, vol. 7, pp.
86 121–86 144, 2019.

[25] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “Index-based
code clone detection: incremental, distributed, scalable,” in 2010 IEEE
International Conference on Software Maintenance. IEEE, 2010, pp.
1–9.

[26] T. Ishihara, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Inter-
project functional clone detection toward building libraries-an empirical
study on 13,000 projects,” in 2012 19th Working Conference on Reverse
Engineering. IEEE, 2012, pp. 387–391.

[27] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in 29th International
Conference on Software Engineering (ICSE’07). IEEE, 2007, pp. 96–
105.

[28] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
2002.

[29] R. Koschke, R. Falke, and P. Frenzel, “Clone detection using abstract
syntax suffix trees,” in 2006 13th Working Conference on Reverse
Engineering. IEEE, 2006, pp. 253–262.

[30] H. Sajnani, V. Saini, and C. Lopes, “A parallel and efficient approach to
large scale clone detection,” Journal of Software: Evolution and Process,
vol. 27, no. 6, pp. 402–429, 2015.

[31] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2016, pp. 87–98.

[32] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Proceedings. International
Conference on Software Maintenance (Cat. No. 98CB36272). IEEE,
1998, pp. 368–377.

[33] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on android markets,” in
Proceedings of the 36th International Conference on Software Engineer-
ing, 2014, pp. 175–186.

[34] J. R. Cordy and C. K. Roy, “The nicad clone detector,” in 2011 IEEE
19th International Conference on Program Comprehension. IEEE,
2011, pp. 219–220.

[35] N. Göde and R. Koschke, “Incremental clone detection,” in 2009
13th European conference on software maintenance and reengineering.
IEEE, 2009, pp. 219–228.

[36] R. Koschke, “Large-scale inter-system clone detection using suffix trees
and hashing,” Journal of Software: Evolution and Process, vol. 26, no. 8,
pp. 747–769, 2014.

[37] P. Wang, J. Svajlenko, Y. Wu, Y. Xu, and C. K. Roy, “Ccaligner: a token
based large-gap clone detector,” in Proceedings of the 40th International
Conference on Software Engineering, 2018, pp. 1066–1077.

[38] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic clones,”
in Proceedings of the 30th international conference on Software engi-
neering, 2008, pp. 321–330.

[39] L. Jiang and Z. Su, “Automatic mining of functionally equivalent
code fragments via random testing,” in Proceedings of the eighteenth
international symposium on Software testing and analysis, 2009, pp.
81–92.

[40] H. Kim, Y. Jung, S. Kim, and K. Yi, “Mecc: memory comparison-based
clone detector,” in Proceedings of the 33rd International Conference on
Software Engineering, 2011, pp. 301–310.

[41] R. Komondoor and S. Horwitz, “Using slicing to identify duplication
in source code,” in International static analysis symposium. Springer,
2001, pp. 40–56.

https://owasp.org/www-project-dependency-track
https://jeremylong.github.io/DependencyCheck/data/ossindex.html
https://jeremylong.github.io/DependencyCheck/data/ossindex.html
https://www.synopsys.com/software-integrity/security-testing/software-composition-analysis.html
https://www.synopsys.com/software-integrity/security-testing/software-composition-analysis.html


[42] A. Sheneamer and J. Kalita, “Semantic clone detection using machine
learning,” in 2016 15th IEEE international conference on machine
learning and applications (ICMLA). IEEE, 2016, pp. 1024–1028.

[43] H. Wei and M. Li, “Positive and unlabeled learning for detecting
software functional clones with adversarial training.” in IJCAI, 2018,
pp. 2840–2846.

[44] H. Yu, W. Lam, L. Chen, G. Li, T. Xie, and Q. Wang, “Neural detection
of semantic code clones via tree-based convolution,” in 2019 IEEE/ACM
27th International Conference on Program Comprehension (ICPC).
IEEE, 2019, pp. 70–80.

[45] T. Nakagawa, Y. Higo, and S. Kusumoto, “Nil: large-scale detection of
large-variance clones,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 830–841.

[46] “Chromium,” https://github.com/chromium/chromium, 2022.
[47] “Libpng,” http://www.libpng.org/pub/png/libpng.html, 2022.
[48] “Openssh,” https://github.com/openssh/openssh-portable, 2022.
[49] “Stringencoders,” https://github.com/client9/stringencoders, 2022.
[50] “Github,” https://octoverse.github.com/, 2021.
[51] W. Tang, Z. Xu, C. Liu, J. Wu, S. Yang, Y. Li, P. Luo, and Y. Liu,

“Towards understanding third-party library dependency in c/c++ ecosys-
tem,” in 37th IEEE/ACM International Conference on Automated Soft-
ware Engineering, 2022.

[52] “Antlr,” https://www.antlr.org/, 2022.
[53] “Openssl,” https://github.com/openssl/openssl, 2022.
[54] C. Ebert, J. Cain, G. Antoniol, S. Counsell, and P. Laplante, “Cyclomatic

complexity,” IEEE software, vol. 33, no. 6, pp. 27–29, 2016.
[55] “Halstead,” https://en.wikipedia.org/wiki/Halstead complexity

measures, 1977.
[56] P. Oman, J. Hagemeister, and D. Ash, “A definition and taxonomy for

software maintainability,” Moscow, ID, USA, Tech. Rep, pp. 91–08, 1992.
[57] “Zlib,” https://github.com/madler/zlib, 2022.
[58] “F-score,” https://en.wikipedia.org/wiki/F-score, 1992.
[59] “Snky cli,” https://snyk.io/, 2022.

https://github.com/chromium/chromium
http://www.libpng.org/pub/png/libpng.html
https://github.com/openssh/openssh-portable
https://github.com/client9/stringencoders
https://octoverse.github.com/
https://www.antlr.org/
https://github.com/openssl/openssl
https://en.wikipedia.org/wiki/Halstead_complexity_measures
https://en.wikipedia.org/wiki/Halstead_complexity_measures
https://github.com/madler/zlib
https://en.wikipedia.org/wiki/F-score
https://snyk.io/

	Introduction
	Related Works
	Software Composition Analysis
	Code Clone Detection

	Background
	Terminology
	Function Definition
	Motivating Example

	Methodology
	Overview
	Feature Generation
	Index Building
	Fingerprint Selection
	TPL Detection

	Evaluation
	Research Questions
	Experiment Setup
	RQ1: Accuracy Evaluation
	RQ2: Scalability Evaluation
	RQ3: Ablation Study
	Discussion
	Abandon Threshold
	Generalizability


	Limitation
	Threats to validity
	Conclusion
	References

