Comparison and Evaluation of Clone Detection
Techniques with Different Code Representations

Yuekun Wang!, Yuhang Ye!, Yueming wu2"

, Weiwei Zhang', Yinxing Xuelv*, Yang Liu?

! University of Science and Technology of China, China
2 Nanyang Technological University, Singapore

Abstract—As one of bad smells in code, code clones may
increase the cost of software maintenance and the risk of
vulnerability propagation. In the past two decades, numerous
clone detection technologies have been proposed. They can be
divided into text-based, token-based, tree-based, and graph-based
approaches according to their code representations. Different
code representations abstract the code details from different
perspectives. However, it is unclear which code representation
is more effective in detecting code clones and how to combine
different code representations to achieve ideal performance.

In this paper, we present an empirical study to compare
the clone detection ability of different code representations.
Specifically, we reproduce 12 clone detection algorithms and
divide them into different groups according to their code rep-
resentations. After analyzing the empirical results, we find that
token and tree representations can perform better than graph
representation when detecting simple code clones. However, when
the code complexity of a code pair increases, graph representation
becomes more effective. To make our findings more practical,
we perform manual analysis on open-source projects to seek a
possible distribution of different clone types in the open-source
community. Through the results, we observe that most clone
pairs belong to simple code clones. Based on this observation,
we discard heavyweight graph-based clone detection algorithms
and conduct combination experiments to find out a suitable com-
bination of token-based and tree-based approaches for achieving
scalable and effective code clone detection. We develop the
suitable combination into a tool called TACC and evaluate it with
other state-of-the-art code clone detectors. Experimental results
indicate that TACC performs better and has the ability to detect
large-scale code clones.

Index Terms—Clone Detection, Empirical Study, Code Repre-
sentation, Large Scale

I. INTRODUCTION

Nowadays, copying existing code fragments and pasting
them into other parts of the code is a common behavior in
software development. The reusing code, which is identical or
similar to the source code, is called code clone [1]. Although
previous research [2] has demonstrated that code clone does
have some potential benefits, code clones have been shown
to be bad smells: the growth in code clones can lead to
the propagation of potential software defects that reduces
the reliability and maintainability of software systems [3].
Therefore, the common wisdom is that code clones need to
be detected and managed.

To implement clone management and reduce the risks
caused by code clones, clone detection has been active in the

* Yueming Wu and Yinxing Xue are the corresponding authors.

field of software engineering [4]]. In practice, there have been
proposed many code clone detection methods which can be
classified into five main categories according to different code
representations. They are text-based, token-based, abstract
syntax tree (AST-based), control flow graph (CFG-based), and
program dependency graph (PDG-based). For example, John-
son et al. [5]] directly hash substrings of source text content
and use a sliding window to find similar files. CCFinder [6]]
extracts token sequences from source codes through lexical
analysis and normalizes the code using predefined rules to
detect clones. Koschke et al. [7] find syntactic clones in linear
time by serializing AST subtrees and building suffix trees.
CCsharp [8| first simplifies PDGs and then identifies clone
pairs by computing subgraph isomorphisms. Different code
representations embody different levels of abstraction of the
source code, which affect the capability of clone detection due
to the retention of different program information. However,
it is unclear which code representation is more effective in
detecting code clones. In other words, there is a lack of clarity
on the capabilities of clone detection techniques based on
different representations.

Code clone is generally classified into four generally ac-
cepted types in the literature [1f], [9]. The first three types
are syntactic code clone and the last type belongs to semantic
code clone. Studies [[10]], [[11]] have shown that Type-3 clones
account for more in some open source software systems.
Nevertheless, there is a lack of clarity on the true distribution
of different types of code clones in the open-source com-
munity. The distribution of real-world clones is important,
allowing researchers to conduct more targeted studies and
develop more practical tools. For example, if most of Type-
3 clones in the open-source community are simple Type-
3, that is, the amount of modified code is small, then it
is not necessary for researchers to design those complicated
clone detection tools for real-world code clone scanning. In
addition, with the vigorous development of the open source
ecosystem, the scale of code reuse continues to expand, and
the software system becomes more and more complex, making
large-scale clone detection particularly necessary [12], [13]]. In
fact, numerous clone detection technologies based on different
code representations have been designed to date, and they both
have advantages and disadvantages. For example, text-based
and token-based methods have better scalability while AST-
based, CFG-based, and PDG-based tools are more accurate
in detecting code clones. A feasible idea is to combine the

advantages of different techniques to achieve scalable yet
accurate code clone detection. Regrettably, there is a lack of
clarity on how to combine methods of different representations
to accomplish large-scale clone detection.

In this paper, we conduct a comprehensive empirical study
to thoroughly compare the ability of technologies based on
different code representations and find the most suitable com-
bination to achieve ideal code clone analysis for the open-
source community. Specifically, we mainly study the following
three research questions:

e RQI: Which code representation is more effective in

detection code clones?

o RQ2: What is the distribution of different clone types in

the open-source community?

e RQ3: How to combine different methods to achieve effi-

cient yet effective large-scale code clone detection?

To answer the first question, we reproduce 12 clone detec-
tion algorithms based on different representations. Due to the
unclear boundary between Type-3 and Type-4, Jeffrey et.al.
further divide Type-3 code clone into four subclasses (i.e., Very
Strongly Type-3, Strongly Type-3, Moderately Type-3, and
Weakly Type-3) by analyzing the degree of code differences
at line-level and token-level (i.e., TokenDiff). In fact, this
classification of Type-3 is too coarse-grained and does not
consider any program syntactic or semantic details. To achieve
more precise results, we propose TreeDiff to describe the code
differences at AST-level and divide Type-3 code clones into
more fine-grained divisions, so as to obtain a clearer detection
capability of different representation technologies. Through
the reported results, we find that token-based and AST-
based techniques perform better in detecting simple Type-3
clones, while graph-based (i.e., CFG-based and PDG-based)
techniques are only more effective for more complex Type-3
clones.

To answer the second question, we utilize 12 clone detection
algorithms to mine as many clones as possible on real-world
open source datasets. After manually verifying the clone pairs,
we perform a fine-grained classification of the obtained true
clones by analyzing TokenDiff and TreeDiff. After collecting
all data, we observe that the TokenDiff and TreeDiff of
more than 90% of Type-3 clones are less than 38% and 48%,
respectively. Such results indicate that most Type-3 clones
belong to simple Type-3. Therefore, we discard complicated
code clone detection methods (i.e., graph-based methods) and
only choose lightweight techniques (i.e., token-based and AST-
based) to commence our combination experiments.

To answer the third question, we design a series of al-
gorithm combination schemes to conduct recall measurement
experiments. After analysis, we obtain an optimal algorithm
combination, that is, a low-threshold token-based algorithm
for filtering, and an AST-based algorithm for further clone
verification. In order to verify the feasibility of this combina-
tion and support fast and accurate large-scale clone detection,
we implement it as a tool, named TACC. Our evaluation
experiments demonstrate that TACC performs the best in
detecting all common clone types compared to five other state-

of-the-art detection tools (i.e., CCAligner [14], SourcererCC
[15]], NiCad [16]], NIL [17], and Siamese [18]). In terms of
scalability, TACC can complete 100MLOC clone detection
task within 3 hours and 48 minutes.

In summary, our main contributions are as follows:

o We reproduce 12 clone detection techniques with differ-
ent code representations and conduct an empirical study
to figure out which code representation is more effective
in detecting code clone.

o We propose TreeDiff and perform fine-grained division
of real-world clone types. After manual analysis, we
observe that most Type-3 clones are simple Type-3.

o We conduct different combination evaluations of different
clone detection algorithms and find out a suitable com-
bination that can achieve ideal performance.

+ We implement TACC E], an effective code clone detection
tool that can scale to big code. Through our experimental
results, we observe that TACC is superior to CCAligner
[14], SourcererCC [15]], NiCad [16]], NIL [17]], and
Siamese [18].

The remainder of this paper is organized as follows. Section
presents an initial investigation of the clone detection capa-
bilities of different representations, and Section conducts a
more fine-grained study. Section [[V| describes the distribution
of clones in real world. Section [V] gives the process of finding
the best combination of algorithms. Section |VI| presents clone
detection details of our new approach. Section evaluates
our tool and conducts large-scale experiments in open source
projects. Section discusses our work and section
surveys retated work. Section [X] concludes the present paper.

II. PRELIMINARY STUDY

According to the type of representation extracted from
source code [[19]], [20], clone detection techniques can gen-
erally be categorized into text-based [16], [21]], [22], token-
based [6], [14], [15]], [23]], tree-based [24]], [25]], graph-based
[8], [26]], and metrics-based [27], [28]].

Lightweight text-based and token-based methods are supe-
rior in speed, but they are generally considered not as accurate
as tree-based and graph-based methods that take into account
syntactic or semantic information. However, there is still a
lack of a clear understanding of the ability of clone detection
techniques based on different code representations. To fill such
a research gap, we reproduce 12 clone detection algorithms
based on three different representations and conduct a prelim-
inary study to evaluate their effectiveness on a widely used
benchmark dataset namely BigCloneBench [29]].

A. Overview of Selected Algorithms

Our selection criteria are the publication year, confer-
ence/journal rank, and citations of papers. Table [I] shows
the descriptions of our reproduced algorithms. In subsequent
experiments, we use abbreviations to refer to algorithms for the
convenience of description. Since text-based method NiCad

ITACC, https://github.com/TACC-Code/TACC

Table 1. Descriptions of our reproduced algorithms

Representation Technique Tool/1st author Abbr.&Threshold

Text-based Nicad t1=0.70

Token
. . SourcererCC [15] t2=0.70
(no-syntactic) Token-based Lvmapper [30] t3=0.70
NIL [17] t4=0.70
Lazar [31] al=0.80
Zhao [32] a2=0.65
Tree AST-based Yang [33] 23=0 80
Deckard [25] a4=0.85
StoneDetector [34] c1=0.80
Graph CFGs-based GroupDroid [35]] ¢2=0.95
P ATVHunter [36] 3=0.85
PDGs-based CCgraph [26] p1=0.90

and token-based methods SourcererCC, Lvmapper, and NIL
are all technologies without syntactic information, we classify
NiCad into the category of Token for convenience of experi-
ments.

Learning-based clone detection has been a research hotspot
in recent years [37]], so we chose ASTNN [38] and RtvNN
[39] for preliminary testing. We conduct an initial evaluation of
both tools using two commonly used datasets, BigCloneBench
[29] and Google Code Jam (GCJ) [40]. We found that the
precision on GCJ did not meet expectations after the two tools
were trained on BigCloneBench, and their training overhead
tended to be time-consuming. In other words, learning-based
clone detection techniques may not be competent for large-
scale real-world clone detection tasks. In most cases, metrics-
based clone detection techniques extract metrics of source
code from ASTs or CFGs [1f], [20]. Metrics-based technology
actually overlaps with other algorithms in terms of code
representation.

Token (non-syntactic). After preprocessing the source
code, NiCad [[16] obtains similarity by comparing the longest
common sub-sequence (LCS) between texts. NIL [17] and
Lvmapper [30] also use the LCS algorithm to calculate the
similarity of token sequences, then use the Hunt-Szymanski
algorithm [41] and heuristic algorithm for optimization, re-
spectively. SourcererCC [15] uses the global token position
map and computes the overlap similarity for code clone
detection.

Tree. The approach proposed by Lazar et al. [31] is the
same as Baxter et al. [42], comparing the same number of
nodes in the subtree for similarity. Zhao et al. [32] proposed
AST-CC which converts the tree structure of storing form into
a linear list and groups the syntax tree information according to
the number of sub-nodes to reduce the number of comparisons.
Yang et al. [|33|] proposed an approach that replaces original
nodes in the AST with a more abstract code representation
through the defined node type, and then uses the Smith-
Waterman algorithm [43]] for similarity comparison. Deckard
[25]] extracts characteristic vectors from ASTs and uses the
locality sensitive hashing (LSH) algorithm for the clustering
of clones.

Graph. Amme et al. [34] developed a tool called StoneDe-
tector, which analyzes CFGs to obtain dominance trees and
compares dominance paths to detect clones. Marastoni et al.
[35] proposed GroupDroid, which can measure similarity by
extracting feature vectors from CFGs of methods. ATVHunter
[36] is a CFG-based third-party library detection tool for
Android applications, which can also be used for clone de-
tection. CCgraph [26] is a PDG-based method, which uses an
approximate graph matching algorithm to detect clones.

B. Experiments

Dataset. We conduct our evaluation on BigCloneBench
[29] which is a Java-based and function-level dataset com-
posed of more than 8,000,000 tagged clone pairs. Due to
the fuzzy boundary division between Type-3 and Type-4,
BigCloneBench makes a more fine-grained division of Type-
3 and Type-4 by measuring the syntactic similarity: Very-
Strongly Type-3 clones (VST3) with a similarity between
[0.9, 1); Strongly Type-3 clones (ST3) with a similarity
between [0.7, 0.9); Moderately Type-3 (MT3) with a similarity
between [0.5, 0.7); Weakly Type-3/Type-4 clones (WT3/T4)
with a similarity between [0, 0.5). The syntactic similarity is
measured by calculating the minimum ratio of common lines
or tokens between two code fragments after eliminating Type-
1 formatting differences and Type-2 normalization. Common
lines or tokens are obtained by a diff algorithm that takes
into account the order of the lines or tokens. Specifically, we
choose the same dataset used in ASTNN [38]] which is a subset
of BigCloneBench. This dataset consists of 15555 T1, 3663
T2, 1804 VST3, 9289 ST3, 10473 MT3 and 31835 WT3/T4.
The total number of clone pairs is 72,619.

Experimental settings. We reproduce the above 12 clone
detection algorithms in Table [I] using Python. The feature ex-
traction for source code is implemented by leveraging javalang
[44] and joern [45]. Javalang is a pure Python library, which
can provide a lexer and parser for Java source code. Joern is a
cross-language code analysis tool that is capable of generating
CFGs and PDGs for Java source code.

The similarity thresholds of the above 12 algorithms are
as consistent as possible with the configurations in articles
[15]-[17], [26], [30], [36]. For algorithms whose optimal
thresholds are not given in papers, we measure precision by
manually validating clones. We sample 400 clone pairs for
each algorithm separately and adjust the threshold in 5% steps
to measure precision. We set the threshold to the corresponding
value where the precision first approaches around 95%. The
thresholds of each algorithm are set as t1 = 0.70, t2 = 0.70, t3
=0.70, t4 = 0.70, al = 0.80, a2 = 0.65, a3 = 0.80, a4 = 0.85,
cl =0.80, c2 = 0.95, c3 = 0.85 and pl = 0.90. We set the
minimum clone size to 6 lines which is often considered as
the minimum granularity for functional clones [[15]], [46]]. We
conduct all the experiments on an AMAX computing server.
It has two 2.1GHz 24-core CPUs and 384G memory.

Result. We measure recall by computing the union of
clone pairs detected by algorithms that belong to the same

1.0

0.94

0.84
0.74
0.6+

all

8 0.5
@

0.40,

0.35

0.30

0.25

0.20

.44 046 0.48 0.50 -

0.4 d
0.3 0.32 0.33 0.34 0.35 0.36
> 1 F—=—Token|
0.1+ | F—=—Tree
0'160.57 0.58 0.59 0.60 0.61 —— Graph
0 I I I I ' ' ' ' ' 001 " " j ! ! i T r T . 0.01 T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 09 1.0 0.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1.0 00 01 02 03 04 05 06 07 08 09 1.0

Token-Diff

Tree-Diff

Average-Diff

Fig. 1. Recall of different code representations under different degree of code differences

Table 2. Recall of algorithms based on different code representations

TYPE Token Tree Graph
T1 1 1 1
T2 1 1 1

VST3 1 1 0.95

ST3 0.96 0.98 0.77
MT3 0.58 0.65 0.51
WT3/T4 0.04 0.06 0.14

representation (i.e., Token, Tree, and Graph). The recall results
of different representations are shown in Table [2]

All three representations achieve 100% recall on both Type-
1 and Type-2 clone detection. On the recall of Very Strongly
Type-3, Strongly Type-3, and Moderately Type-3, algorithms
based on tree representation perform the best, with recall
reaching 1, 0.98, and 0.65, respectively. For Weakly Type-
3 clone detection, graph-based methods can achieve the best
recall. This may be because in some simple Type-3 clones, the
use of ‘+’ for string concatenation often occurs. If the number
of string concatenations is different, the generated CFGs will
also be affected, resulting in false negatives. Instead, this
situation is reflected in tokens and ASTs, with only minor
changes. Another reason is that token-based and AST-based
technologies can tolerate small modifications to statements.
But if most of the modified statements are method calls, it
will cause greater changes to the graph structure of CFGs than
tokens and ASTs.

Overall, we observe that token and tree representations
can achieve better performance than graph when detecting
simple Type-3 (i.e., VST3, ST3, and MT3). However, since
the codes of WT3 clones become complicated, we need to
consider more program semantics to detect them. At this time,
graph representation is more effective than token and tree
representations.

III. FINE-GRAINED STUDY

Currently, clones are usually classified into four categories
[1], [46], corresponding to textual similarity, lexical similarity,

syntactic similarity, and semantic similarity in clone detection.
In Section we find that token and tree representations
outperform graph representation in detecting simple Type-
3 clones. However, when investigating the ability of clone
detection algorithms based on different code representations,
BigCloneBench dataset suffers from two flaws: first, the gran-
ularity of BigCloneBench’s classification of Type-3 and Type-
4 is coarse, and cannot reflect the capabilities of different
code representation algorithms in more detail; second, the
syntactic similarity for clone classification in BigCloneBench
only considers text lines and tokens, lacking structural and
syntactic information.

Procedure. To enrich the information considered when
classifying clones, we propose TreeDiff to describe the dif-
ference between the ASTs of two code fragments. Formally,
given two ASTs Treey, Treep, TreeDiff can be measured
as equation (1), where the |Trees NTreep| is obtained
by calculating the number of common nodes through tree
matching algorithm [47]. Correspondingly, we also define
TokenDiff , which is measured as equation (]ZI) The calculation
of syntactic similarity is the same as that in BigCloneBench.
Then AverageDiff can be measured as equation (3)), which is a
compromise between TokenDiff and TreeDiff. AverageDiff
allows us to consider both tokens and syntactic information
when describing code differences.

T nT
TreeDiff=1— [Treea rees|

)

|Trees UTreep|

TokenDif f =1 — Syntactical Similarity)

TokenDif f + TreeDif f
2

To more clearly study the capability of different code repre-
sentations for clone detection, we divide the Type-3 and Type-
4 clones of BigCloneBench into fine-grained partitions. Our
methodology is as follows: first, we collect the TokenDiff,
TreeDiff , and AverageDiff of Type-3 and Type-4 clone pairs

AverageDif f =

3)

in BigCloneBench, respectively; second, we divide all clones
into 20 subclasses with a granularity of 5%. Taking TokenDiff
as an example, the TokenDiff value of the first subclass of
clone is between 0-5% while the value of the 20th type of
clone is between 95%-100%; third, we compute the recall of
different code representations in detecting these 20 subclasses
clones.

Result. Figure [I] shows the recall results of different code
representations on three diffs (i.e., TokenDiff, TreeDiff,
and AverageDiff). Through the results, we can observe that
regardless of which diff is used to represent the degree of code
difference, and regardless of which code representation is used
to detect clones, the recall will decrease as the diff increases.
It is reasonable because larger diffs indicate more differences
between clone pairs, making them harder to detect. Moreover,
we also find that when diff is at a small value, both token
and tree representations can detect more clones than graph
representation. However, when the diff exceeds a threshold,
graph representation can detect more clones. This threshold is
also different for different diffs. Specifically, the thresholds for
TokenDiff, TreeDiff, and AverageDiff are 0.35, 0.58, and
0.47, respectively. This result is consistent with the results in
Table [2] that is, token and tree representations perform better
on simple clone detection, while graph representation performs
better on complex clone detection. However, our results are
more fine-grained, and specific thresholds can be obtained
through Figure

IV. REAL-WORLD CODE CLONE DISTRIBUTION

In section [l and [ITI] our experimental datasets are all tagged
clones in BigCloneBench, of which WT3/T4 accounts for as
high as 43.8%. This may not represent the distribution of
clones of a real scene. On the other hand, the verification
process of clones is often accompanied by inevitable human
subjective problems [48]. For some more complex clones,
especially semantic clones, the judges’ opinions are usually
inconsistent. Therefore, finding out all clones in a subject
system is an almost impossible task. An alternative is to use
tools based on different representations to mine as many clones
as possible and verify manually. In this way, it is as close to
the true distribution of clones to the greatest extent possible.

Procedure. To obtain the real-world code clone distribution,
we randomly pick 3,000 functions from IJaDataset [11], a
large data repository containing 2.3 million java files. Then
we execute our 12 code clone detection algorithms to scan
clones from these 3,000 functions. After taking the union of all
clones detected by the 12 algorithms, we obtain a total of 1,534
clone candidates. The clone detection results are manually
verified by two judges. In case of disagreement, the third
judge will verify and reach a consensus with the other two
judges. Finally, we get 1,285 pairs of true clones. Of the clones
that we verified as false positives, we considered some to be
nonsense clones. An example of this is shown in List|l} Both
Function 1 and Function 2 are used to bundle a few unit test

Listing 1. False Positive Example

static Test suite () {

TestSuite suite = new TestSuite("Analyzers
suite");

5 suite .addTest(TextAnalyzeSuite . suite ());

6 suite . addTest(TabletextSuite . suite ());

7 suite . addTestSuite (ElementFoundTest.class) ;

8

9

1
2
3 | public
4

return suite ;

}

10

11 | public static Test suite () {

12 TestSuite suite = new TestSuite("Tests for
pg.jbert.Utilities.mat2urban");

13 suite . addTestSuite (MyZoneTest.class);

14 suite . addTestSuite (MyZoneReaderTest.class);

15 suite . addTestSuite (MyPlansProcessorTest. class) ;

16 suite . addTestSuite (MyZoneToZoneRouterTest.class
);

17 suite . addTestSuite (MyCdfMapperTest.class);

18 return suite ;

19 |}

cases and run them together. After code normalization, their
token sequences are extremely similar. However, this is a very
common way of writing project unit tests, so we don’t think it’s
a meaningful clone. In addition to this, we also discard some
of the candidate pairs for exception handling. This candidate
pair is also a meaningless clone when the number of lines of
code is small.

10 M T T T

0.9
—=— TokenDiff

0.8 —— TreeDiff i
—— AverageDiff|

OO T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 1.0
Diff

Fig. 2. Cumulative distribution function of TokenDiff, TreeDiff, and
AwverageDiff on real code clone pairs

Result. After eliminating Type-1 and Type-2 clone pairs
(i.e., TokenDiff = 0), we calculate the TokenDiff, TreeDiff,
and AwverageDiff on the remaining 995 clone pairs. Fig-
ure [2] presents the cumulative distribution function (CDF)
of TokenDiff, TreeDiff, and AverageDiff, respectively. In
addition, we also record some important points in Table [3]
First, we show the thresholds (i.e., 0.35 for TokenDiff, 0.58
for TreeDiff, and 0.47 for AverageDiff) in Figure[I]and their

corresponding clone ratios. Second, we show the diff ranges
when the cumulative ratio of clones reaches 90%, 95%, 99%,
and 100% for the first time.

Table 3. Some important diff ranges and their corresponding clone ratios of
TokenDiff, TreeDiff, and AverageDiff

TokenDiff \ TreeDiff \ AverageDiff
diff range clones ratio ‘ diff range clones ratio ‘ diff range clones ratio
(0, 0.35] 84.2% | (0,0.58] 955% | (0, 0.47] 94.0%
(0, 0.38] 90.2% | (0, 0.48] 91.5% | (0,0.42] 90.4%
(0, 0.46] 952% | (0,0.57] 952% | (0, 0.50] 95.0%
(0, 0.72] 99.0% | (0,0.87] 99.1% | (0,0.73] 99.0%
(0, 0.96] 100% | (0, 0.96] 100% | (0, 0.96] 100%

Since both the lexical information and syntactic information
of source codes are taken into account, the experimental
results of AverageDiff are more representative. We find that
the proportion of clone pairs is as high as 94.0% when the
AverageDiff is between (0, 0.47]. When the AverageDiff of
clone pairs is higher than 0.47, techniques based on graph
representation can detect more clones. However, only 6% of
clones have an AwverageDiff higher than 0.47. This means
that the clones that exist in the open-source community may
be mostly in the range that token and tree representations can
detect. In addition, when the AverageDiff is between (0, 0.96],
the proportion of clone pairs reaches 100%, but only 1% of
clone pairs with AverageDiff at (0.73, 0.96]. In other words,
almost all clones are distributed in the interval of AverageDiff
below 0.73. Therefore, to a certain extent, clone detection
and evaluation works can ignore candidate clone pairs with
an AverageDiff higher than 0.73 to speed up the efficiency.

V. AST&TOKEN WITH DIFFERENT THRESHOLD

We have found that when the AverageDiff is lower than
0.47, the clone detection technology based on token and tree
representations is better than the one based on graph, and
most of the clones that can be detected are distributed in this
interval. In reality, the clone detection algorithms based on
graph representation are time-consuming. In our experiments,
the graph-based algorithms take about 4 hours to extract
CFGs or PDGs for 60,000 files in the file preprocessing
stage. Therefore, it is difficult to achieve ideal efficiency
when using graph-based clone detection algorithms in large
projects or systems. In this way, it seems that using only clone
detection algorithms based on token and tree representations is
sufficient. In this section, we focus on finding a suitable com-
bination of token-based and tree-based algorithms to achieve
scalable and effective code clone detection.

A. Combination of Token-based Algorithms

Procedure. In order to find the most reasonable combi-
nation of algorithms, we set 14 combinations for the four
algorithms based on token. We evaluate the recall of each
combination on the BigCloneBench dataset, and the similarity
threshold of all algorithms adopts the optimal configuration

in section [l The difference is that we know the possi-
ble distribution of code clones in real world, so we use
AverageDiff as the basis for BigClonebench clone division,
because AwverageDiff can describe code differences at both
token-level and syntax-level. The recall values of Type-1
and Type-2 clones on BigCloneBench for each algorithm are
almost 100%, so we discard them in our experimental results.
We only focus on clone pairs with AverageDiff between (0,
0.73], because 99% of clone pairs that can be detected in
real world are distributed in this interval. In detail, we divide
(0, 0.73] into five partitions with a granularity of 15%, and
evaluate the recall of different combinations of algorithms on
different AverageDiff partitions.

Result. Table [presents the recall results for combina-
tions of token-based algorithms. Obviously, the recall of the
combination of the three algorithms is stronger. Although
this combination barely loses recall ability compared to all
algorithms overall, the overhead problem cannot be ignored.
In contrast, the combination of the two algorithms is more
reasonable because the overhead is more acceptable and the
recall only loses a little. Therefore, discarding the combination
of the three algorithms, we mark the best recall in Table
and the same goes for Table [5] In the two combinations of
algorithms, the combination of t2 and t3 works better, with
the best recall at [0,15, 0.30), [0.30, 0.45), and [0.45, 0.60).
In other words, the clones detected by the combination of
t2 and t3 approximately contain clones recalled by all token-
based algorithms. Therefore, from the perspective of recall
and runtime overhead, we take a balanced approach, that is,
choose a combination of t2 and t3 instead of using all token
algorithms.

B. Combination of Tree-based Algorithms

Procedure. The combinations and settings of the AST-based
algorithms are the same as token-based methods.

Result. Table [5] presents the recall results for combinations
of AST-based algorithms. The experimental results are similar
to the token-based algorithm combinations. In detail, the recall
of the combination of the three algorithms is better. However,
as aforementioned, the time cost factor cannot be ignored, so it
is more reasonable to choose a combination of two algorithms.
The recall of the combination of a2 and a4 is the highest on
[0, 0.15), [0.30, 0.45), [0.45, 0.60), and [0.60, 0.73), and is
almost the same as the overall recall. Therefore, we select a2
and a4 to replace all AST algorithms.

C. Combination of Token-based and Tree-based Algorithms

Based on the previous experiments, we have found a suit-
able combination of token-based and tree-based algorithms,
respectively. However, compared to tokens, since extracting
ASTs is more time-consuming and the number of nodes in
the AST of the same code is more than the number of tokens,
the overhead problem will be further magnified. To mitigate
the issue, we propose to use a low-threshold token-based clone
detection method for filtering, and then verify the clone pairs

Table 4. The recall of different combinations of token-based algorithms

@7
For

each tree

Verification

AverageDiff tl t2 3 t4 t12 t13 tl4 23 t24 t34 t123 t124 t134 234 all
[0, 0.15) 0995 0986 0.737 0.813 0997 099 0995 0991 0987 0.899 0.998 0997 0996 0.991 0.998
[0.15,0.30) 0.775 0.773 0579 0.644 0.82 0.872 0.805 0.882 0.821 0.764 0903 0.849 0.878 0.89 0.907
[0.30, 0.45) 0.291 0.41 0.191 0.187 0.441 0395 0362 0512 0489 0.282 0529 0507 0424 0543 0.555
[0.45,0.60) 0.073 0.138 0.051 0.076 0.142 0.097 0.096 0.16 0.16 0.095 0.163 0.162 0.113 0.176 0.177
[0.60, 0.73) 0.007 0.028 0.008 0.016 0.029 0.014 0.018 0.035 0.038 0.02 0.035 0.039 0.022 0.042 0.042
Table 5. The recall of different combinations of tree-based algorithms
AverageDiff al a2 a3 a4 al2 al3 al4 a23 a24 a34 al23 al24 al34 a234 all
[0, 0.15) 1.000 0.997 1.000 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[0.15,0.30) 0.875 0912 0.632 0.624 0982 0929 0949 0937 0936 0.761 0986 0989 0.963 0.947 0.990
[0.30, 0.45) 0.032 0.540 0.094 0.234 0.552 0.124 0263 0.547 0.580 0.267 0.558 0591 0.294 0.585 0.596
[0.45,0.60) 0.000 0.185 0.054 0.087 0.185 0.054 0.087 0.189 0.201 0.109 0.189 0.201 0.109 0.204 0.204
[0.60, 0.73) 0.000 0.072 0.004 0.019 0.072 0.004 0.019 0.074 0.081 0.022 0.074 0.081 0.022 0.082 0.082
. Normalize &
Source Files [—ect & Tokenize | Line Blocks Concatenate Normalization | "oF each N-line seed
N-Lines Blocks
: Lexical Analysis
Token-based In;’:d:id
Filtering Token Blocks Locate
I
! SourcererCC Filter LVMapper Filter
: i | Candidate List2 Collision List :
i s
! Parser-tree Build Subtree matching
H Clone Pairs1 . H
Tree-based union | Clone Pairs |}

Jaccard similarity)
Vector Trees Clone Pairs2

Fig. 3. Overview of TACC which consists of two phases: Token-based Filtering and Tree-based Verification

Table 6. The recall of combination between AST and Token with different

thresholds
AverageDiff T=04 T=045 T=0.5 T=0.55 AST a2&a4
[0,0.15) 1.000 1.000 1.000 1.000 1.000 1.000
[0.15, 0.30) 0.936 0.936 0.936 0.935 0.990 0.936
[0.30, 0.45) 0.580 0.580 0.580 0.576 0.596 0.580
[0.45, 0.60) 0.201 0.201 0.201 0.198 0.204 0.201
[0.60, 0.73) 0.081 0.081 0.080 0.077 0.082 0.081

by using AST-based detection techniques after reducing most
of clone candidates.

Procedure. We use low-threshold t2 and t3 as filtering,
which aims to include as many clones as possible that can
be detected by token-based algorithms, without erroneously
filtering clones that can be detected by AST-based algorithms.
After filtering by a token-based combination, we utilize a2 and
a4 for clone verification and measure the recall results.

Result. Table [6] shows the recall results of a2 and a4 when
t2 and t3 with different thresholds are used as the filter. It
turns out that the recall of a2 and a4 does not decrease when
the thresholds of filtering algorithms t2 and t3 are not higher
than 0.45. This indicates that filtering by the low threshold 2
and t3 algorithms will not result in more false negative clones.
Furthermore, when the thresholds of t2 and t3 are set to 0.50,

the final recalls of a2 and a4 are only slightly lower than the
original in the interval [0.60, 0.73). However, this difference
is negligible. On the contrary, if the filter threshold is set to
0.50, more clone candidate pairs can be filtered out, thereby
reducing the verification time of AST-based algorithms, which
is worthwhile. Therefore, we finally choose a threshold of 0.5
for token-based algorithms.

VI. APPROACH

Based on the above experimental results, we obtain an ideal
combination of algorithms and then develop it into a complete
clone detection tool, called TACC (A Token and AST-based
Code Clone Detector). The overall process of our method is
shown in Figure [3] which consists of two parts: Token-based
Filtering and Tree-based Verification.

During the Token-based Filtering phase, we first extract all
functions from the source files and concatenate all the adjacent
N lines of code for each function. In this way, the inverted
index can be created for locating. Then, we adopt the filter
similarity calculation formula used in Lvmapper mainly based
on the number of shared N-Lines as the first filter. After that,
we compute the SourcererCC similarity of the remaining pairs
based on their token sequences as the second filter.

During Tree-based Verification phase, two techniques based
on AST are adopted in our work. The first technique is to use

a subtree matching algorithm based on hash trees to detect
clones while the other is to analyze the tree vectors for clone
detection. We use the above two methods to verify the token-
filtered pairs separately, and finally combine their results to
report our detected clone pairs. We elaborate the details of
our approach in the following parts.

A. Token-based Filtering

1) Preprocess

In the preprocessing phase, we adopt TXL [49] to extract
all functions from source files and then transform them into
line sequences. After lexical analysis of these line sequences,
we get token sequences for each function and sort them for
subsequent SourcererCC filter utilization. Next, we normalize
the line sequences including identifier replacement, comment
removal, and blank line deletion. During the above normaliza-
tion process, we also concatenate adjacent n lines of code
to get N-lines. After code normalization, there is a high
probability that a pair of non-clone functions have the same
line of code, such as the variable declaration, ‘return’, ‘if’,
‘try’, etc. However, it is not common to have the same and
consecutive n lines of code. So inverted index can be created
from the generated N-Lines. We use a dictionary to store the
inverted index whose key is the MurmurHash value [50] of
N-Lines, which has a low collision probability, and value is
the function index containing the corresponding N-Lines.

2) Location

In the location phase, we use the inverted index generated
in the preprocessing phase to perform the locating operation
which can significantly reduce the number of clone pairs that
need to be detected at a small cost. For a given function, we
traverse its N-Lines hash value and use it as the key to collect
its corresponding function index in the inverted index.

3) Filtering

In the filter phase, we adopt two methods to remove these
pairs with low similarity. The first method is the same as the
filtering stage in LVmapper. It calculates the similarity through
the shared N-lines of pairs, which is measured as equation (4)):

S S S
SR(A’B)_T_L—N+1_maz(|A|,\B|)—N+1 @
Except for .S, the definitions of other parameters are consistent
with LVmapper. S represents the approximate number of com-
mon N-lines of functions A and B, which can be calculated
by the following steps: given functions A and B, traverse the
N-lines hash sequences of A and get their corresponding value
in the inverted index, and finally determine whether the index
of function B is in it. By computing S in this way, the time
complexity can be reduced from O(|N-lines(A)|x|N-lines(B)|)
to O(|N-lines(A)|). Although computing common N-lines in
this way ignores repeated N-lines in function B, this happens
rarely and is tolerable during the preliminary filtering stage.
We remove pairs whose SR score is less than the first filtration
threshold 6.
After fast N-lines filtering, we use another fine-grained
token-based algorithm for further filtering. We use the sim-

ilarity determination formula in the verification phase of
SourcererCC as our further filtering basis, which is measured
as equation (B):

[Bx N By| = [02 - max(|Be|, | By|)] ®)

Note that 6, is the threshold of SourcererCC filter and
|Bz|, | By| are the length of two token sequences, respectively.
Since x and y are already sorted in the preprocessing phase,
SourcererCC filter’s time complexity can be reduced from
O(mxn) to O(m+n). Finally, those pairs whose overlap tokens
are less than [0y - max(|B,|, |By|)] are filtered out.

At this stage, the use of token-based algorithms is not
limited to filtering candidate pairs, but can also be used for
clone verification. If the SR is higher than the threshold 65
or the overlap similarity is higher than the threshold 6,4, the
candidate pair can be directly regarded as a clone pair without
further verification of the AST algorithms. In this way, the
detection efficiency is accelerated by reducing unnecessary
verification.

B. Tree-based Verification

1) Tree Information Generation

At this stage, we obtain the hash tree and characteristic
vectors of the function. The idea of building the hash tree
comes from a2 [32]. Comparing syntax tree nodes directly
is complex and inefficient. So we can build a special hash
syntax tree for fast execution of subtree matching algorithms.
The specific method is as follows:

« First, we conduct static analysis to extract the AST of a

given function;

« Second, we traverse the entire tree in post-order traversal.
For leaf nodes, we directly call the hash function to
calculate and obtain the hash value. For non-leaf nodes,
its hash value is the sum of all its child nodes and its
own hash value;

e Third, we count the hash values of tree nodes, and store
the tree hash information into a dictionary whose key
is the tree node hash and value is the number of key
occurrences in the hash tree.

After the above processing, since there are less than 100
types of tree nodes, the probability of hash collision is very
low. Therefore, we can directly judge whether the subtree
rooted at the node is the same by comparing whether the hash
values of the two nodes are the same. In this way, the time
and space overhead of the algorithm can be greatly reduced
on the premise of losing grammatical information.

The extraction of characteristic vectors is similar to that
done by Deckard. Characteristic vectors can capture the struc-
tural information of the tree and store it in the form of a vector.
Vector generation is similar to hash tree, and it also traverses
each node of the tree in post-order, whose characteristic
vectors are generated by summing up its children and own
vectors. The dimension of the vector n = [¢|?9~!, where ¢
represents the atomic pattern level, and (represents the label
set size. The node type is automatically generated by a static
analysis tool (i.e., JavaParser) during tree parsing.

2) Candidates Similarity Calculation

After the two stages of token-based filtering and tree infor-
mation generation, we only need to call a2 and a4 algorithms
to verify the remaining pairs.

For a2 algorithm, given a pair (A, B), the algorithm
first selects the function with the smaller hash node count
dictionary (HNCD) size in the pair, and then repeatedly judges
whether A’s HNCD key is in B’s HNCD. If it exists, it will
add the smaller value of the corresponding value of the key in
the two dictionaries to the common nodes of A and B. Finally,
we calculate the similarity between the two by the following
equation (6):

common_nodes
max([HNCD(A)|,|HNCD(B)|)

For a4 algorithm, given a pair (A, B), we do not verify the
clone by computing the norm of the vector as in [25]] because
it is unfair to take a fixed value for trees of different sizes.
The average distance between pairs with fewer tree nodes will
be smaller than the average distance between pairs with more
tree nodes. After trying indicators such as cosine similarity,
Pearson correlation, and Jaccard similarity coefficient, we
finally choose Jaccard similarity coefficient to measure the
similarity between two vectors since it can perform the best
in our experiments. The specific calculation formula is as
equation ([7):

AT (A, B) = (6)

|AN B| |AN B|
J(A,B) = =
4.5) |AuB| |A|+|B| - |AUB]|
Finally, if AT(A, B) > 01 or J(A, B) > 02, we treat the
candidate pair as a clone and add it to the clone pairs.

(7

VII. EVALUATION

In this section, we thoroughly evaluate the detection per-
formance of TACC. Specifically, we first describe the pa-
rameter settings of TACC. We then evaluate TACC on the
BigCloneBench dataset. Finally, we check the scalability of
TACC and conduct a large-scale study to demonstrate the
feasibility of TACC on big code analisys. In addition, we also
compare the above experimental results with five other state-
of-the-art clone detectors (i.e., CCAligner [14], SourcererCC
[15], Siamese [18]], NIL [[17]], and NiCad [|16[]). The settings
of these detectors are all derived from their published papers
[14]-[18]l.

A. Parameter Settings

TACC requires seven parameters including N for N-lines,
filter thresholds €1 and 65, token-based verification thresholds
03 and 04, and tree-based verification thresholds 6; and ds.
First of all, the selection of the N-lines parameter N will
greatly affect the final detection result and execution time. We
measure recall and execution time for different N (i.e., 1-5) on
a subset of BigCloneBench, as in Section [II} After analyzing
the experimental results, we find that as the value of N goes
from 1 to 3, the execution time decreases significantly, but the

corresponding recall also decreases gradually. Therefore, con-
sidering the balance between recall and execution efficiency,
we take 3 for N as a suitable solution.

Overall, we set #; to 0.1 as LVmapper does. The other
parameters are consistent with the experimental settings in
Sections IT and V, that is, 65 = 0.5, 03 =0.7, 0, = 0.7, 51 = 0.65,
and 02 = 0.85. In other words, in the Token-based Filtering
stage, we first select LVmapper with a threshold of 0.1 as the
first filter, and then select SourcererCC with a threshold of 0.5
as the second filter. Meanwhile, pairs with a similarity greater
than 0.7 are directly considered as clone pairs. In the Tree-
based Verification stage, we use both a2 and a4 to analyze the
filtered candidates. When the similarity of a2 is above 0.65 or
the similarity of a4 is above 0.85, we will recognize that it is
a clone pair.

B. Recall and Precision

We evaluate the recall and precision of TACC on the subset
of BigCloneBench, whose components are shown in Section
In addition, we also divide the dataset by AverageDiff and
perform recall measurement as in the above experiments.

Table 7. Detection performance of TACC, CCAligner, SourcererCC,
Siamese, NIL, and NiCad on general BigCloneBench and
AwverageDiff -based BigCloneBench. Note that CCA, Sou, Sia, and Nic
denote CCAligner, SourcererCC, Siamese, and NiCad, respectively.

Tool TACC CCA Sou Sia NIL NiC

Type-1 100 100 94 100 99 98
Type-2 100 100 78 96 97 84
VST3 100 99 54 85 88 97
ST3 94 65 12 59 66 52

MT3 55 14 1 14 19 2

WT3/T4 2 1 0 1 1 0

Recall

[0, 0.15) 96 77 28 64 72 51
[0.15, 0.30) 84 49 4 47 57 42

[0.30, 0.45) 52 10 1 12 15 8

[0.45, 0.60) 12 5 1 5 5 2

[0.60, 0.73) 4 2 0 1 1 1
Precision 95 61 100 98 86 99

1) Recall

As shown in Table TACC performs better than other
tools on all clone categories. On the recall of simpler clones
like T1, T2, and VST3, TACC performs flawlessly. For recall
in detecting ST3 clones, TACC (93%) leads the second NIL
(66%) by nearly 28%. For MT3 clones, TACC shows an
unparalleled advantage over the recall of other comparative
tools, leading the other tools by more than 36%. In Section
V, we divide T3/T4 clones with AverageDiff between [0,
0.73) by 15% steps and measure the recall of each tool in
each interval. The recall results are shown in Table [} After
removing T1 and T2 clones, the difference in recall for each
tool is more pronounced. TACC achieves the best recall in all
intervals compared to other tools. According to the distribution
of real clones, the proportion of clones in the interval of
AverageDiff between [0, 45] exceeds 90%, and the recall
performance of TACC is also far superior to other tools.

2) Precision

As for the measurement of precision, similar to other
previous works [14], [51]], we randomly sample 400 clone pairs
from clone reports in each tool and conduct manual analysis
to validate them. Each clone pair is checked independently
by two experts. If there is a conflict, a final decision will
be made after a discussion with another expert. The principle
rule for judging is based on the overall similarity between
the two clone fragments and on whether they perform similar
functionality. After manual inspection, we find that TACC has
a precision of 95%, which is slightly lower than SourcererCC
but acceptable performance.

Table 8. Runtime overhead of TACC, CCAligner, SourcererCC, Siamese,
NIL, and NiCad when processing different sizes of code

Tools TACC CCAligner SourcererCC NiCad Siamese NIL
1K 1s 1s 3s Is 4s Is
10K 1s 2s 5s 3s 14s 1s
100K 3s 6s Ts 36s 45s 3s
M 12s 11m52s 37s 6m13s 40mls 11s
10M 3m4s 29m48s 12m21s 2h10m 14h11m 1m3s
100M 3h48m - 12h27m - 6d16h46m 29mlls

C. Scalability

In this part, we focus on evaluating the scalability of
TACC and our comparative tools. Specifically, we construct
datasets of different orders of magnitude as input to tools
and record their runtime. The size of the dataset is measured
by the number of lines of code (LOC), from 1KLOC to
100MLOC. We limit the memory of the machine to 32G for
scalability experiments. The execution times of tools under
different magnitudes of input are shown in Table For
inputs from 1KLOC to IMLOC, TACC exhibits comparable
execution efficiency to NIL. On larger inputs like 10MLOC
and 100MLOC, the execution time of TACC only lags behind
NIL. This result can be predicted that compared with pure
Token-based technology, TACC’s AST-based verification stage
is more time-consuming. But it only takes about 3 hours and
48 minutes for TACC to analyze 100MLOC, indicating that
TACC is suitable for scanning large-scale code clones.

D. Large Scale Clone Detection

In this part, we conduct an in-depth empirical study of
function clones across 4,500 open-source projects by using
TACC. In the selection of open-source datasets, we follow
the indicators of open-source project criticality scores [52].
Criticality score can be used to describe the influence and
importance of an open source project. According to the score
ranking table of nearly 100K open source projects provided
in the Github repository of criticality score, we select the top-
ranked java projects. Specifically, we download 4,500 projects
and apply TACC to detect code clones from these projects.
This dataset contains about 1.4M files and 15S0MLOC. We
detect about 7.55 billion clone pairs in these 4,500 projects
and analyze these clones.

Ratio

TokenDiff-Manual
- =TreeDiff-Manual
= = AverageDiff-Manual
- - TokenDiff-Real
TreeDiff-Real T
AverageDiff-Real

00 01 02 03 04 05 06

Diff

07 08 09 10

Fig. 4. Cumulative distribution function of TokenDiff, TreeDiff, and
AwverageDiff on our manually verified clone pairs and detected open-source
clone pairs

Table 9. Some important diff ranges and their corresponding clone ratios of
TokenDiff, TreeDiff, and AverageDiff

TokenDiff ‘ TreeDiff ‘ AverageDiff
diff range clones ratio | diff range clones ratio | diff range clones ratio
(0, 0.35] 87.8% | (0,0.58] 80.3% | (0,047] 86.3%
(0, 0.36] 90.1% | (0, 0.65] 90.1% | (0, 0.50] 90.2%

We randomly sample 10,000,000 clone pairs from the
detected clones. First, we classify clones in general types by
measuring TokenDiff, and the results show that the propor-
tions of T1, T2, and T3 are 9.60%, 11.28%, and 79.12%,
respectively. As done in Section we collect three diffs
of these clones and eliminate T1 and T2 clones. Figure {4
presents the CDF of TokenDiff, TreeDiff, and AverageDiff,
respectively. We also show some important points in Table
[as before. As shown in Figure] the distribution of clones
based on TokenDiff is roughly consistent with that in Section
while the distribution of clones based on TreeDiff is
somewhat different. However, the proportion of clones with
AverageDiff between [0, 0.47] only decreases by nearly
8%. In fact, the distribution of clones in such a large-scale
dataset is closer to the true distribution. According to the
AverageDiff -based distribution, only nearly 14% of clones
fall into the range where graph representation is more efficient.
Considering the proportion of T3 clones, this proportion is
only about 11% (79.12% x 14%). In other words, although
there are differences from the results in Section [[V] tree and
token representations can still handle most clones, which also
confirms the rationality of our TACC from the side.

VIII. DISCUSSION

Distribution of clones. Our results on the distribution of
real-world clones and large-scale projects are not entirely
accurate. Mining all clones from the codebase is a nearly

impossible task. Even if the verification of candidate clones is
completely manual, it is not necessarily reliable. Since judging
the most complex clones is accompanied by subjective factors,
disagreements inevitably arise. Therefore, we chose to mine as
many clones as possible by using more tools. However, there
are still quite a few semantic clones that cannot be detected
by existing tools. Therefore, the distribution of clones obtained
by manual analysis or mining of large-scale data sets cannot
be regarded as an accurate distribution of clones. Nonetheless,
our work can still reflect the distribution of real-world clones
to a certain extent and serve as a reference for researchers. In
the future, we consider investigating more real codebases to
increase the effectiveness of the distribution of code clones.

IX. RELATED WORK
A. Clone Detector Evaluation

As the field of code cloning continues to advance, many new
techniques and tools have emerged. It is necessary to evaluate
these tools to provide reference for developers or researchers to
select appropriate tools. The main metrics for evaluating clone
detection tools can be divided into three: precision, recall,
scalability.

Dataset. The comparison of clone detectors requires a
benchmark, which is difficult to be established at scale,
especially since measuring the recall of a tool requires prior
knowledge of all clones in the test sample. Manual verification
of large numbers of candidate clones is expensive, and the pro-
cess is always accompanied by intractable human subjectivity
issues [48]. The first real attempt to establish a benchmark was
made by Bellon et al. [9], but this job took 77 hours to validate
just 2% of 325,935 candidate clone pairs. Nevertheless, the
validity of the Bellon’s benchmark is debatable, with the
research [53]] showing that Bellon’s judgments about the types
of clones in the benchmark are inconsistent with other judges.
Roy et al. [54], [55] developed the Mutation and Injection
Framework to generate synthetic clones. This framework can
generate clones by mimicking the code-paste-copy-and-modify
behavior of developers without the need for cumbersome man-
ual verification of clone pairs. It is automated and can solve
the difficulty of creating benchmarks to a certain extent, but
its limitation is that it does not fully represent real clones, nor
can it synthesize clones of Type4. GCJ and OJClone [56]] are
collected from submissions on programming contest websites.
Different answers to the same question in datasets can be
regarded as semantic clones for testing. But GCJ and OJClone
are not collected from a real development environment, which
threatens validity. Another popular clone benchmark at the
moment is BigCloneBench [29], which is mined from real-
world Java repositories. BigCloneBench provides a big-data,
diverse and comprehensive benchmark for modern large-scale
clone detection tools.

B. Code Clone Detection

According to Rattan et al. [20], existing clone detection
tools can be classified into text-based, token-based, tree-
based, metric-based, and graph-based. Text-based clone de-

tectors [[16]], [22], [57]], [58] treat code as text or strings with
little transformation, and then perform similarity comparisons.
Detection tools [6], [15]], [59] that utilize lexical methods
use a parser or lexer to transform the source code into a
sequence of tokens before cloning matching. Tree-based clone
detectors [42], [60] parse programs into parse trees or abstract
syntax trees, and then uses tree-matching algorithms to search
for similar subtrees. This code representation is typically able
to detect more complex clones due to preserving the syntax
information of the code. There are also tools that are graph-
based [8], [61], [62]], which extract CFGs or PDGs from
programs as code representation and can detect Type-4 clones
effectively. Tools [27], [51] analyze codes and extract metrics
as code representations and then compare the metrics values
for clone verification. In addition, there are clone detection
approaches that use hybrid techniques [63]] or learning-based
methods [64]]-[68]], which tend to achieve better detection
results than common methods [69].

X. CONCLUSION

In this paper, we reproduce 12 text-based, token-based,
AST-based, and graph-based algorithms, and conduct a de-
tailed investigation of the ability of different code representa-
tions. Then we attempt to analyze the distribution of clones
in the real world and find that most clones are simple in
nature. Based on the distribution of clones, we abandon heavy
graph-based clone detection techniques and find an optimal
combination of algorithms to implement as a tool, TACC.
Through our experimental results, we observe that TACC is
superior to CCAligner [14], SourcererCC [15], NiCad [16]],
NIL [17], and Siamese [18|] in terms of effectiveness. As
for scalability, it only takes about 3 hours and 48 minutes
to complete the whole analysis on 100MLOC. Such a result
indicates that TACC can detect large-scale code clones. In
future work, we are planning on optimizing our tool to support
more programming languages.

ACKNOWLEDGEMENTS

We would thank the anonymous reviewers for their insight-
ful comments to improve the quality of the paper. This work is
supported in part by the National Nature Science Foundation,
China (Grant No. 61972373). The research of Dr. Xue is
supported by CAS Pioneer Hundred Talents Program. This
research of Dr. Liu is partially supported by the National
Research Foundation Singapore and DSO National Labo-
ratories under the AI Singapore Programme (AISG Award
No: AISG2-RP-2020-019), the National Research Foundation,
Prime Ministers Office, Singapore under its National Cyber-
security R&D Program (Award No. NRF2018NCR-NCRO005-
0001), NRF Investigatorship NRF-NRFI06-2020-0001, and the
National Research Foundation through its National Satellite
of Excellence in Trustworthy Software Systems (NSOE-TSS)
project under the National Cybersecurity R&D (NCR) Grant
award no. NRF2018NCR-NSOE003-0001.

[1]

[2]

[3]
[4]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queen’s School of Computing TR, vol. 541, no. 115, pp. 64—
68, 2007.

C. J. Kapser and M. W. Godfrey, ““cloning considered harmful” con-
sidered harmful: patterns of cloning in software,” Empirical Software
Engineering, vol. 13, no. 6, pp. 645-692, 2008.

M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

1. Keivanloo, F. Zhang, and Y. Zou, “Threshold-free code clone detection
for a large-scale heterogeneous java repository,” in Proceedings of the
22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER’15), 2015, pp. 201-210.

J. H. Johnson, “Identifying redundancy in source code using finger-
prints,” in Proceedings of the 1993 Conference of the Centre for
Advanced Studies on Collaborative Research: Software Engineering-
Volume 1, 1993, pp. 171-183.

T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654-670,
2002.

R. Koschke, R. Falke, and P. Frenzel, “Clone detection using abstract
syntax suffix trees,” in Proceedings of the 13rd Working Conference on
Reverse Engineering (WCRE’06. 1EEE, 2006, pp. 253-262.

M. Wang, P. Wang, and Y. Xu, “Ccsharp: An efficient three-phase code
clone detector using modified pdgs,” in Proceedings of the 24th Asia-
Pacific Software Engineering Conference (APSEC’17). 1EEE, 2017,
pp. 100-109.

S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” IEEE Transactions on
Software Engineering, vol. 33, no. 9, pp. 577-591, 2007.

C. K. Roy and J. R. Cordy, “Near-miss function clones in open source
software: an empirical study,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 22, no. 3, pp. 165-189, 2010.
2022. IJaDataset. https:/sites.google.com/site/asegsecold/projects/
seclone/.

J. Ossher, H. Sajnani, and C. Lopes, “File cloning in open source java
projects: The good, the bad, and the ugly,” in Proceedings of the 27th
IEEE International Conference on Software Maintenance (ICSM’11),
2011, pp. 283-292.

N. Schwarz, M. Lungu, and R. Robbes, “On how often code is cloned
across repositories,” in Proceedings of the 34th International Conference
on Software Engineering (ICSE’2012), 2012, pp. 1289-1292.

P. Wang, J. Svajlenko, Y. Wu, Y. Xu, and C. K. Roy, “Ccaligner: a token
based large-gap clone detector,” in Proceedings of the 40th International
Conference on Software Engineering, 2018, pp. 1066—-1077.

H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes, “Sourcer-
ercc: Scaling code clone detection to big-code,” in Proceedings of the
38th International Conference on Software Engineering (ICSE’2016),
2016, pp. 1157-1168.

C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization,”
in Proceedings of the 16th iEEE International Conference on Program
Comprehension (ICPC’2008). 1EEE, 2008, pp. 172-181.

T. Nakagawa, Y. Higo, and S. Kusumoto, “Nil: large-scale detection of
large-variance clones,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ASE’21), 2021, pp. 830-841.

C. Ragkhitwetsagul and J. Krinke, “Siamese: scalable and incremental
code clone search via multiple code representations,” Empirical Software
Engineering, vol. 24, no. 4, pp. 22362284, 2019.

C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470—495, 2009.
D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A
systematic review,” Information and Software Technology, vol. 55, no. 7,
pp- 1165-1199, 2013.

R. Wettel and R. Marinescu, “Archeology of code duplication: Recover-
ing duplication chains from small duplication fragments,” in Proceedings
of the 7th Seventh International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC’05). 1EEE, 2005, pp.
8—pp.

2022. Tool Simian. http://www.harukizaemon.com/simian/index.html.

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

J. Svajlenko and C. K. Roy, “Cloneworks: A fast and flexible large-scale
near-miss clone detection tool.” in Proceedings of the 39th International
Conference on Software Engineering (ICSE’2017), 2017, pp. 177-179.
D. Gitchell and N. Tran, “Sim: a utility for detecting similarity in
computer programs,” ACM Sigcse Bulletin, vol. 31, no. 1, pp. 266-270,
1999.

L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in Proceedings of the 29th
International Conference on Software Engineering (ICSE’07). 1EEE,
2007, pp. 96-105.

Y. Zou, B. Ban, Y. Xue, and Y. Xu, “Ccgraph: a pdg-based code
clone detector with approximate graph matching,” in Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE’20). 1EEE, 2020, pp. 931-942.

J. Mayrand, C. Leblanc, and E. Merlo, “Experiment on the automatic
detection of function clones in a software system using metrics.” in
International Conference on Software Maintenance, vol. 96, 1996, p.
244.

Z. O. Li and J. Sun, “A metric space based software clone detection
approach,” in Proceedings of the 2nd IEEE International Conference on
Information Management and Engineering (ICIME’10). 1IEEE, 2010,
pp. 393-397.

J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with
bigclonebench,” in Proceedings of the International Conference on
Software Maintenance and Evolution (ICSME’15). 1EEE, 2015, pp.
131-140.

M. Wu, P. Wang, K. Yin, H. Cheng, Y. Xu, and C. K. Roy, “Lvmapper:
A large-variance clone detector using sequencing alignment approach,”
IEEE Access, vol. 8, pp. 27986-27997, 2020.

F-M. Lazar and O. Banias, “Clone detection algorithm based on
the abstract syntax tree approach,” in Proceedings of the 9th IEEE
International Symposium on Applied Computational Intelligence and
Informatics (SACI’14). 1EEE, 2014, pp. 73-78.

J. Zhao, K. Xia, Y. Fu, and B. Cui, “An ast-based code plagiarism detec-
tion algorithm,” in Proceedings of the 10th International Conference on
Broadband and Wireless Computing, Communication and Applications
(BWCCA’15). 1IEEE, 2015, pp. 178-182.

Y. Yang, Z. Ren, X. Chen, and H. Jiang, “Structural function based
code clone detection using a new hybrid technique,” in Proceedings
of the 42nd Annual Computer Software and Applications Conference
(COMPSAC’18), vol. 1. IEEE, 2018, pp. 286-291.

W. Amme, T. S. Heinze, and A. Schiifer, “You look so different: Finding
structural clones and subclones in java source code,” in Proceedings of
the 28th IEEE International Conference on Software Maintenance and
Evolution (ICSME’21). IEEE, 2021, pp. 70-80.

N. Marastoni, A. Continella, D. Quarta, S. Zanero, and M. D. Preda,
“Groupdroid: Automatically grouping mobile malware by extracting
code similarities,” in Proceedings of the 7th Software Security, Protec-
tion, and Reverse Engineering/Software Security and Protection Work-
shop (SSPREW’17), 2017, pp. 1-12.

X. Zhan, L. Fan, S. Chen, F. We, T. Liu, X. Luo, and Y. Liu,
“Atvhunter: Reliable version detection of third-party libraries for vul-
nerability identification in android applications,” in Proceedings of the
43rd International Conference on Software Engineering (ICSE21), 2021,
pp. 1695-1707.

M. Lei, H. Li, J. Li, N. Aundhkar, and D.-K. Kim, “Deep learning
application on code clone detection: A review of current knowledge,”
Journal of Systems and Software, vol. 184, p. 111141, 2022.

J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in Pro-
ceedings of the 41st International Conference on Software Engineering
(ICSE’19). IEEE, 2019, pp. 783-794.

M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE’16), 2016, pp. 87-98.

2022. Google Code Jam. https://code.google.com/codejam/past-contests.
J. W. Hunt and T. G. Szymanski, “A fast algorithm for computing longest
common subsequences,” Communications of the ACM, vol. 20, no. 5,
pp. 350-353, 1977.

1. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in International Conference on
Software Maintenance. 1EEE, 1998, pp. 368-377.

https://sites.google.com/site/asegsecold/projects/seclone/
https://sites.google.com/site/asegsecold/projects/seclone/
http://www.harukizaemon.com/simian/index.html
https://code.google.com/codejam/past-contests

[43]

[44]
[45]
[46]

(471

[48]

[49]
[50]
[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” Journal of Molecular Biology, vol. 147, no. 1, pp. 195—
197, 1981.

2022. Javalang. https://github.com/c2nes/javalang,

2022. joern. https://joern.io.

S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” IEEE Transactions on
Software Engineering, vol. 33, no. 9, pp. 577-591, 2007.

W. Yang, “Identifying syntactic differences between two programs,”
Software: Practice and Experience, vol. 21, no. 7, pp. 739-755, 1991.
C. K. Roy and J. R. Cordy, “Benchmarks for software clone detection: A
ten-year retrospective,” in Proceedings of the 25th International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER’1S).
IEEE, 2018, pp. 26-37.

2022. TXL. http://www.txl.ca.

2022. Murmurhash. https://github.com/aappleby/smhasher,

V. Saini, F. Farmahinifarahani, H. Sajnani, and C. Lopes, “Oreo: Scaling
clone detection beyond near-miss clones,” in Code Clone Analysis.
Springer, 2021, pp. 63-74.

2022. Criticality score. https://github.com/ossf/criticality_score.

A. Charpentier, J.-R. Falleri, D. Lo, and L. Réveillere, “An empirical
assessment of bellon’s clone benchmark,” in Proceedings of the 19th
International Conference on Evaluation and Assessment in Software
Engineering (ASE’15), 2015, pp. 1-10.

J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,
“Towards a big data curated benchmark of inter-project code clones,” in
Proceedings of the 30th International Conference on Software Mainte-
nance and Evolution (ICSME’14), 2014, pp. 476-480.

J. Svajlenko and C. K. Roy, “The mutation and injection framework:
evaluating clone detection tools with mutation analysis,” /IEEE Transac-
tions on Software Engineering, vol. 47, no. 5, pp. 1060-1087, 2019.
L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,”
in Proceedings of the 30th AAAI Conference on Artificial Intelligence
(AAAI’16), 2016.

N. Gode and R. Koschke, “Incremental clone detection,” in Proceed-
ings of the 13th European Conference on Software Maintenance and
Reengineering (CSMR’09). 1IEEE, 2009, pp. 219-228.

R. Wettel and R. Marinescu, “Archeology of code duplication: Recover-
ing duplication chains from small duplication fragments,” in Proceedings
of the 7th International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing (SYNASC’05). 1EEE, 2005, pp. 8-pp.
Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: Finding copy-paste
and related bugs in large-scale software code,” IEEE Transactions on
Software Engineering, vol. 32, no. 3, pp. 176-192, 2006.

Y. Wu, S. Feng, D. Zou, and H. Jin, “Detecting semantic code clones
by building ast-based markov chains model,” in Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE’22), 2022, pp. 1-13.

J. Krinke, “Identifying similar code with program dependence graphs,”
in Proceedings of the S8th Working Conference on Reverse Engineering
(WCRE’01). 1EEE, 2001, pp. 301-309.

R. Komondoor and S. Horwitz, “Using slicing to identify duplication
in source code,” in Proceedings of the Sth International Static Analysis
Symposium (SAS’01). Springer, 2001, pp. 40-56.

T. Vislavski, G. Rakié¢, N. Cardozo, and Z. Budimac, “Licca: A tool
for cross-language clone detection,” in Proceedings of the 25th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER’18). 1EEE, 2018, pp. 512-516.

L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder, “Cclearner:
A deep learning-based clone detection approach,” in Proceedings of
the International Conference on Software Maintenance and Evolution
(ICSME’17). IEEE, 2017, pp. 249-260.

C. Fang, Z. Liu, Y. Shi, J. Huang, and Q. Shi, “Functional code clone
detection with syntax and semantics fusion learning,” in Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA’20), 2020, pp. 516-527.

H. Yu, W. Lam, L. Chen, G. Li, T. Xie, and Q. Wang, “Neural detection
of semantic code clones via tree-based convolution,” in Proceedings
of the 27th International Conference on Program Comprehension
(ICPC’19). 1IEEE, 2019, pp. 70-80.

Y. Wu, D. Zou, S. Dou, S. Yang, W. Yang, F. Cheng, H. Liang,
and H. Jin, “Scdetector: software functional clone detection based
on semantic tokens analysis,” in Proceedings of the 35th IEEE/ACM

[68]

[69]

International Conference on Automated Software Engineering (ASE’20),
2020, pp. 821-833.

Y. Hu, D. Zou, J. Peng, Y. Wu, J. Shan, and H. Jin, “Treecen: Building
tree graph for scalable semantic code clone detection,” in Proceedings
of the 37th IEEE/ACM International Conference on Automated Software
Engineering (ASE’22), 2022, pp. 1-12.

Roopam and G. Singh, “To enhance the code clone detection algorithm
by using hybrid approach for detection of code clones,” in Proceedings
of the 1st International Conference on Intelligent Computing and Control
Systems (ICICCS’17), 2017, pp. 192-198.

https://github.com/c2nes/javalang
https://joern.io
http://www.txl.ca
https://github.com/aappleby/smhasher
https://github.com/ossf/criticality_ score

	Introduction
	Preliminary Study
	Overview of Selected Algorithms
	Experiments

	Fine-grained Study
	Real-world Code Clone Distribution
	AST&Token With Different Threshold
	Combination of Token-based Algorithms
	Combination of Tree-based Algorithms
	Combination of Token-based and Tree-based Algorithms

	Approach
	Token-based Filtering
	Preprocess
	Location
	Filtering

	Tree-based Verification
	Tree Information Generation
	Candidates Similarity Calculation

	Evaluation
	Parameter Settings
	Recall and Precision
	Recall
	Precision

	Scalability
	Large Scale Clone Detection

	Discussion
	Related Work
	Clone Detector Evaluation
	Code Clone Detection

	Conclusion
	References

