
Enhancing Deep Learning-based Vulnerability
Detection by Building Behavior Graph Model

Bin Yuan1,4,
†
, Yifan Lu1,

†
, Yilin Fang1,

†
, Yueming Wu2,

∗
, Deqing Zou1,

†
, Zhen Li1,

†
, Zhi Li1,

†
, Hai Jin3,

†

1 School of Cyber Science and Engineering, Huazhong University of Science and Technology, China
2 Nanyang Technological University, Singapore

3 School of Computer Science and Technology, Huazhong University of Science and Technology, China
4 Shenzhen Huazhong University of Science and Technology Research Institute, China

Abstract—Software vulnerabilities have posed huge threats to
the cyberspace security, and there is an increasing demand for
automated vulnerability detection (VD). In recent years, deep
learning-based (DL-based) vulnerability detection systems have
been proposed for the purpose of automatic feature extraction
from source code. Although these methods can achieve ideal
performance on synthetic datasets, the accuracy drops a lot
when detecting real-world vulnerability datasets. Moreover, these
approaches limit their scopes within a single function, being
not able to leverage the information between functions. In this
paper, we attempt to extract the function’s abstract behaviors,
figure out the relationships between functions, and use this
global information to assist DL-based VD to achieve higher
performance. To this end, we build a Behavior Graph Model and
use it to design a novel framework, namely VulBG. To examine
the ability of our constructed Behavior Graph Model, we choose
several existing DL-based VD models (e.g., TextCNN, ASTGRU,
CodeBERT, Devign, and VulCNN) as our baseline models and
conduct evaluations on two real-world datasets: the balanced
FFMpeg+Qemu dataset and the unbalanced Chrome+Debian
dataset. Experimental results indicate that VulBG enables all
baseline models to detect more real vulnerabilities, thus improv-
ing the overall detection performance.

Index Terms—Vulnerability Detection, Behavior Graph, Deep
Learning

I. INTRODUCTION

With the rapid development of modern software, there are
increasingly security incidents [1], [2] caused by software
vulnerabilities, such as hacking, botnet attacks, and user infor-
mation leakage, which have brought a huge serious threat to
software systems. It was reported that 75% of the open-source
codebases — a critical component in modern software supply
chain — contained vulnerabilities, with half of the codebases
containing high-risk vulnerability [3]. Therefore, it is urgent
to carry out large-scale and accurate software vulnerability
detection methods to better protect software security, as well
as the software supply chain.

Essentially, there are two categories of automated vulnera-
bility detection (VD) techniques: dynamic analysis and static
analysis. It is well-known that the dynamic-analysis-based
VD methods suffer from the problem of time overheads and

† Hubei Key Laboratory of Distributed System Security, Hubei Engineering
Research Center on Big Data Security, National Engineering Research Center
for Big Data Technology and System, Services Computing Technology and
System Lab, Cluster and Grid Computing Lab.

∗ Yueming Wu is the corresponding author.

limited path coverage. Moreover, dynamic methods usually
require running the system under inspection. Such limitations
make it not suitable for VD on a large scale. By contrast,
static methods can scale to large-scale software analysis, yet
it usually suffers from high false negatives and false positives.
Specifically, the similarity-based static analysis performs well
at detecting vulnerabilities caused by code cloning but failed
in detecting other bugs. The pattern-based static analysis
depends on the rules predefined by experts for identifying
the vulnerabilities. However, the rules need to be constantly
updated to detect new bugs. At last, the dataflow-based static
method generally uses approximations to ensure convergence,
which guarantees no false negatives at the expense of high
false positives.

In recent years, since deep learning (DL) can automatically
extract features from code, different DL-based VD approaches
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18] have been proposed and proved to be effective. To
achieve scalable vulnerability analysis, some approaches treat
source code as text and turn the vulnerability detection task
into a natural language processing (NLP) problem [4], [5], [8],
[9], [16], [17], [18]. For example, VulDeePekcer [4] applies
static analysis to extract the program slices and trains a bidi-
rectional long short term memory (Bi-LSTM) model to detect
slice-level vulnerabilities. In practice, although text-based VD
methods can achieve high scalability, their detection perfor-
mance is not ideal since they ignore the program semantics. To
mitigate the issue, researchers [10], [11], [12], [13], [14], [15],
[19] intend to extract the intermediate representations such as
abstract syntax tree (AST) and program dependency graph
(PDG) to retain the program details. For instance, Funded
[19] first conducts a complex program analysis to extract
augmented AST of source code, and then uses a graph neural
network (GNN) to train a vulnerability detector. Due to the
consideration of program semantics, these semantics-based
methods perform better than the text-based tools on synthetic
vulnerability datasets. However, according to a recent study
[20], not only text-based methods but also semantics-based
approaches suffer from poor performance when detecting real-
world vulnerabilities.

Meanwhile, we also observe that almost all existing DL-
based VD methods leave the semantics extraction work to the
neural network (NN) with little in-depth investigation of the



code’s feature. This is inappropriate as vulnerabilities tend to
be in a small part of the function. Passing the whole function to
a neural network model introduces huge information irrelevant
to the vulnerability. Besides, existing approaches limit their fo-
cus on one function, ignoring underlying connections between
functions. A function is a collection of code that implements
certain functionalities. Even if two functions implement to-
tally different functionalities, there might be common logic,
algorithms, and programming patterns within their subtasks.
Further, we define behavior as such logic, algorithm, or
programming pattern in the code that implements a certain
functionality and treat each function as a set of behaviors.
Hence, the connections between the functions can be addressed
by the behaviors they share. A vulnerability could exist in
one behavior or a set of behaviors. By leveraging connections
between functions, functions with similar vulnerabilities can
be more easily detected.

In this paper, we build a Behavior Graph Model to connect
the behaviors of different functions and use it to enhance the
detection ability of existing DL-based methods. In specific,
we first perform program slicing to split a function into a set
of slices and regard each slice as a kind of behavior of the
function. Then the graph is constructed based on the similarity
computation of different program slices (i.e., behaviors) in
different functions. After obtaining the global Behavior Graph,
we apply a node embedding technique to convert each node
(i.e., function) into a vector representation as the Behavior
Feature of the function. These vectors can be used to boost
the capability of existing DL-based VD models.

To this end, we implement a novel framework named
VulBG. We evaluate VulBG with different real-world datasets:
FFMpeg+Qemu dataset proposed by [15] with vulnerable rate
of 45.6% and Chrome+Debian dataset proposed by [20] with
vulnerable rate of 9.7%. Experimental results show that our
proposed Behavior Graph Model enables existing methods to
detect more vulnerabilities on both balanced and unbalanced
dataset. Moreover, we also make comparison to five state-
of-the-art DL-based VDs of different methods (a.k.a, the
baseline models): Text-based model TextCNN [21], AST-based
model ASTGRU [22], pretrained-based model CodeBERT [23],
and graph-based models Devign [15] and VulCNN [24], with
evaluations on FFMpeg+Qemu dataset and Chrome+Debian
dataset. Experimental results show that the performance of
the Behavior Graph Model itself is good enough to defeat
other models. Moreover, VulBG can further improve the perfor-
mance of all the baseline models after applying our Behavior
Graph Model to them.

In summary, this paper makes the following contributions:

• We propose a novel idea that can extract abstract behav-
iors from the source code of a function, and construct a
Behavior Graph that correlates the behavior of different
functions to assist vulnerability detection.

• We implement VulBG framework to improve the perfor-
mance of vulnerability detection by combining Behavior
Graph with other DL-based VD models.

• We evaluate VulBG and select five state-of-the-art VD
models as our baseline models. Experimental results show
that VulBG enables all the baseline models to detect more
real-world vulnerabilities.

Paper organization. The remainder of the paper is organized
as follows. Section II presents the motivation of our paper.
Section III introduces our system. Section IV reports the
experimental results. Section V discusses the future work.
Section VI describes the related work. Section VII concludes
the present paper.

II. MOTIVATION

Vulnerabilities are flaws in code that may cause security
problems. Though there are infinite codes and different types
of vulnerabilities, there are implicit patterns among vulnera-
bilities, and that is the reason why VD could make detections.
State-of-the-art DL-based VD approaches usually follow this
procedure: select a method to represent the function, and
then use NN to learn patterns of vulnerabilities. In real-world
situations, functions tend to have complex logic and vulnerable
semantics usually take up only a little part of the function.
Given a function as input, there are a bunch of semantics for
DL-based VD models to learn, and finding the vulnerable one
is like finding a needle in the haystack. In addition, there are
also connections between functions, such as code reuse and
similar implementation. The same vulnerability may exist in
different functions but VD may be confused by the differences
of functions.

We take CVE-2018-17958 [25] and CVE-2018-17962 [26]
as examples to show the problem. These two vulnerabilities
lie in function rtl8139 do receive and pcnet receive, which
implement the receiving functionality for different network
cards in Qemu. For ease of expression, we simplify function’s
logic related to vulnerabilities and show the problem in Figure
1. The cause of the two vulnerabilities is both functions use
an implicit type conversion to cast a size t variable to int
type which may result in an integer sign overflow, and then
the variable is used in the following memcpy without proper
bounds check.

Though these two vulnerabilities share the exactly same
logic, the scales of the functions introduce interference for
VD model to filter out vulnerable semantics. The size of the
two functions is 284 lines and 160 lines respectively, and the
scales of slices of the two vulnerabilities are 8 lines and 10
lines. In other words, only less than 5% of the code of the
functions contributes to the vulnerability and all other code
is redundant. Therefore, extracting vulnerable semantics and
removing unrelated code will be useful for VD.

A good way to extract vulnerable semantics is program
slicing, but there are still problems in slice-based vulnerability
detection. Firstly, information for generating precise slices is
not always available. Slicing requires a point of interest as
its entry. To generate precise slices, fine-grained information
such as the line of the vulnerability, and variables related to the
vulnerability is needed but hard to obtain. Limitations of static
analysis tools also make it difficult to obtain precise slices.



s->latch = ((uint32_t )s->vram_ptr)[addr]; vga_mem_readb

ssize_t pcnet_receive(NetClientState *nc, const
uint8_t *buf, size_t size_){
    ...
    uint8_t buf1[60];
    int size = size_;
    ...
    if (size < MIN_BUF_SIZE) {
        memcpy(buf1, buf, size);
        memset(buf1 + size, 0, MIN_BUF_SIZE - size);
        size = MIN_BUF_SIZE;
    }
    ...
}

ssize_t rtl8139_do_receive(VLANClientState *nc, const
uint8_t *buf, size_t size_, int do_interrupt){
    ...
    int size = size_;
    uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
    ...
    if (size < MIN_BUF_SIZE + VLAN_HLEN) {
        memcpy(buf1, buf, size);
        memset(buf1 + size, 0, MIN_BUF_SIZE +
VLAN_HLEN - size);
    }
    ...
}

Centroid

Behavior1

Centroid

Behavior2

Centroid

Behavior3

Vul Function

Centroid

Behavior4

From NoVul Function 

From Vul Function 

Vul Function

NoVul Function

Fig. 1: Simplified code of CVE-2018-17958
and CVE-2018-17962

According to Scvd [27], the state-of-the-art AST-based static
analysis tool Joern [10] fails in parsing some statements and
cannot handle macros correctly. Compile-based static analysis
tools have an unacceptable time overhead to generate slices
for a dataset with thousands of functions. Secondly, though
the NN model learns patterns from slices of vulnerabilities,
it still needs to read in the whole function for detection, in
which the vulnerable semantics are discrete. Therefore, we
need another way to extract vulnerable semantics.

Besides, there are underlying connections between the two
functions, since they have similar functionality, and the cause
of the two vulnerabilities is the same. However, the similarity
of the two functions is low. The ratio of function sizes is 1.8
to 1 and the cosine similarity between the two functions is
21% (functions are vectorized by tf-idf [28]). In this condition,
similarity-based VD approaches may fail to identify these
vulnerabilities. Therefore, there is a need for representing the
connections between functions other than similarity.

To extract vulnerable semantics and address the connections
between functions, we propose the Behavior Graph to assist
DL-based VD. Instead of trying to fetch slices containing
complete vulnerable semantics, we first attempt to split the
function by semantics and extract abstract behaviors of the
function. By slicing on potentially vulnerable operations, we
can break down the function into parts. Each slice contains part
of the function’s semantics, so we consider it as one behavior

B1

B2 B3

B4

B5

Behavior
Non-vulnerable 

FunctionB
Vulnerable 
Function

Fig. 2: Identify vulnerable semantics with Behavior Graph

of the function, and then the function could be represented by
a set of behaviors. In this case, vulnerabilities could exist in a
subset of the function’s behaviors. Though we cannot yet de-
termine which set contains vulnerability semantics, statements
that are unlikely to contain vulnerabilities are filtered out.

To further identify vulnerability semantics and address
connections between functions, we construct a graph based
on the behaviors of functions. By calculating similarities of
behaviors, we could figure out connections between behaviors,
and by connecting behaviors with their corresponding func-
tions, we could find out functions that share similar behaviors.
In this way, connections between functions are established.
Besides, for “innocent” behaviors that do not contribute to
a vulnerability, there would be edges from non-vulnerable
functions connecting to them to clarify their innocence. For
behaviors that may contribute to a vulnerability, there would
be more edges from vulnerable functions. We take Figure
2 as an example. The more connections to the vulnerable
functions, the more likely the behavior contains vulnerable
semantics (e.g, behavior 3 is more likely to contain vulnerable
semantic than behavior 5). Specifically, behavior 1 could be
considered “innocent” as many non-vulnerable functions also
have this behavior. For behavior 3 and 4, they could be
regarded as containing vulnerable semantics because there are
vulnerable functions that share these behaviors. For behavior
5, it is a rare behavior since no other function possesses it.
We cannot identify whether it contributes to vulnerabilities but
this limitation can be eliminated by adding more functions to
the Behavior Graph to reduce outliers. With the help of the
Behavior Graph, we can automatically identify which set of
behaviors may be vulnerable, and similar vulnerabilities can
be addressed by the connections between functions.

In general, to help filter vulnerable semantics and address
the connections between functions, we propose the concept of
Behavior Graph, and based on the Behavior Graph we design
VulBG to enhance the ability of vulnerability detection.



III. SYSTEM ARCHITECTURE

In this section, we introduce how to construct the Behavior
Graph and use it to design VulBG for enhancing DL-based
VD.

Source Code

Behavior Graph
Construction

Behavior Feature

Extraction

Other Model

Fusion

TextCNN  ASTGRU  CodeBERT  Devign  VulCNN  ...

{𝑥} 

Output Label

Fig. 3: System overview of VulBG

A. Overview

As shown in Figure 3, VulBG consists of three phases:
Behavior Graph Construction, Behavior Feature Extraction,
and Model Fusion.

• Behavior Graph Construction: Given the source code of
functions, we first use slicing and code embedding to ob-
tain behaviors of functions. By clustering the behaviors,
we get a set of centroid behaviors and then construct
the Behavior Graph based on centroid behaviors and
similarities of behaviors.

• Behavior Feature Extraction: To utilize the structure
information of the Behavior Graph, we apply graph
embedding on each function node to transform it into
a vector, and then use a multilayer perceptron (MLP) to
further process the Behavior Feature of functions.

• Model Fusion: In order to use the Behavior Feature to
enhance existing DL-based VD models (e.g., TextCNN,
ASTGRU, CodeBERT, Devign, and VulCNN), we use
model fusion to combine Behavior Feature with the
features extracted by the above models to make classi-
fications together.

B. Behavior Graph Construction

VulBG aims to utilize the connections between functions
to achieve higher accuracy in vulnerability detection. We
propose the concept of the Behavior Graph to represent the
Behavior Features of the functions. Specifically, Behavior
Graph consists of function nodes and behavior nodes. Function
nodes are functions from training data, and behavior nodes are
cluster centers of slices. For each slice owned by one function,
there is an edge connecting its corresponding cluster center
(behavior node) to the function node.

Figure 4 shows a simple example of a Behavior Graph
that consists of three functions and three centroid behaviors.
There are two types of nodes in the Behavior Graph: centroid

behavior nodes (yellow stars) and function nodes (blue stars).
We take Function 1 (F1) as an example to introduce the
composition of the Behavior Graph. In Figure 4 (a), F1 has
two behaviors (B1, B2) which respectively belong to centroid
behavior 1 (CB1) and centroid behavior 3 (CB3), so there
are two edges in the Behavior Graph, one connects F1 and
CB1, and the other connects F1 and CB3. F3 in the example
also has edges to CB1 and CB3, thus the connections between
F1 and F3 are established through these two shared centroid
behaviors. Besides, the weights of edges are distances between
behaviors and their corresponding centroid behaviors.

B1 CB1

B5

B6 B3

CB2

B7

B2

B4

CB3

F1

F2

F3

CB1

CB2

CB3

F1

F2

F3

Behavior
Centroid Behavior

Func

Centroid Behavior
Func

(a) Behaviors

B1 CB1

B5

B6 B3

CB2

B7

B2

B4

CB3

F1

F2

F3

CB1

CB2

CB3

F1

F2

F3

Behavior
Centroid Behavior

Func

Centroid Behavior
Func

(b) Behavior Graph

Fig. 4: A case of Behavior Graph

Figure 5 and Algorithm 1 describe the detailed procedures
on how to construct the Behavior Graph. It mainly consists
of four phases: Code Slicing, Embedding, Clustering, and
Graph Construction. To construct the graph, we first extract
behaviors of a large number of functions and then cluster them
to obtain a set of centroid behaviors to represent all behaviors.
By representing functions with behaviors they possess, we can
connect functions to centroid behaviors, and then the Behavior
Graph is built and connections between functions are clear.

Algorithm 1 Constructing a Behavior Graph from the source
code of the functions
Input: F : Functions’ source code.
Output: G: A Behavior Graph.

1: Slices ← CodeSlicing(F )
2: Behaviors ← CodeEmbedding(Slices)
3: CentroidBehaviors ← Clustering(Behaviors)
4: G ← EmptyBehaiviorGrpah()
5: for each f ∈ F do
6: behaviors ← GetFunctionBehaviors(Behaviors, f)
7: for each b ∈ behaviors do
8: c ← GetCentroidBehavior(CentroidBehaviors, b)
9: d ← SimilarityCalculation(b, c)

10: AddEdge(G, f , c, d)
11: end for
12: end for
13: return G



Func1 Func2 Func3 Code 
Slicing

Slice1

Slice2

Slice3

Slice4

Slice6

Slice7

Slice5

CodeBERT

Embedding

Vec1

Vec2

Vec3

Vec4

Vec5Vec6

Vec7

K-Means

Clustering

Graph 
Construction

Fig. 5: An example to illustrate how to convert the source code of three functions into one Behavior Graph

1) Code Slicing
To figure out functions’ behaviors, we utilize program

slicing to break down functions into parts. Program slicing
is a widely used static analysis technique that only extracts
statements relevant to some interests, thus eliminating the
interference of statements we do not care about. Since vulner-
able semantics often exist in specific operations (e.g., memory
accessing and dangerous API call), slicing on these operations
can weed out code unlikely to be vulnerable and keep VD
focused on potentially vulnerable code. Therefore, we believe
that in the context of vulnerability detection, slicing is a good
way to describe behaviors of functions.

SySeVR [8] proposes a set of vulnerability syntax charac-
teristics that includes four kinds of operations (i.e., API call,
pointer operation, array operation, and arithmetic operation)
that are more prone to bugs. Based on these types of opera-
tions, we develop the following slicing rules:

• API call: function calls to specific libraries’ APIs, in-
cluding memory allocator-related APIs, string operation,
and memory operation APIs. Misuses of these APIs could
result in different kinds of vulnerabilities such as buffer
overflow, use-after-free, and information leakage. We
conduct backward slicing on all parameters of function
call and forward slicing on its return value.

• Memory operation: operations to pointer type variables
and array-like variables, including Pointer operation and
Array operation of SySeVR’s syntax characteristics. This
kind of operation is the main cause of memory cor-
ruptions like null pointer dereference and out-of-bound
access. For this kind of operation, we conduct backward
slicing on the pointer-like variable. If the memory ac-
cessing is indexed by a variable, we also make backward
slicing on this variable.

For arithmetic operations, we do not explicitly slice op-
erations of this type. For vulnerability detection, checking
arithmetic operations is to find out operations that may have
integer overflow or division by zero. Integer overflow not

always results in a vulnerability, but it will lead to out-
of-bound access when the overflowed variable is used in
some memory accesses, and logical errors may occur when
overflowed variable is used in sensitive APIs. Since we have
sliced the memory operations and API calls, most of the
buggy arithmetic operations are already contained in the slice,
so there is no need to slice arithmetic operations separately.
Besides, almost every line of code in a program contains
arithmetic operations, so slicing arithmetic operations will
introduce noise that is irrelevant to vulnerabilities.

We implement program slicing based on Joern [29]. The
dataflow dependency and control flow dependency required for
slicing are obtained through the PDG and CFG provided by
Joern, and the variables involved in the operations in the rules
are obtained through Joern’s query result. For each variable
to be sliced, we traverse the CFG forwards or backwards
to collect statements and variables according to the dataflow
dependency, and variables involved in the dataflow dependency
will also be sliced later. Branch statements like ‘if’, ‘for’, and
‘while’ are included if they are post-dominators/dominators of
sliced code for forward/backward slicing. Variables involved
in these branch statements will not be sliced if they have no
dataflow dependency on sliced variables.

We represent slices in text form instead of using subgraphs
of PDG like SySeVR [8]. Experiments show that 95.8% of
slices have less than 64 words, so there is no need to represent
a slice with a graph because of the high complexity of graph.

2) Embedding
After code slicing, we can obtain the functions’ behaviors.

Since the behaviors of the function are code slices, they are in
text forms. We can use the pattern matching algorithms (e.g.,
K.M.P [30]) to describe the similarity, but it is difficult to
implement it in a clustering algorithm and it ignores the syntax
and semantics features in code slices. To make subsequent pro-
cessing more flexible and convenient, we choose to use a text-
embedding algorithm to transform the behaviors into vectors.
In our paper, we use CodeBERT [23] to embed the behaviours.
Firstly, CodeBERT is constructed on a bidirectional trans-



former that can capture long-distance dependencies of code
sequences. It can maintain the relationship between contexts,
collect potentially vulnerable code patterns, and minimize
information loss. Secondly, CodeBERT inherits the structure of
multi-head attention, which makes the model focus on multiple
key points of a code sequence. Therefore, CodeBERT performs
better than other embedding algorithms (e.g., Word2Vec [31])
when processing the loop condition. Besides, [32] shows that
CodeBERT does well in code classification even without fine-
tuning, so CodeBERT is a good fit for our scenario. CodeBERT
embeds each word into a vector with 768 dimensions, which is
too heavyweight for subsequent processing. We use the pooler
result to transform each behavior (code slice) into a vector with
768 dimensions to reduce embedding size.

3) Clustering
After embedding the behaviors into vectors, we are able to

construct a Behavior Graph. However, the graph can be huge
and the information it carries is coarse, making it difficult to
store and process. To reduce the number of nodes and make
the information more focused, we use clustering to extract cen-
troid behaviors. In our paper, we use MiniBatchKMeans [33]
to cluster the vectors. MiniBatchKMeans is an optimization
variant of K-Means [34] for clustering a large amount of data,
which is an unsupervised clustering algorithm that attempts
to partition samples to K clusters by minimum within-cluster
variances.

4) Graph Construction
The Behavior Graph is obtained by connecting the functions

to its behaviors’ corresponding centroid behaviors. Since there
are differences between behaviors, we set the weights of
the edges to the similarity of behaviors to preserve this
information. The more similar the two behaviors are, the closer
their embedding results are. We can use the distance between
a behavior and its corresponding centroid behavior to express
their similarity. In our paper, we use Euclidean Distance [35]
to describe the similarity of behaviors and centroid behaviors.

C. Behavior Feature Extraction

To efficiently take the advantage of function’s behavior
information and the connection information between functions
in the Behavior Graph, we adopt graph embedding to trans-
form nodes into vectors. Using graph embeddings to represent
Behavior Graph has several benefits:

• It is simpler and faster to calculate on vectors than
directly operating on the graph.

• The information of nodes and edges in the graph can only
be represented and calculated through mathematics and
statistics. After embedding, the information of the graph
can be processed more flexibly in the vector space.

Specially, we leverage a widely used tool (e.g.,
Node2Vec [36]) for embedding. Node2Vec is a graph
embedding method that uses a biased random walk procedure
that integrates depth-first-search (DFS) and breadth-first-
search (BFS) to explore neighborhoods. The BFS part can
accurately obtain a microscopic view of the network by
exploring around the source node, and the DFS part can move

further to obtain a macro-view of the network. Node2Vec
treats results of random walks as words and utilizes Word2Vec
to do the embedding. It is a simple but efficient unsupervised
objective to train distributed representations of graphs. In our
paper, we use Node2Vec to transform a function node in the
Behavior Graph into a vector whose dimension is 128 for
further processing.

To further process the graph vector, we construct a four-
layer MLP classifier with graph vector as input, and use the
output of its last hidden layer as Behavior Feature for fusion
step. This Behavior Graph Model consists of four linear layers,
using ReLU as the activation function with a dropout rate of
0.5 and a learning rate of 0.0001. This model will also be used
to evaluate the vulnerability detection capability of Behavior
Graph.

... ...

Input layer: 
328/428 

Hidden layer: 
256

Output layer: 2
Individual 
Feature: 
200/300

Global
Feature: 128

Input Vector: 
328/428

Vulnerable 
or not

...
...
...

FC1 FC2 FC3

Graph
Vector

Behavior
Feature

...
...

...

Last Hidden 
Layer

...

Last Hidden 
Layer’s 
Output

Vulnerable 
or not

Behavior
Feature Extraction

Other DL-based 
Model

Output 
Layer

Input
Vector

Source
Code

Fig. 6: Model fusion of VulBG

D. Predict Behavior Feature For New Samples

To put the Behavior Graph Model into practice, the model
should be able to predict Behavior Feature for new functions.
As Figure 7 shows, the overall predict process is the same
as that of training as described in Figure 5, except that a
modified Node2Vec is used in the graph embedding step to
obtain vectors for new nodes.

We modify Node2Vec to enable it to represent new nodes
when making predictions. For each new function node that
needs to be embedded, we temporarily add it to the graph
and apply a random walk with the new node as the entry.
Then we pass the result of the walk to Word2Vec and apply its
online updating ability to learn the representation of the new
node. After that, the new node is removed from the graph.
Compared with the large number of old nodes in the graph,
for each prediction only one new node needs to be added
and its impact on the graph structure is little. Moreover, the
random walk could be parallelized and the online updating of



Fig. 7: The process of predicting Behavior Feature of new samples by Behavior Graph Model

Word2Vec could be batched, which will not be time-consuming
when making large amounts of predictions.

E. Fusion

Since existing DL-based VDs ignore the connection be-
tween functions, we aim to apply Behavior Features to them
to improve vulnerability detection ability. For model fusion,
we concatenate the output of the Behavior Graph Model’s last
hidden layer with the output of the existing DL-based VD’s
last hidden layer, and finally use a linear layer for output.
Figure 6 shows the process of model fusion. Although such a
fusion method is simple, it modifies other models as little as
possible, making VulBG highly scalable.

To prove the effect of VulBG, we choose five state-of-the-
art DL-based VDs in four classes as baselines: text-based
TextCNN [21], AST-based ASTGRU [22], pretrained-based
CodeBERT [23], graph-based Devign [15], and VulCNN [24].

For TextCNN, CodeBERT, and ASTGRU, we re-implement
the baseline models and report the best performance in our
paper. All re-implemented baselines use 0.0001 as learning
rate, 32 as batch size, Cross Entropy Loss as loss function,
and Adam as optimizer. For Devign and VulCNN, we directly
use their open-source code to commence our experiments.

1) TextCNN
TextCNN is a simple convolutional neural network (CNN)

that utilizes the 1d-convolution layer to extract features from
embeddings of the source code. This model treats vulnerability
detection as a pure NLP classification task, so its structure is
simple and can be trained fast. In our paper’s implementation
of TextCNN, Word2Vec is used for text embedding. For the
1d-convolution layer, we select three filter sizes (3, 4, 5),
and each size has 100 filters to extract features of different
parts of the source code. Then we use four linear layers to
process the features to output the probability of vulnerability.
The TextCNN baseline uses tanh as activation function and a
dropout rate of 0.3.

2) ASTGRU
ASTGRU [22] uses AST as the model’s input rather than

source code. It is also a tree-based model that extracts AST
from the source code and traverses the tree to get an input
sequence. Then it uses Word2Vec [31] to embed the sequence
and uses the bidirectional gate recurrent unit (Bi-GRU) to
learn features of code. The ASTGRU baseline consists of two
Bi-GRU layers and one linear layer, with ReLU as activation
function and a dropout rate of 0.2.

3) CodeBERT
As described in Section III-B1, CodeBERT learns repre-

sentations of programming languages and supports different
downstream tasks. Here we adopt the method of using the
BERT [37] model for sequence classification and add linear
layers after CodeBERT’s pooled result to make classification.
The pre-trained model we use is codebert-base [38] and it is
not fine-tuned during training due to its huge memory and time
consumption. The CodeBERT baseline uses two linear layers
to further process the embedding of code, and uses ReLU as
activation function and 0.3 as dropout rate.

4) Devign
Devign is a graph-based VD, which includes three sequen-

tial components: 1) Graph Embedding Layer, which encodes
source code of a function into a joint graph structure with
comprehensive program semantics; 2) Gated Graph Recurrent
Layer, which leverages a Gated Recurrent Unit (GRU) layer
to learn features of nodes in the graph through aggregating and
passing information on neighboring nodes; 3) Conv Module,
which has a convolutional layer and a softmax layer to extract
node representation for graph-level prediction.

5) VulCNN
VulCNN uses Joern [29] and Sent2Vec [39] to generate

PDGs from source code. It computes degree centrality, katz
centrality, and closeness centrality on PDG. Based on these
three types of centrality, VulCNN generates three vectors and
treats them as the three channels of the image. Then it uses a
CNN to complete the classification task.

IV. EXPERIMENTAL EVALUATION

In this section, we aim to answer the following research
questions:

• RQ1: What is the performance of Behavior Graph on
vulnerability detection?

• RQ2: How effective is VulBG in improving state-of-the-
art models’ performance on vulnerability detection?

• RQ3: What is the performance of VulBG with different
code embedding methods and graph embedding tech-
niques on vulnerability detection?

A. Experiment Settings

1) Dataset
We use FFMpeg+Qemu and Chrome+Debian datasets to

evaluate our work. Statistics of datasets are shown in Table
I. The FFMpeg+Qemu dataset is a balanced dataset that has



been used in many previous studies [15], [20], [40]. It consists
of two popular real-world software written in C language, pro-
viding +25K functions with 45.56% of those vulnerable. The
Chrome+Debian dataset is an unbalanced dataset proposed by
ReVeal [20]. It consists of code from Chromium and Debian
source code repository with +21K functions and 9.79% of
those are vulnerable.

For each dataset, we randomly split it into an 80% training
set, a 10% validation set, and a 10% testing set. We use
the same dataset split for all following experiments. Due
to the severe imbalance in Chrome+Debian dataset, we use
oversampling to rebalance the training set of this dataset.

TABLE I: Dataset statistics

Dataset Samples Vul Rate Avg Size

FFMpeg+Qemu 25,524 45.56% 55 lines
Chrome+Debian 21,059 9.79% 32 lines

2) Performance Metrics
We consider Precision (P), Recall (R), and F-measure (F1)

as mainstream performance metrics. Formulas of metrics are
listed below, with true positive (TP) being the number of sam-
ples correctly detected as vulnerable, false positive (FP) being
the number of non-vulnerable samples incorrectly detected as
vulnerable, true negative (TN) being the number of samples
correctly detected as non-vulnerable, and false negative (FN)
being the number of vulnerable samples incorrectly detected
as non-vulnerable.

P =
TP

TP + FP

R =
TP

TP + FN

F1 = 2 ∗ P ∗R
P +R

3) Environment
All experiments are run on a server with 32 cores of

CPU and an RTX 5000 GPU. For intermediate phases, we
implement slicing phase based on Joern [29], clustering based
on Scikit-learn [41], graph embedding based on modified
Node2Vec [36], word embedding based on Word2Vec [31]
and CodeBERT [23]. We build and train models based on
PyTorch [42].

B. Parameter Selection for Clustering

During the construction of Behavior Graph, MiniBatchK-
Means is used for clustering, and its performance largely
depends on the input hyperparameter K, which defines the
number of classes. We apply elbow method [43] to figure out
the most suitable K. Elbow method is a heuristic commonly
used to determine the number of clusters by finding the
“elbow” of the variation curve, and in this paper we use
distortion as the variation metric.

Figure 8 shows the curve of the distortion of Mini-
BatchKMeans as a function of K, and the “elbows” appear
where K is 1140 and 1150 for FFMpeg+Qemu dataset and
Chrome+Debian dataset, respectively. To keep generality, we
select 1140 as the optimal value of K for the following
experiments.

0 500 1000 1500 2000 2500 3000
0.55

0.60

0.65

0.70

0.75

0.80 Distortion A
Distortion B
Elbow A
Elbow B

Fig. 8: Distortion curve of MiniBatchKMeans
on FFMpeg+Qemu dataset (A) and Chrome+Debian (B)

datasets

C. Performance of Behavior Graph

In this section, we aim to answer RQ1: What is the perfor-
mance of the Behavior Graph on vulnerability detection?

To prove the performance of Behavior Graph, we first
evaluate the Behavior Graph Model described in Section
III-B4 which takes the Behavior Feature as input. We also
compare our Behavior Graph Model to five state-of-the-art
approaches of text-based, AST-based, pretrained-based, and
graph-based models. Experimental results are shown in Table
II.

TABLE II: Performance of Behavior Graph Model
vs. baseline models

Technique FFMpeg+Qemu Chrome+Debian

F1 P R F1 P R

Behavior Graph 56.1 51.8 61.2 36.5 26.4 59.3

TextCNN 53.7 57.9 50.0 40.2 30.2 60.6

ASTGRU 51.8 53.8 49.9 22.6 33.5 15.4

CodeBERT 53.2 56.1 50.6 24.7 14.6 80.2

Devign 55.3 53.4 57.2 29.2 26.4 32.8

VulCNN 54.9 51.8 58.4 31.5 22.8 51.0

Overall, our Behavior Graph Model achieves high F1
(56.1%) and Recall (61.2%). In terms of F1 and Recall, among
the six approaches, it ranks first on the FFMpeg+Qemu dataset
and second on the Chrome+Debian dataset, which could
already prove that Behavior Graph works well in vulnerability
detection.

Except for our Behavior Graph Model, graph-based mod-
els generally perform better than other approaches because
graph-based models take account of syntax, data-flow, and



control-flow characteristics of the program. The AST-based
approach ASTGRU processes code’s syntax and uses trees as
model input, but experimental results show that it is not as
effective as the text-based model TextCNN. To our surprise,
TextCNN performs particularly well on the unbalanced dataset,
achieving an F1 of 40.2%. Compared with the Behavior Graph
Model, TextCNN has a 3.8% higher Precision and a similar
Recall, which leads to its overall performance advantage in
F1.

Since we use CodeBERT to embed slices during the con-
struction of Behavior Graph, we also compare the CodeBERT
classifier with Behavior Graph Model to demonstrate the
effectiveness of CodeBERT. As shown in Table II, the F1 of
CodeBERT classifier is 53.2%, which is similar to TextCNN.
The performance of the CodeBERT classifier is not outstand-
ing, we believe the main reason for its limited performance is
CodeBERT’s inability to process large functions: CodeBERT
can only handle code snippets up to 512 words in length, and
for larger functions, vulnerable semantics may be lost due to
truncation, so it is inappropriate to use CodeBERT directly for
vulnerability detection on entire functions.

We observe that Behavior Graph Model gets high Recall
(61.2% and 59.3%) but its Precision is not high (51.8%
and 26.4%), which means that it performs well at finding
out vulnerabilities but mistakenly judges some non-vulnerable
functions as vulnerable. The reasons for this result are as
follows:

• The relationship between behaviors addressed by Behav-
ior Graph can indicate similarly vulnerable semantics,
resulting in the MLP being good at detecting vulnerable
functions and the Recall being high.

• Some non-vulnerable functions share similar behaviors
with vulnerable ones, resulting in false positives, so the
Precision is not so good.

In one word, the Behavior Graph Model performs well on
both balanced and unbalanced datasets, proving that Behavior
Graph does carry useful information for vulnerability detec-
tion.

D. Improvements of Behavior Graph

In this section, we aim to answer RQ2: How effective is
VulBG in improving state-of-the-art models’ performance on
vulnerability detection?

To answer the question, we apply VulBG to five state-
of-the-art approaches according to Section III-D, and then
compare these models’ performance respectively with and
without Behavior Graphs.

Experimental results are shown in Table III, and changes
in each metric are listed under scores. According to Table
III, all fusion model has a higher F1 and a higher Re-
call. On FFMpeg+Qemu dataset, aside from Precision of
BG+TextCNN, all metrics of each model reach higher scores,
and on Chrome+Debian dataset, except for the drop of Recall
of BG+CodeBERT, all metrics of each model also improve.

For BG+TextCNN, on the FFMpeg+Qemu dataset, its F1
improves by 6% and its Recall has a significant improvement

TABLE III: Performance of fusion models

Technique FFMpeg+QEMU Chrome+Debian

F1 P R F1 P R

TextCNN 59.7 54.8 65.7 44.4 33.7 65.2
+6.0 -3.1 +15.7 +4.2 +3.5 +4.6

ASTGRU 54.4 53.9 54.9 30.3 39.8 24.5
+2.6 +0.1 +5.0 +7.7 +6.3 +9.1

CodeBERT 58.5 56.2 60.9 32.5 22.7 57.2
+5.3 +0.1 +10.3 +7.8 +8.1 -23.0

Devign 60.2 55.9 65.2 37.1 30.7 47.0
+4.9 +2.5 +8.0 +7.9 +4.3 +14.2

VulCNN 57.2 52.5 62.7 36.3 27.2 54.6
+2.3 +0.7 +4.3 +4.8 +4.4 +3.6

of 15.7%. Although there is a drop in Precision by 3.1%,
BG+TextCNN fusion model achieves better results overall.
The reason for the drop in Precision is that Behavior Graph’s
Precision is not high while the TextCNN baseline reaches
the highest Precision (57.9%) among all the baselines, so the
fusion of models may result in Precision being averaged. On
the Chrome+Debian dataset, all metrics of BG+TextCNN have
improvements ranging from 3.5% to 4.6%, and due to the high
performance of TextCNN baseline, the fusion model ranks first
in F1 for 44.4%. For BG+ASTGRU, the fusion model improves
all the metrics on the two datasets, and the improvement is
mainly reflected in Recall for 5.0% and 9.1%.

For BG+CodeBERT, the fusion model has a notable im-
provement in higher F1 for 5.3% and 7.8% on the two datasets.
On Chrome+Debian dataset, there is a huge decrease in Recall
for 23%. The Recall of CodeBERT baseline is 80.2% while its
Precision is only 14.6%, which means the CodeBERT model
judges almost all samples vulnerable. In this case, the Recall of
80.2% is abnormal and the fusion model’s decrease in Recall
is reasonable. For graph-based models, the fusion models
also have higher performance on all metrics on both datasets.
BG+Devign’s F1, Precision, and Recall on the FFMpeg+Qemu
dataset is 60.2%, 55.9%, and 65.2%, respectively, which is
the best overall performance on the balanced dataset. On the
Chrome+Debian dataset, BG+Devign also gets a significant
improvement in Recall for 14.2%, and its Precision also
increases by 4.3%, which results in a great improvement in
F1 for 7.9%.

In general, VulBG has a significant effect on improving
the performance of DL-based VDs. On average, F1, Preci-
sion, and Recall are improved by 4.2%, 0.1%, and 8.7% on
the FFMpeg+Debian dataset, and 6.5%, 5.3%, 1.7% on the
Chrome+Debian dataset. The high Recall of VulBG enables
DL-based VDs to find more vulnerabilities, and the higher F1
also proves that VulBG could improve the overall performance
of different models.

E. Ablation Study

In this section, we aim answer RQ3, to study the effective-
ness of the code embedding and graph embedding techniques
that are required in VulBG, and to figure out the most suitable



components of VulBG. VulBG requires code embedding to
transform slices to vectors for better similarity calculation,
and node embedding to extract Behavior Feature from the
Behavior Graph. We select different code embedding and
graph embedding methods and retrain the model described in
Section III-B4 on the FFMpeg+Qemu dataset.

1) Code Embedding
Word2Vec [31], CodeBERT [23], and Sent2Vec [44] are

evaluated for the code embedding step. Sent2Vec is a widely
used sentence embedding method which adopts a simple but
efficient unsupervised objective to train distributed represen-
tations of sentence. Word2Vec is a classic unsupervised word
embedding model based on continuous bag-of-words (CBOW)
Model or Skip Gram Model.

The default output dimension of embedding is used for all
three methods and the average pooled result is used to rep-
resent the slice. We retrain and tune the models respectively,
and as the experimental results shown in Table IV, BG using
CodeBERT for code embedding performs better than others.
Thus, CodeBERT is adopted as the code embedding method
used in VulBG.

TABLE IV: Performance of BG using
different techniques

Phase Technique F1 P R

Code
Embedding

Word2Vec 54.7 52.0 56.7

CodeBERT 56.1 51.8 61.2

Sent2Vec 54.0 50.7 57.3

Graph
Embedding

Node2Vec 56.1 51.8 61.2

ProNE 53.8 50.1 58.2

2) Graph Embedding
We select Node2Vec [36] and ProNE [45], two widely used

graph embedding techniques, to study their performance on
Behavior Graph. Node2Vec has been mentioned in Section
III-B4, and ProNE is a fast and scalable network embedding
approach that formulates network embedding as sparse matrix
factorization. The same output dimension is set for both of the
methods, and CodeBERT is used for the code slice embedding
step. It should be noted that the implementation of ProNE
does not support weighted edges, so the weight on the edge
of the Behavior Graph is removed when using ProNE. After
retraining and tuning the models respectively, Table IV shows
that Node2Vec outperforms ProNE in the Behavior Graph
model. Therefore, we make use of Node2Vec in VulBG.

V. DISCUSSION

A. Threats to Validity

Datasets. Each sample of the two real-world datasets we
use contains only one function, without structure definitions
and macro definitions. During our experiments, we find that
Joern may generate error PDGs with only one node. This
happens when the function definition is wrapped in a macro,
resulting in the return type and parameter type missing or

“##” in the function name. In this case, Joern fails to parse
the function and cannot do further slicing. To keep as many
samples as possible, we try to replace these function names
with a fixed string and remove all its parameters. This solution
will cause the slicing to fail to continue when it encounters
function parameters. There are also malformed functions in
datasets, such as functions with mismatching brackets and not
closed “#ifdef” macros. We remove functions that cannot
be processed by Joern and conduct experiments on the rest
of the datasets. The origin size of the dataset is 27,318
for FFMpeg+Qemu dataset and 22,734 for Chrome+Devign
dataset, and after sanitizing the size is 25,524 and 21,059 as
described in section IV-A1.

B. Limitations and Potential Solutions

PDG Generation. The program slicing phase in our work
is based on PDGs generated by Joern. We find a missing
edge issue in PDGs, which would lead to inaccurate slice
results. To generate a complete PDG, pointer analysis, and
other dataflow analyses are necessary, but these advanced
static analysis techniques work on intermediate representation
(IR), which is generated during compilation. Since code in
datasets is not compilable, these techniques are unavailable.
Other DL-based approaches based on PDGs also face this
problem but there is no solution yet. The best solution is to
construct a compilable dataset so that the following research
could use IR-based analysis techniques. Moreover, IR is more
suitable for analysis because it has a neat form with simplified
semantic information, while AST focuses mostly on syntax.
LLVM [46] provides precise IR-based PDG generation and it
will be helpful if datasets meet its requirements.

Behavior Graph. We use slices of potentially vulnerable op-
erations to represent the function’s behavior, but there are also
other approaches to break down the function, such as using
paths of the function. Besides, we set the weights of edges in
the Behavior Graph to the similarity between behaviors and
use Euclidean Distance as the similarity metric, which is a
fairly simple method. By changing weights’ measurements,
the Behavior Graph could address other information.

C. The Benefits of Behavior Graph

The benefits of Behavior Graph are mainly two-fold. First,
functions with similar slices can be easily grouped. Second,
the importance of a slice can be obtained by the number of
edges connected to the corresponding cluster centers in the
Behavior Graph. During training, it is possible to distinguish
classes of slices that may lead to vulnerabilities.

D. Interpretability

As a function-level model, VulBG outputs whether there are
vulnerabilities in the function. Line-level approaches have also
been proposed recently, which first use a detection model to
detect vulnerabilities, and then use an additional interpretation
model to locate the vulnerability, such as IVDetect [47],
LineVul [48], and LineVD [49]. VulBG can also be applied to
the detection model of these interpretable approaches to detect



more vulnerabilities, and then use the interpretation model to
obtain explainable results.

We will do research on the interpretability of the Behavior
Graph in future work, and we hope to locate the vulnerability
in slice-level by investigating Behavior Feature of functions,
which will be more helpful to practitioners in finding bugs. In
Behavior Graph there are two indicators that can be used to
interpret the output:

• The weights of the edges in Behavior Graph represent the
similarity of the behavior of the function to the centroid
behavior. When a set of behavior has a high correlation
with a vulnerability, the similarity to centroid behavior
could indicate the potential vulnerable slices.

• After node embedding, we can calculate the distance from
new function nodes to known vulnerable function nodes
in Behavior Graph, which helps to point out what pattern
the bugs follow in these new functions.

E. Extending to Other Dataset

Generally, VulBG is not designed for a specific program-
ming language or source code dataset. It can be easily extended
to any other C/C++ dataset (e.g., NVD datasets [50]) with
minor modification. For the other languages, users may need to
adapt the slicing rules to language characteristics and change
to a slicing tool that supports the programming language.

However, it is always tough to find a large number of vul-
nerabilities in real-world scenarios. So here comes a valuable
topic how to keep high detection performance with only a few
training data. In future work, we will try to apply few-shot
learning on VulBG to make it more effective for real-world
scenarios.

VI. RELATED WORK

Currently, available vulnerability detection systems can be
divided into the following three categories: static vulnera-
bility detection, similarity-based vulnerability detection, and
machine-learning-based vulnerability detection.

As for static vulnerability detection, many traditional pro-
gram analysis tools or vulnerability detection systems were
developed based on this way (e.g., Checkmarx [51], RATS [52],
and FlawFinder [53]). These works firstly need the human
experts to determine the detecting rules, then analyze programs
based on conventional static analysis theories (e.g., , data-flow,
abstract interpretation, and taint analysis). These works have
been widely used and proved that they can find vulnerabilities
in all kinds of the software system. However, these works have
the following shortage: they heavily rely on the detecting rules,
therefore, they can not detect the vulnerabilities not covered
in the detecting rules.

To get rid of detecting rules, similarity-based vulnerability
detection emerged. This type of work detects vulnerabilities
by calculating the similarity between the samples to be tested
and samples with vulnerabilities. When the similarity exceeds
a threshold, the sample is identified as vulnerable. Since the
source code of function can be treated as a piece of text [54],
[55], a sequences of tokens [56], [57], a tree [58], [59], or

even a graph [60], many various aspects [61] can measure the
similarity of functions. These works may not need detecting
rules anymore, but still need human experts to determine the
vulnerable samples. Therefore, they can only find the cloned
vulnerabilities but can not find the new vulnerabilities [4].

The machine-learning-based vulnerability detection ap-
proaches [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18] have been proved that it performs
much better in detecting a new pattern of vulnerabilities. These
works can be divided into two subcategories. 1) These works
treat the source code as a piece of text, turn the vulnerability
detection into a text classification problem, and use NLP
solutions to solve the problem [4], [5], [6], [7], [8], [9], [16],
[17], [18]. 2) These works build PDGs from the source code’s
AST through static analysis and then transform the vulner-
ability detection mission into a graph or node classification
mission, and use a GNN to achieve the goal [10], [11], [12],
[13], [14], [15]. In general, VulBG belongs to the second
category of solutions. The difference with other schemes is that
VulBG puts all samples into one graph, instead of converting
each sample into one separate graph. By doing so, VulBG
can find connections between samples. To summarize, VulBG
proposes a novel concept of Behavior Graph to describe the
connection between functions and enhance the other DL-based
VD approaches by building the Behavior Graph Model.

VII. CONCLUSION

In this paper, we propose a novel approach that can extract
functions’ behaviors and then construct a Behavior Graph to
represent the connections of different functions. We design
and implement VulBG, a framework for higher performance
in vulnerability detection by combining the Behavior Graph
with other DL-based VD approaches. The evaluation results
on two real-world dataset report that Behavior Graph itself
is good enough for vulnerability detection, and VulBG can
further effectively improve the overall performance of different
kinds of DL-based VD approaches(i.e., TextCNN, ASTGRU,
CodeBERT, Devign, and VulCNN).

VIII. DATA AVAILABILITY

The data sets used in our evaluations can be publicly ac-
cessed at https://github.com/CGCL-codes/VulBG. The source
code of our tool has also been published on the above website.

ACKNOWLEDGEMENT

Thanks to the anonymous reviewers for their insightful
comments. This work was supported by the National Natural
Science Foundation of China (No. 62172168), the National
Key R&D Plan of China (No. 2022YFB3103403), the Hubei
Province Key R&D Technology Special Innovation Project
(No. 2021BAA032), the Wuhan Applied Foundational Frontier
Project (No. 2020010601012188), and the Guangdong Provin-
cial Key R&D Plan Project (No. 2019B010139001).



REFERENCES

[1] “Wannacry ransomware attack,” https://en.wikipedia.org/wiki/WannaCry
ransomware attack, 2020, accessed: 2022-08.

[2] “The exactis breach: 5 things you need to know,” https:
//blog.infoarmor.com/individuals-and-families/the-exactis-breach-5-thi
ngs-you-need-to-know, 2020, accessed: 2022-08.

[3] “5 key takeaways from the 2020 open source security and risk analysis
report,” https://securityboulevard.com/2020/05/5-key-takeaways-from-t
he-2020-open-source-security-and-risk-analysis-report, 2020, accessed:
2022-08.

[4] Z. Li, D. Zou, S. Xu, X. Ou, and Y. Zhong, “VulDeePecker: A deep
learning-based system for vulnerability detection,” in Proceedings of the
25th Network and Distributed System Security Symposium (NDSS’18),
2018, pp. 1–15.

[5] D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin, “µVulDeePecker: A
deep learning-based system for multiclass vulnerability detection,” IEEE
Transactions on Dependable and Secure Computing, vol. 18, no. 5, pp.
2224–2236, 2019.

[6] G. Lin, J. Zhang, W. Luo, L. Pan, and Y. Xiang, “POSTER: Vulnerability
discovery with function representation learning from unlabeled projects,”
in Proceedings of the 24th ACM SIGSAC Conference on Computer and
Communications Security (CCS’17), 2017, pp. 2539–2541.

[7] X. Duan, J. Wu, S. Ji, Z. Rui, T. Luo, M. Yang, and Y. Wu, “VulSniper:
Focus your attention to shoot fine-grained vulnerabilities,” in Proceed-
ings of the 28th International Joint Conference on Artificial Intelligence
(IJCAI’19), 2019, pp. 4665–4671.

[8] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “Sysevr: A
framework for using deep learning to detect software vulnerabilities,”
IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 4,
pp. 2244–2258, 2021.

[9] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. McConley, “Automated vulnerability detection
in source code using deep representation learning,” in Proceedings of
the 17th IEEE International Conference on Machine Learning and
Applications (ICMLA’18), 2018, pp. 757–762.

[10] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and dis-
covering vulnerabilities with code property graphs,” in Proceedings of
the 35th IEEE Symposium on Security and Privacy (S&P’14), 2014, pp.
590–604.

[11] L. Cui, Z. Hao, Y. Jiao, H. Fei, and X. Yun, “Vuldetector: Detecting
vulnerabilities using weighted feature graph comparison,” IEEE Trans-
actions on Information Forensics and Security, vol. 16, pp. 2004–2017,
2020.

[12] S. Cao, X. Sun, L. Bo, Y. Wei, and B. Li, “Bgnn4vd: Constructing bidi-
rectional graph neural-network for vulnerability detection,” Information
and Software Technology, vol. 136, p. 106576, 2021.

[13] X. Cheng, H. Wang, J. Hua, G. Xu, and Y. Sui, “Deepwukong: Statically
detecting software vulnerabilities using deep graph neural network,”
ACM Transactions on Software Engineering and Methodology, vol. 30,
no. 3, pp. 1–33, 2021.

[14] G. Lin, W. Xiao, L. Y. Zhang, S. Gao, Y. Tai, and J. Zhang, “Deep
neural-based vulnerability discovery demystified: data, model and per-
formance,” Neural Computing and Applications, vol. 33, no. 20, pp.
13 287–13 300, 2021.

[15] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vulner-
ability identification by learning comprehensive program semantics via
graph neural networks,” in Proceedings of the 33rd Advances in Neural
Information Processing Systems (NIPS’19), 2019, pp. 10 197–10 207.

[16] G. Qiang, “Research on software vulnerability detection method based
on improved CNN model,” Scientific Programming, vol. 2022, 2022.

[17] C. B. Şahin, “DCW-RNN: Improving class level metrics for software
vulnerability detection using artificial immune system with clock-work
recurrent neural network,” in Proceedings of the 15th International
Conference on INnovations in Intelligent SysTems and Applications
(INISTA’21), 2021, pp. 1–8.

[18] W. Lin and S. Cai, “An empirical study on vulnerability detection for
source code software based on deep learning,” in Proceedings of the
21st IEEE International Conference on Software Quality, Reliability and
Security Companion (QRS-C’21), 2021, pp. 1159–1160.

[19] H. Wang, G. Ye, Z. Tang, S. H. Tan, S. Huang, D. Fang, Y. Feng,
L. Bian, and Z. Wang, “Combining graph-based learning with automated
data collection for code vulnerability detection,” IEEE Transactions on
Information Forensics and Security, vol. 16, pp. 1943–1958, 2020.

[20] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learn-
ing based vulnerability detection: Are we there yet?” arXiv preprint
arXiv:2009.07235, 2020.

[21] Y. Zhang and B. Wallace, “A sensitivity analysis of (and practitioners’
guide to) convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1510.03820, 2015.

[22] H. Feng, X. Fu, H. Sun, H. Wang, and Y. Zhang, “Efficient vulner-
ability detection based on abstract syntax tree and deep learning,” in
Proceedings of the 39th IEEE Conference on Computer Communications
Workshops (INFOCOM’20 Workshop), 2020, pp. 722–727.

[23] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, and D. Jiang, “Codebert: A pre-trained model for programming
and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

[24] Y. Wu, D. Zou, S. Dou, W. Yang, D. Xu, and H. Jin, “VulCNN:
an image-inspired scalable vulnerability detection system,” in Proceed-
ings of the 44th International Conference on Software Engineering
(ICSE’22), 2022, pp. 2365–2376.

[25] “CVE-2018-17958,” https://nvd.nist.gov/vuln/detail/CVE-2018-17958,
2022, accessed: 2022-08.

[26] “CVE-2018-17962,” https://nvd.nist.gov/vuln/detail/CVE-2018-17962,
2022, accessed: 2022-08.

[27] D. Zou, H. Qi, Z. Li, S. Wu, H. Jin, G. Sun, S. Wang, and Y. Zhong,
“SCVD: A new semantics-based approach for cloned vulnerable code
detection,” in Proceedings of the 14th International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA’2017), 2017, pp. 325–344.

[28] “tf-idf,” https://en.wikipedia.org/wiki/Tf-idf, 2022, accessed: 2022-08.
[29] “Open-source code analysis platform for C/C++ based on code property

graphs,” https://joern.io/, 2022, accessed: 2022-08.
[30] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt, “Fast pattern matching in

strings,” SIAM Journal on Computing, vol. 6, no. 2, pp. 323–350, 1977.
[31] Q. Le and T. Mikolov, “Distributed representations of sentences and

documents,” in Proceedings of the 31st International Conference on
Machine Learning (ICML’14), 2014, pp. 1188–1196.

[32] X. Yuan, G. Lin, Y. Tai, and J. Zhang, “Deep neural embedding
for software vulnerability discovery: Comparison and optimization,”
Security and Communication Networks, vol. 2022, pp. 1–12, 2022.

[33] D. Sculley, “Web-scale k-means clustering,” in Proceedings of the 19th
International Conference on World Wide Web (WWW’10), 2010, pp.
1177–1178.

[34] S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on
Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

[35] “Euclidean distance,” https://en.wikipedia.org/wiki/Euclidean distance,
2022, accessed: 2022-08.

[36] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’16), 2016,
pp. 855–864.

[37] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[38] “codebert-base,” https://huggingface.co/microsoft/codebert-base, 2020.
[39] M. Pagliardini, P. Gupta, and M. Jaggi, “Unsupervised learning of sen-

tence embeddings using compositional n-gram features,” arXiv preprint
arXiv:1703.02507, 2017.

[40] Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with fine-
grained interpretations,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE’21), 2021, pp. 292–
303.

[41] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[42] “Tensors and dynamic neural networks in python with strong GPU
acceleration (PyTorch),” https://pytorch.org, 2022, accessed: 2022-08.

[43] R. Thorndike, “Who belongs in the family?” Psychometrika, vol. 18,
no. 4, pp. 267–276, 1953.

[44] M. Pagliardini, P. Gupta, and M. Jaggi, “Unsupervised learning of sen-
tence embeddings using compositional n-gram features,” arXiv preprint
arXiv:1703.02507, 2017.

[45] J. Zhang, Y. Dong, Y. Wang, J. Tang, and M. Ding, “ProNE: Fast
and scalable network representation learning.” in Proceedings of the



28th International Joint Conference on Artificial Intelligence (IJCAI’19),
vol. 19, 2019, pp. 4278–4284.

[46] “The LLVM compiler infrastructure,” https://llvm.org/, 2022, accessed:
2022-08.

[47] Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with fine-
grained interpretations,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE’21), 2021, pp. 292–
303.

[48] M. Fu and C. Tantithamthavorn, “LineVul: A transformer-based line-
level vulnerability prediction,” in Proceedings of the 19th International
Conference on Mining Software Repositories (MSR’22), 2022, pp. 608–
620.

[49] D. Hin, A. Kan, H. Chen, and M. A. Babar, “LineVD: Statement-level
vulnerability detection using graph neural networks,” in Proceedings
of the 19th International Conference on Mining Software Repositories
(MSR’22), 2022, pp. 596–607.

[50] “National vulnerability database (NVD),” https://www.nist.gov/program
s-projects/national-vulnerability-database-nvd, 2022, accessed: 2022-
08.

[51] “Checkmarx,” https://www.checkmarx.com/, 2022, accessed: 2022-08.
[52] “Rough audit tool for security,” https://code.google.com/archive/p/roug

h-auditing-tool-for-security/, 2022, accessed: 2022-08.
[53] “Flawfinder,” http://www.dwheeler.com/flawfinde/r, 2022, accessed:

2022-08.
[54] J. Jang, A. Agrawal, and D. Brumley, “ReDeBug: Finding unpatched

code clones in entire os distributions,” in Proceedings of 33rd IEEE
Symposium on Security and Privacy (S&P’12), 2012, pp. 48–62.

[55] S. Kim, S. Woo, H. Lee, and H. Oh, “VUDDY: A scalable approach
for vulnerable code clone discovery,” in Proceedings of the 38th IEEE
Symposium on Security and Privacy (S&P’17), 2017, pp. 595–614.

[56] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes, “Sourcer-
erCC: Scaling code clone detection to big-code,” in Proceedings of
the 38th International Conference on Software Engineering (ICSE’16),
2016, pp. 1157–1168.

[57] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
2002.

[58] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in Proceedings of the 29th
International Conference on Software Engineering (ICSE’07), 2007, pp.
96–105.

[59] N. H. Pham, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “De-
tection of recurring software vulnerabilities,” in Proceedings of the 35th
International Conference on Automated Software Engineering (ASE’10),
2010, pp. 447–456.

[60] J. Li and M. D. Ernst, “CBCD: Cloned buggy code detector,” in Pro-
ceedings of the 34th International Conference on Software Engineering
(ICSE’12), 2012, pp. 310–320.

[61] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “VulPecker: An automated
vulnerability detection system based on code similarity analysis,” in
Proceedings of the 32nd Annual Conference on Computer Security
Applications (ACSAC’16), 2016, pp. 201–213.


