
A Comprehensive Study of Learning-based Android Malware
Detectors under Challenging Environments

Cuiying Gao
Huazhong University of Science and

Technology, China
gaocy@hust.edu.cn

Gaozhun Huang
Huazhong University of Science and

Technology, China
gaozhun@hust.edu.cn

Heng Li
Huazhong University of Science and

Technology, China
liheng@hust.edu.cn

Bang Wu
Huazhong University of Science and

Technology, China
bangw@hust.edu.cn

Yueming Wu
Nanyang Technological University,

Singapore
wuyueming21@gmail.com

Wei Yuan∗
Huazhong University of Science and

Technology, China
yuanwei@mail.hust.edu.cn

ABSTRACT
Recent years have witnessed the proliferation of learning-based

Android malware detectors. These detectors can be categorized into
three types, String-based, Image-based and Graph-based. Most of
them have achieved good detection performance under the ideal
setting. In reality, however, detectors often face out-of-distribution
samples due to the factors such as code obfuscation, concept drift
(e.g., software development technique evolution and new malware
category emergence), and adversarial examples (AEs). This problem
has attracted increasing attention, but there is a lack of comparative
studies that evaluate the existing various types of detectors under
these challenging environments. In order to fill this gap, we select
12 representative detectors from three types of detectors, and eval-
uate them in the challenging scenarios involving code obfuscation,
concept drift and AEs, respectively. Experimental results reveal that
none of the evaluated detectors can maintain their ideal-setting
detection performance, and the performance of different types of
detectors varies significantly under various challenging environ-
ments. We identify several factors contributing to the performance
deterioration of detectors, including the limitations of feature ex-
traction methods and learning models. We also analyze the reasons
why the detectors of different types show significant performance
differences when facing code obfuscation, concept drift and AEs.
Finally, we provide practical suggestions from the perspectives of
users and researchers, respectively. We hope our work can help
understand the detectors of different types, and provide guidance
for enhancing their performance and robustness.

CCS CONCEPTS
• Security and privacy→Mobile and wireless security.

∗Corresponding authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00
https://doi.org/10.1145/3597503.3623320

KEYWORDS
Android Malware Detection, Machine Learning, Code Obfuscation,
Concept Drift, Adversarial Examples

ACM Reference Format:
Cuiying Gao, Gaozhun Huang, Heng Li, Bang Wu, Yueming Wu, and Wei
Yuan. 2024. A Comprehensive Study of Learning-based Android Malware
Detectors under Challenging Environments. In 2024 IEEE/ACM 46th Inter-
national Conference on Software Engineering (ICSE ’24), April 14–20, 2024,
Lisbon, Portugal. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3597503.3623320

1 INTRODUCTION
As the most popular mobile operating system, Android has be-

come the main target of malware authors. According to AVTest
[9], the number of Android malware has reached 33,184,323 in
2022, which is about 2405 times what it was ten years ago. This
tremendous growth in malware has become a serious threat, and it
is essential to take the necessary measures to stop malware spread.

In recent years, a variety of learning-based detection methods (or
detectors) have been proposed to identify Android malware (i.e., mal-
ware detection) or classify malware into their respective categories
or families [38]. To avoid executing Android apps, most of them
use static features, e.g., Drebin [7] and MaMaDroid [31]. Accord-
ing to the types of features, these detectors can be further divided
into three categories: String-based, Image-based and Graph-based.
The String-based detectors extract the required string sequence
(e.g. APIs and permissions [7]) from an APK, and then encode the
sequence into a feature vector for malware detection. The Image-
based detectors convert an APK into an image, and employ an
image classification method to identify malware [51] [54]. The
Graph-based detectors extract semantic information from an APK,
and represent the latter as a graph (e.g., function call graph [49]
[20] [50]). The graph is usually further converted into a feature
vector and then fed to a classifier for prediction. Most of the existing
learning-based detectors can achieve satisfactory or even extremely
high detection performance when the training and test data follow
an identical distribution [31] [63]. However, existing research has
revealed that models often encounter out-of-distribution samples
that will degrade their detection performance [22] [27].

As shown in Figure 1, in real world, out-of-distribution samples
may be generated due to three non-negligible factors: Code obfusca-
tion, Concept drift and Adversarial examples (AEs). First, obfuscation

https://doi.org/10.1145/3597503.3623320
https://doi.org/10.1145/3597503.3623320
https://doi.org/10.1145/3597503.3623320

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Cuiying Gao, Gaozhun Huang, Heng Li, Bang Wu, Yueming Wu, and Wei Yuan

1. Preprocessing

2. Feature Extraction

3. Feature Processing

4. Model Traing and

Testing

1. Preprocessing

2. Feature Extraction

4. Model Using

Obfuscated

sample

Obfuscated

sample

Adversarial

example

Adversarial

example
Concept drift

sample

Concept drift

sample

Malious

sample

Malious

sample

Benign

sample

Benign

sample

Model

3. Feature Processing

Ideal Setting Challenging Setting

Figure 1: The detectors are usually trained under the ideal
setting and used under challenging environments.

tools can produce obfuscated software with the same functionality
but more complicated code [24] [21]. Second, both benign and mali-
cious software may transform and evolve [45], and new variants of
malware can emerge [36]. Third, attackers may launch adversarial
attacks and produce adversarial malware that can evade detection
[60] [15]. The above three factors yield out-of-distribution sam-
ples, which breaks the ideal setting assumption, and necessitates
re-examining the performance of the existing malware detectors
under more realistic environments.

Currently, several survey articles have summarized the exist-
ing Android malware detection methods [35] [38] [47] [43], and
also highlighted the challenges that detectors face in the real world.
However, they did not re-evaluate the detectors, and solely analyzed
the results by the authors of detectors. Several recently proposed
detectors have also undergone evaluation under challenging envi-
ronments and conducted performance comparisons. For example,
RevealDroid [22] was evaluated under code obfuscation and con-
cept drift. MaMaDroid was evaluated under concept drift. Since
these experiments were conducted on different datasets and under
different settings, it is difficult to make a comparison among the
evaluated detectors. Furthermore, some important works devote
more efforts to evaluation under challenging environments. For
example, TESSERACT [36] argued that the performance of existing
detectors is often overestimated due to the biases in space and time,
and proposed some experimental constraints for these biases. Borja
et al. [34] proposed a fairer evaluation framework considering re-
alistic factors. These works provide deeper insights on detection
performance under challenging settings. However, due to the vast
number and diverse categories of detectors, as well as the com-
plexity of the real world, there are still some unclear issues: 1) how
different types of detectors perform under the ideal and challenging
environments; 2) why different types of detectors perform better
or worse under different challenging environments; 3) what are
the future directions for improving detectors and how users select
detectors? Exploring these issues can further enrich the commu-
nity’s understanding about learning-based detectors and promote
research on Android security.

Therefore, in this paper, we select 12 detectors for evaluation
based on the criteria such as diversity, popularity, relevance, and

recency, including five String-based detectors, two Image-based de-
tectors, and five Graph-based detectors. We develop an evaluation
framework, which includes the following scenarios: code obfusca-
tion, concept drift and AEs attack. In addition, we also evaluate
the performance of detectors under the ideal setting and test the
detection efficiency of various detectors. We evaluate the three
different types of detectors using the unified datasets, and analyze
the evaluation results to achieve the following three goals: 1) un-
derstand the capabilities of different-type detectors, 2) analyze the
reasons for the difference of these detectors’ performance under
challenging environments, and 3) provide some suggestions from
the perspectives of users and researchers. Our work aims to pro-
vide a clearer picture for learning-based Android malware detection
studies. Finally, our contributions are summarized as follows:

1) We develop a systematic evaluation framework to evaluate
various types of learning-based Android malware detectors under
challenging environments, which fills a gap in previous research.

2) We summarize our findings and analyze the reasons for perfor-
mance differences among various types of learning-based Android
malware detectors under diverse challenging environments. We
also provide some suggestions for both users and researchers.

3) We build three concept drift datasets and eight code obfusca-
tion datasets, which are available on our link [1]. These datasets can
be used by the research community to evaluate various detectors
under challenging environments.

2 PRELIMINARY
2.1 Learning-based Android malware detector

As shown in Figure 1, the construction of learning-based detec-
tors can be divided into four main steps: 1) Preprocessing: This
step usually starts with unpacking an APK to obtain important files
such as classes.dex. Furthermore, to better understand the code
in the classes.dex, the latter can be further decompiled into smali
files. 2) Feature extraction: This step extracts features from APKs,
such as function calls, and permission usage. 3) Feature process-
ing: The features extracted in the last step are further processed
to facilitate being handled by learning models, such as a vector, an
image, or a graph. 4) Model training and testing: In this step, a
malware detector or multi-category classifier is trained and then
tested. Once the model passes the model test, it can be deployed in
realistic environments.

2.2 Code obfuscation
Code obfuscation is a technology that converts the program

code into a form that is functionally equivalent but difficult to read
[24]. Obfuscation techniques are originally proposed to protect the
intellectual property of legitimate users, but inevitably, attackers
can also use them to protect malicious code. There are many ob-
fuscation tools, such as Obfuscapk [5], DashO [19] and Allatori [2].
Common code obfuscation techniques include renaming identifiers,
inserting junk code, etc. In recent years, some new and non-trivial
obfuscation techniques have been proposed, such as Reflection
and Encryption. Below we give a brief description of obfuscation
technologies that will be used for this evaluation.

Rebuild (RBD): disassemble and recompile the classes.dex file.
ClassRename (CR) andMethodRename (MR): rename the class

A Comprehensive Study of Learning-based Android Malware Detectors under Challenging Environments ICSE ’24, April 14–20, 2024, Lisbon, Portugal

and method name to a meaningless string, respectively. Reorder
(ROR): change the conditional branch or insert a goto instruction
to alter the structure of basic code blocks.Reflection (REF): enable
functions to be called by reflection mechanism and specific APIs,
thus hiding the actual calling relationship. Junk Code (JUNK):
insert useless code that will not be executed due to arithmetic
constraints. ConstStringEncryption (CSE): encrypt the constant
strings in code. CallIndirection (CID): change the original func-
tion call relationship by indirect calls.

2.3 Concept drift
Concept drift is a phenomenon in which the statistical proper-

ties of the target variable change over time [55]. In the context of
Android malware detection, researchers are primarily concerned
with two practical problems related to concept drift, i.e. 1) Android
software development technique evolution and 2) unseen or new
malware category emergence.
Android software evolution: In practice, the samples for model
training and testing are usually released at different times. Android
application programming technique evolves over time due to facts
such as system upgrades and technical adjustments [53]. Android
software evolution incurs different code implementations of the
same function, thereby altering the distribution of features (e.g.,
function calls). Accordingly, the classification boundary of detec-
tors needs to be shifted to accommodate this change [55].
Unseen or new malware category emergence: In malware anal-
ysis, it is also crucial to identify the category or family to which
the malicious software belongs. However, take the multi-category
classification as an example, the most popular learning-based clas-
sification models are usually trained on the dataset with fixed cate-
gories, i.e., the categories to be classified are assumed to be fixed
and known in advance [48]. As malware evolves and new classes
emerge [36], however, newly obtained samples may not belong to
any of the known categories and hence are misclassified [53].

2.4 Adversarial examples
The adversarial examples (AEs) [41] [25] [26] are generated by

adding subtle perturbations to natural samples, which can cause
the learning-based model to give an incorrect classification result
with high confidence. The AEs generation techniques were ini-
tially studied in the field of computer vision [58]. In the field of
Android malware detection, generating realistic AEs may be more
challenging, since the perturbations are required to keep software
functionality unchanged and can be implemented in the problem
space [37]. In recent years, some tools have emerged for generating
Android malware AEs [15] [60] [3], which facilitate evaluating the
robustness of Android malware detectors.

3 EVALUATION FRAMEWORK DESIGN
3.1 Detectors selection

We select detectors for performance evaluation and comparison,
according to the following criteria:
1) Diversity: Since the existing detectors fall into different cate-
gories, the selected ones should be representative and diverse.
2) Impact: We try to select the most popular detectors from each
category as much as possible. For example, Drebin [7] has been

cited for more than 2000 times, hence adopted in our evaluation.
3) Relevance: A detector may be the improved version of another
one, which belongs to the same category. For instance, MDMC [54]
is an improvement on ImgDroid [51]. Hence both MDMC and Img-
Droid are selected by us. The detectors with high relevance help
to thoroughly understand the effects of technological advances,
making them appropriate to our evaluation.
4) Recency: We tend to choose the detectors proposed in the last 5
years. Accordingly, some new and promising techniques, such as
the NLP-based ones [59], are covered in our work.
5) Reproducibility: For a fair and accurate evaluation, only the
detectors that provide open-source code or key files (e.g., the files
used for feature selection) are considered by us.

Accordingly, we select 12 detectors, including five String-based,
two Image-based and five Graph-based, as depicted in Table 1.

3.1.1 String-based. String-based detectors extract necessary strings
as features from APKs and encode them into vectors.

Drebin: Drebin [7] extracts features from the Androidmani-
fest.xml and classes.dex files. The extracted features are organized
into 8 sets, such as hardware components and requested permis-
sions, which are presented as strings. These feature sets are then
mapped into a vector space, where each dimension is either 0 or 1.
Finally, Drebin trains an SVM classifier to detect malware.

MudFlow: MudFlow [10] extracts data flows from sensitive data
sources to sensitive data sinks using Flowdroid [40]. Next, MudFlow
chooses an appropriate level of granularity to process these data
flows. Finally, MudFlow trains a binary classifier using all samples.

RevealDroid: RevealDroid [22] extracts 44 types of features:
method-level API usage, package-level API usage, reflective features
and native calls. The first three features come from the classes.dex,
while the last is from native binaries. These features are used to
create a 1054-dimensional feature vector, and an SVM classifier is
trained to detect malware.

ALDroid: ALDroid [56] extracts permission requirements, and
intent action declarations from the Androidmanifest.xml file, as
well as sensitive API calls from the smali files. ALDroid then selects
379 features, including 147 permissions, 126 intent actions and 106
API calls. Finally, ALDroid uses the Broad Learning System (BLS)
[14] as the classifier for malware detection.

Bai’s: In Bai’s [12] study, 250 common features are extracted
from Androidmanifest.xml and .smali files, including 50 Android
permissions, 156API calls, and 44 Intent attributes for inter-component
communication. Then MLP, RF, SVM, et al. are introduced to act as
the classifier.

3.1.2 Image-based. Image-based detectors use various methods to
convert an APK into an image, which is then processed with a deep
learning model.

ImgDroid: ImgDroid [51] obtains bytecodes from the classes.dex
file, and converts bytecodes into RGB images. It trains a CNN net-
work to distinguish between malicious and benign apps through
classifying the RGB images.

MDMC: Similar to ImgDroid, MDMC [54] relies on bytecodes
for malware analysis. However, MDMC doesn’t directly transform
bytecodes to images. Instead, it constructs the Markov images based
on probability matrices of byte transfers, and then uses a CNN
network to classify the Markov images.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Cuiying Gao, Gaozhun Huang, Heng Li, Bang Wu, Yueming Wu, and Wei Yuan

Table 1: Overview of studied learning-based Android malware detectors.
Type Name Years Feature Source Feature Extraction Feature processing Classifier

String-based

Drebin [7] 2014 Androidmanifest.xml,
classes.dex

Hardware components,
Requested permissions,

Suspicious API calls, et al.
Hash SVM

MudFlow [10] 2015 Androidmanifest.xml,
classes.dex

Data flows of
sensitive sources Hash SVM

RevealDroid [22] 2018 classes.dex,
native binaries

API-Usage, Reflective API,
Native Call Hash SVM

ALDroid [56] [27] 2020 Androidmanifest.xml,
classes.dex

Used permissions,
APIs and Actions Hash BLS

Bai’s [12] [11] 2021 Androidmanifest.xml,
classes.dex

Used permissions,
APIs and ICCs Hash SVM, RF, DT,

KNN, MLP

Image-based
ImgDroid [51] 2019 classes.dex Bytecode of classes.dex Convert bytecode to

color images CNN

MDMC [54] 2020 classes.dex Bytecode of classes.dex Convert bytecode to
markov images CNN

Graph-based

MaMa-fml [31] 2017, 2019 classes.dex Function call relationship Abstracte API calls to
family calls RF, KNN

MaMa-pkg [31] 2017, 2019 classes.dex Function call relationship Abstracte API calls to
package calls RF, KNN

Malscan [49] 2019 classes.dex Function call relationship Compute the centrality of
sensitive API calls RF, KNN

APIGraph [59] 2020 classes.dex Function call relationship Upon other features Use other classifiers

EFCG [13] 2021 classes.dex Function call relationship NLP-enhanced, GCN RF, DT, SVM,
LR, et al.

3.1.3 Graph-based. Graph-based detectors extract features by con-
structing graph models from APKs, which are then processed using
a learning-based model.

MaMa-fml: MaMa-fml is one model of MaMaDroid [31]. MaMa-
fml extracts API calls from smali files and abstracts them into family
calls. There are 11 families, 9 of which are from official Android
documentation. The other two are self-defined and obfuscated, re-
spectively. MaMa-fml then constructs theMarkov chain on the basis
of the transfer probabilities among families. Finally, the Markov
chain is used as the feature vector to train a detection model.

MaMa-pkg: MaMa-pkg is another model of MaMaDroid. MaMa-
pkg extracts features in the same way as MaMa-fml. The difference
is that MaMa-pkg abstracts API calls into package calls. There are
366 packages from official Android documentation, and 2 packages
are self-defined and obfuscated, respectively. In consequence, a
368 × 368 dimensional feature vector is used to represent an app.

Malscan: For each app, Malscan [49] constructs a function call
graph (FCG) from its smali files. Then Malscan selects 21986 sensi-
tive API calls based on PScout’s results [8], and computes the cen-
trality of sensitive API calls as the feature vector. Lastly, Malscan
employs RF and KNN to perform classification, respectively.

APIGraph: APIGraph [59] is designed to mine semantic similar-
ities between Android APIs. It builds a relation graph of Android
APIs based on official documents. APIGraph can be applied to pre-
vious Android malware classifiers for performance improvement.

Hence, we apply APIGraph to MaMa-fml and MaMa-pkg in our
evaluation, denoted as APIGraph_f and APIGraph_p, respectively.

EFCG: EFCG [13] first constructs an FCG for each app, and trains
a Fun2vec model to obtain the representation for every function.
It then creates an enhanced FCG, and uses a Graph Convolutional
Network (GCN) [46] to obtain a 100-dimensional vector represen-
tation for an enhanced FCG. Finally, EFCG employs the common
classifiers such as RF and SVM to detect malware.

3.2 Research questions
We aim to answer the following research questions through

experiments and analyses.
RQ1: How do various detectors perform under the ideal

setting? To provide a reference for subsequent evaluations, we
first evaluate the performance of various detectors on malware
detection and Android software multi-category classification.

RQ2: How do different detectors perform on obfuscated
samples? We evaluate the resilience of various detectors to differ-
ent obfuscation techniques and analyze the factors that contribute
to their differences in resilience.

RQ3: How does concept drift affect the various detectors?
To evaluate the ability of different detectors to alleviate concept drift,
we conduct our experiments in two scenarios, including Android
software evolution and new malware category emergence.

RQ4: How do various detectors perform under AE attacks?
To answer this question, we evaluate the robustness of detectors
using different adversarial example generation tools.

A Comprehensive Study of Learning-based Android Malware Detectors under Challenging Environments ICSE ’24, April 14–20, 2024, Lisbon, Portugal

RQ5: How efficient are various detectors? To obtain a more
comprehensive understanding of various detectors, we measure
their average processing time of handling a sample.

3.3 Dataset and metrics
As shown in Table 2, we employ two datasets for evaluation.

Data-MD is used for Android malware detection, and Data-MC is
used for Android software multi-category classification.

Data-MD is a new dataset we construct with two steps. 1)We col-
lect a large batch of samples from Androzoo [4], spanning the years
2016-2020. 2) We upload the samples to Virustotal [44] for labeling.
To ensure the quality of the datasets, we adopt some important
considerations and measures. 1) Due to the concern of sample repli-
cation [61], we de-duplicate the samples in our dataset. Specifically,
if two APKs have the same hash value of their classes.dex file, we
consider one of them as a duplicated APK. There are 490 replicate
samples in the set of collected samples. 2) Recently, some studies
pointed out that certain engines in VirusTotal will dynamically flip
their output labels over time. Fortunately, Zhu et al. [62] have con-
ducted an evaluation for this problem, and provided an appropriate
selection range for the Voting threshold (𝑉𝑇) (i.e., from 2 to 14).
We adopted this suggestion, and set𝑉𝑇 to 4. That is, if more than 4
engines label a sample as malicious, its label is set to be malicious.
If all engines label the sample as benign, then its label is benign. In
the end, we collect 15,356 samples. It is worth noting that none of
the detectors we have selected for evaluation are from Virustotal. 3)
We construct a balanced dataset since training a detector on an un-
balanced dataset (i.e., the number of benign samples is much larger
than that of malicious ones) will make the classification boundary
biased towards benign samples. Accordingly, apps are more likely
to be classified as benign, and malware detection is easier to be
evaded by code obfuscation or adversarial perturbation.

Data-MC is from CICMalDroid [30][29]. This dataset has five
distinct categories: Adware, Banking, SMS, Riskware, and Benign.
All samples undergo initial dynamic analysis using CopperDroid
(a VMI-based dynamic analysis system) [42]. Samples that fail to
run due to fatal errors such as time-outs, invalid APK, and memory
allocation failures are excluded from the dataset. In addition, we
also de-duplicate the samples for this dataset.

We employ the commonly used evaluation metrics, including
Accuracy (Acc), Precision (P), Recall (R), and F1-Score (F1), to re-
flect the results of malware detection and Android software multi-
category classification. In addition, we also use the more advanced
metric MCC [16] in RQ1 to provide a more comprehensive insight.

Table 2: The brief description of the dataset.

Android Malware Detection Dataset (Data-MD)
Years 2016 2017 2018 2019 2020 Total
Benign 1480 1851 1890 1601 1111 7933

Malicious 1060 1514 1561 1793 1495 7423
Total 2540 3365 3451 3394 2606 15356

Android Software Multi-category Classification Dataset (Data-MC)
Category Adware Banking Riskware SMS Benign Total
#Sample 1515 2506 2070 2536 4042 12669

3.4 Experimental setup
Our experiments are conducted in the following scenarios.

3.4.1 Ideal setting. We evaluate the performance of different detec-
tors on malware detection and multi-category classification under
the ideal setting in RQ1. For Data-MD and Data-MC, we randomly
selected 80% of samples from each category as the training set, and
the remaining 20% as the testing set. It is worth noting that RQ5 is
also evaluated in this scenario.

3.4.2 Code obfuscation. We evaluate the detectors’ resistance to
code obfuscation on Data-MD in RQ2. We select 800 benign and
800 malicious samples from the test set of RQ1 as the original
test set (ORI). For every sample in the original test set, we impose
eight different obfuscation techniques on it, respectively. We select
Obfuscapk [5] as our obfuscation tool. Obfuscapk is an open-source
tool used for obfuscating Android apps without accessing their
source code. When obfuscating an APK, Obfuscapk first decompiles
the APK to generate Smali files. Then, Obfuscapk obfuscates the
smali files and repackages them to generate the obfuscated APK.
Obfuscapk can implement classic obfuscation techniques and some
advanced obfuscation techniques, such as Reflection. Finally, we
obtain eight different obfuscation test sets.

It is noted that there may exist obfuscated samples in Data-MD,
which negatively affect the validity of our evaluation. However, it
is too challenging to detect and filter out all the obfuscated samples
from Data-MD. Therefore, we manually construct a dataset with-
out any obfuscated samples, and then use contrast experiments to
decide whether the experiments over Data-MD are valuable. The
results of contrast experiments indicate that the presence of obfus-
cated samples in Data-MD does not cause bias in the evaluation
results. Hence Data-MD is suitable for our experiments on the re-
sistance to code obfuscation. Details of the evaluation approach
can be found in our link [1].

3.4.3 Concept drift. As described in Section 2.3 and RQ3, we con-
sider two causes for concept drift, i.e., Android software evolution
and unseen malware category emergence.

Android software evolution: Here we set up two scenarios to
evaluate the performance of various detectors. Scenario one is de-
signed to evaluate the detectors’ resilience to aging, while Scenario
two is intended to assess their ability to resist forgetting. In Scenario
one, the detectors are trained on the samples of 2016 in Data-MD,
and subsequently tested on the samples of 2017-2020, respectively.
In Scenario two, the detectors are trained on the samples of 2020 in
Data-MD, and then tested on the samples of 2016-2019, respectively.
To maintain the consistency of sample quantity for training and
test, a total of 2160 samples are selected from each year’s dataset,
with an equal number of benign and malicious samples.

New malware category emergence: To assess the effective-
ness of different detectors in identifying unseen malware category
samples, we select one malware category from the five categories
in Data-MC as the unseen category. For example, we choose Aware
as the unseen category. We construct the training and test sets with
the remaining four categories, and then add the unseen category
into the test set. Note that the samples from the unseen category
are excluded from the training set.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Cuiying Gao, Gaozhun Huang, Heng Li, Bang Wu, Yueming Wu, and Wei Yuan

3.4.4 Adversarial examples. We assess the detectors’ robustness
to AEs using Data-MD in RQ4. We use the training and test sets of
RQ1 to train the model. We then select malware from the test set to
generate AEs, which are then used to evaluate the detection mod-
els. In the following, we introduce the tools used to generate AEs.
Al-Dujaili et al. [3] presented dFGSM_k and rFGSM_k to generate
binary-encoded AEs of malware. dFGSM_k and rFGSM_k are both
the variants of FGSM. Chen et al. [15] proposed two AEs crafting
algorithms, denoted as HIV_JSMA and HIV_CW. It is worth not-
ing that adversarial perturbations are usually imposed on features.
Therefore, AE attacks take effect in the feature space. Meanwhile,
constraints on the problem space also need to be considered. For
example, Chen et al. [15] introduce a position constraint on fea-
ture perturbations to ensure realistic AEs can be generated in the
problem space. Therefore, we also consider these constraints when
employing AE generation tools to evaluate detectors.

4 EVALUATION
In this section, we show the experimental results of RQ1-RQ5.

Note that all experimental setups are shown in Section 3.

4.1 RQ1: Performance under the ideal setting
Results & Analyses: Table 3 shows the Acc, P, R, F1 and MCC

of various detectors on Malware detection (MD) and multi-category
classification (MC) tasks in the ideal setting. On the MD task, the F1
of various detectors exceeds 0.9, and Malscan exhibits the highest
performance with an F1 of 0.959. On the MC task, the performance
of the detectors decreases to varying degrees, compared to that on
the MD task. This can be attributed to the fact that MC is a more
challenging classification task with a finer granularity. Overall,
the detectors in different categories can all achieve satisfactory
performance in the ideal setting.

Table 3: F1 of various detectors on MD and MC tasks.

Detector
Malware detection Multi-category classification

Acc P R F1 MCC Acc P R F1 MCC
Drebin 0.949 0.949 0.949 0.949 0.898 0.948 0.943 0.943 0.943 0.933

RevealDroid 0.956 0.956 0.956 0.956 0.913 0.941 0.937 0.936 0.936 0.924
MudFlow 0.940 0.940 0.940 0.940 0.880 0.908 0.907 0.907 0.907 0.880
ALDroid 0.937 0.937 0.937 0.937 0.873 0.917 0.907 0.913 0.908 0.894
Bai’s 0.954 0.954 0.954 0.954 0.907 0.951 0.948 0.947 0.947 0.938

ImgDroid 0.959 0.959 0.959 0.958 0.917 0.906 0.898 0.908 0.902 0.873
MDMC 0.956 0.957 0.956 0.956 0.913 0.939 0.937 0.935 0.936 0.921

MaMa-fml 0.956 0.956 0.956 0.956 0.912 0.929 0.928 0.928 0.928 0.908
MaMa-pkg 0.956 0.957 0.956 0.956 0.913 0.940 0.934 0.938 0.935 0.923
Malscan 0.959 0.959 0.959 0.959 0.918 0.934 0.931 0.931 0.930 0.916

APIGraph_p 0.956 0.957 0.956 0.956 0.913 0.932 0.926 0.929 0.927 0.913
APIGraph_f 0.955 0.956 0.955 0.955 0.911 0.925 0.926 0.925 0.925 0.903

EFCG 0.942 0.943 0.942 0.942 0.885 0.934 0.927 0.934 0.929 0.915

F1: In the ideal setting, all three types of detectors perform
well on the MD task, and Malscan shows the best performance.
Moreover, the MC task is more challenging in comparison.

4.2 RQ2: Performance under code obfuscation
Results & Analyses: Figure 2 shows the performance of vari-

ous detectors on the eight obfuscation test sets. The explanations
of obfuscation techniques are shown in Section 2.2. The results
indicate that the String-based detectors perform relatively stably,

whereas the Image-based detectors experience more significant
performance degradation. For example, the average F1 of ImgDroid
is only 0.76. Most of the Graph-based detectors have relatively sta-
ble performance on the obfuscation test sets, but MaMa-fml and
APIGraph-f are more susceptible to code obfuscation.

We further analyze how various obfuscation techniques affect
our detectors. Let 𝐹1𝑂𝑅𝐼 and 𝐹1𝑅𝐵𝐷 denote the F1 score measured
on the original and the obfuscation test set, respectively. Then we
can use (𝐹1𝑂𝑅𝐼 − 𝐹1𝑅𝐵𝐷)/𝐹1𝑂𝑅𝐼 × 100% to represent the decrease
ratio of F1 under code obfuscation. Table 4 shows the decreased
ratio of F1 for the evaluated detectors on different obfuscation test
sets. It can be seen that the Image-based detectors are significantly
degraded on all the obfuscation test sets. Under the simplest obfus-
cation technique, RBD, the F1 of ImgDroid and MDMC decreases
by 24.62% and 14.44%, respectively. More seriously, ImgDroid drops
by 38.39% on the CID obfuscation test set.

The performance of the Graph-based detectors varies signifi-
cantly under various obfuscation techniques. On the obfuscation
test sets of RBD, JUNK and ROR, the F1 of detectors is essentially
unchanged, while it suffers different degrees of degradation on
the obfuscation test sets of CR, CSE, CID, and REF. In addition, dif-
ferent detectors have varying degrees of sensitivity to the same
obfuscation techniques. For example, on the CID test set, the F1
of MaMa-fml, APIGraph-f, MaMa-pkg and Malscan decreases by
52.23%, 24.71%, 8.63% and 8.75%, respectively.

Compared to the other two types of detectors, the String-based
detectors exhibit more stable performance on the obfuscation test
sets. Most detectors suffer only a minimal decrease in F1 under code
obfuscation. In comparison, Drebin, RevealDroid, and MudFlow are
more vulnerable to some obfuscation techniques. Take Drebin for
example. Its F1 decreases by 1.71% on CR test set, which is already
the most serious performance degradation it has experienced across
all the obfuscation test sets.

Table 4: The decrease ratio of F1 under obfuscation.
Tools RBD CR MR CSE JUNK CID ROR REF
Drebin 0.21% 1.71% 0.32% 0.21% 0.21% 0.11% 0.21% 0.21%

RevealDroid 0.63% -0.73% 0.84% 0.63% 0.63% 0.95% 0.63% 0.63%
MudFlow 0.80% 0.65% 0.61% 0.80% 0.80% 0.34% 0.80% 0.80%
ALDroid 0.11% 0.00% 0.21% 0.11% 0.11% 0.00% 0.11% 0.11%
Bai’s 0.42% 0.32% 0.74% 0.42% 0.42% 0.32% 0.42% 0.42%

ImgDroid 24.62% 28.22% 27.88% 29.92% 33.29% 38.39% 36.64% 25.90%
MDMC 14.44% 36.94% 13.24% 25.97% 14.17% 24.05% 14.84% 19.19%

MaMa-fml 0.55% 17.27% 0.65% 17.04% 0.55% 52.23% 0.55% 13.92%
MaMa-pkg 0.53% 2.58% 0.95% 2.14% 0.53% 5.30% 0.53% 2.47%
Malscan 0.53% 1.70% 1.38% 1.81% 0.53% 8.63% 0.53% 1.81%

APIGraph_p 0.53% 3.24% 0.84% 2.35% 0.53% 8.75% 0.53% 1.81%
APIGraph_f 0.65% 15.36% 0.93% 10.23% 0.65% 24.71% 0.65% 3.66%

EFCG 0.85% 2.05% 1.29% 2.50% 0.85% 3.74% 0.85% 1.61%

F2: The String-based detectors are relatively stable under code
obfuscation. The Image-based detectors deteriorate more se-
verely (The F1 is reduced by 25.48% on average). The Graph-
based detectors perform well under most obfuscation tech-
niques, but their performance significantly decreases when
facing some obfuscation techniques such as CID and CR.

Reasons & Explanations: Here we further study why the three
types of detectors have different resilience to various obfuscation
technologies.

A Comprehensive Study of Learning-based Android Malware Detectors under Challenging Environments ICSE ’24, April 14–20, 2024, Lisbon, Portugal

M a M a - f m l M a M a - p k g A P I G r a p h _ f E F C G M a l s c a n A P I G r a p h _ p I m g D r o i d M D M C B a i ' s R e v e a l D r o i d M u d F l o w D r e b i n A L D r o i d
P R F 1 P R F 1 P R F 1 P R F 1 P R F 1 P R F 1 P R F 1 P R F 1 P R F 1 P R F 1 P R F 1 P R F 1 P R F 1

G r a p h - b a s e d I m a g e - b a s e d S t r i n g - b a s e d

0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

 2 5 % ~ 7 5 % M i n ~ M a x
 M e d i a n L i n e M e a n

Figure 2: P, R, F1 of detectors on the original and obfuscation test sets.

ORI RBD CID
Figure 3: Impact of code obfuscation on color images.

1) There are two reasons for the relatively strong resilience of the
String-based detectors to code obfuscation. First, as shown in Table
1, the String-like features used by these detectors usually come
from classes.dex, AndroidManifest.xml and native binaries, while
most of obfuscation techniques only modify classes.dex. Second,
the obfuscation techniques usually alter a fraction of the string-
like features with a small impact. For illustration, we suppose a
String-based detector uses API calls as its features. Under the CR
obfuscation (i.e., changing functions’ name), only some of the pre-
existing API calls vanished, changing the corresponding elements
in the string-like feature from 1 to 0 and keeping the remaining
elements unchanged.

2) In general, the Image-based detectors utilize all the informa-
tion contained in classes.dex for classification. However, the latter
can be easily changed by obfuscation. For illustration, we extract the
feature used by ImgDroid from an APK file. We then use RBD and
CID to modify the APK file, respectively. The original features and
the changed ones are all represented by a color image, as depicted
in Figure 3. Clearly, the changed features are significantly different
from the original ones. Therefore, it is hard for ImgDroid to resist
even simple obfuscation techniques like RBD. On the other hand,
the visual distinction between CID and RBD Bytecode color images
is less pronounced. This alignment effect is not by coincidence. This
is because RBD acts as the last step of all obfuscation techniques,
dominating the visual pattern of Bytecode feature images. This also
explains why ImgDroid suffers similar performance degradation
on the other obfuscation test sets.

3) Graph-based detectors mainly depend on function call graphs
(FCGs) and their variants for classification. Table 5 shows the
change in the number of nodes and edges in FCGs before and after
code obfuscation. Edge_diff (Node_diff) denotes the discrepancy
in the edge (node) count between the original and obfuscated app.
Furthermore, to assess the statistical difference of FCGs before and
after obfuscation, we employ the Kolmogorov-Smirnov test [33] to

evaluate the distribution of node and edge count before and after
obfuscation. Node_p and Edge_p denote the p-value of test result.
A p-value less than 0.05 indicates that the distribution of node (or
edge) count for the obfuscated app significantly differs from that for
the original app. The results demonstrate that the CID obfuscation
substantially increases the node and the edge count by 27.728%
and 19.473%, respectively. Consequently, most Graph-based detec-
tors exhibit subpar performance on the CID obfuscation test set. In
particular, MaMa-fml suffers a more severe performance decline
due to its coarse-grained features. Obfuscation techniques, such as
CR, MR, CSE, and REF, exert a marked effect on FCGs, with diverse
node distribution and edge count compared to the original apps.
Conversely, the three obfuscation strategies, namely RBD, JUNK
and ROR, exert a relatively low impact on FCGs. As a result, the
Graph-based detectors experience slight performance degradation
on these obfuscation test sets.

Table 5: Impact of code obfuscation on function call graphs.

Obf.Tec Node_diff Node_p Edge_diff Edge_p

RBD 0.000% 0.317 0.000% 0.317
CR +0.155% <0.05 +0.083% <0.05
MR +0.131% <0.05 0.000% 0.317
CSE +0.140% <0.05 +0.676% <0.05
JUNK 0.000% 0.317 0.000% 0.317
ROR 0.000% 0.317 0.000% 0.317
CID +27.728% <0.05 +19.473% <0.05
REF +0.044% <0.05 -0.174% <0.05

F3: The obfuscation-resilience of detectors is closely related to
the selected features. Different features exhibit distinct levels
of robustness against various obfuscation techniques. More-
over, utilizing global information extracted from classes.dex
files as features can increase the risk of detection performance
degradation caused by obfuscation.

4.3 RQ3: Performance under concept drift
(1) Android software evolution
Results & Analyses: We assess various detectors under two

scenarios. In Scenario one, the training samples are all from 2016.
In Scenario two, the training samples are all from 2020. Figure 4
shows the F1 scores of various detectors under two scenarios to
reflect their resilience to concept drift resulted by Android software
development technique evolution.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Cuiying Gao, Gaozhun Huang, Heng Li, Bang Wu, Yueming Wu, and Wei Yuan

0 . 7

0 . 8

0 . 9

1 . 0

0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0
1 . 1

2 0 1 7 2 0 1 8 2 0 1 9 2 0 2 0 2 0 1 7 2 0 1 8 2 0 1 9 2 0 2 0 2 0 1 7 2 0 1 8 2 0 1 9 2 0 2 0
S t r i n g - b a s e d I m a g e - b a s e d G r a p h - b a s e d

S c e n a r i o o n e

2 0 1 9 2 0 1 8 2 0 1 7 2 0 1 6 2 0 1 9 2 0 1 8 2 0 1 7 2 0 1 6 2 0 1 9 2 0 1 8 2 0 1 7 2 0 1 6
S t r i n g - b a s e d I m a g e - b a s e d G r a p h - b a s e d

S c e n a r i o t w o
 D r e b i n R e v e a l D r o i d M u d F l o w A L D r o i d B a i ' s I m g D r o i d M D M C
 M a M a - f m l M a M a - p k g M a l s c a n A P I G r a p h _ p A P I G r a p h _ f E F C G

 D r e b i n R e v e a l D r o i d M u d F l o w A L D r o i d B a i ' s I m g D r o i d M D M C
 M a M a - f m l M a M a - p k g M a l s c a n A P I G r a p h _ p A P I G r a p h _ f E F C G

Figure 4: The F1 of various detectors under scenario one and scenario two.

1) In Scenario one, the String-based and the Image-based detec-
tors suffer a more significant decline in F1 than the Graph-based
detectors. Moreover, for most of the detectors, a larger time gap be-
tween the training and test sets results in a sharper decline in F1. For
instance, Drebin’s F1 drops from 0.901 on the 2017 test set to 0.839,
0.762, and 0.715 on the 2018, 2019, and 2020 test sets, respectively.
2) In Scenario two, the F1 scores of various detectors decrease more
rapidly than in Scenario one. This is because the models trained
with new samples may pay more attention to the features asso-
ciated with new development techniques, making them perform
worse on old samples. Comparatively, the Graph-based detectors
suffer more severe performance degradation in Scenario two. For
example, EFCG’s F1 drops from 0.912 on the 2019 test set to 0.463
on the 2016 test set. Similarly, Malscan’s F1 decreases from 0.876
on the 2019 test set to 0.497 on the 2016 test set. Furthermore, the
results indicate that coarse-grained features are more resilient than
fine-grained features. For instance, in both scenarios, MaMa-fml
exhibits a slower decline in F1 compared to MaMa-pkg.

F4: When concept drift occurs, all three types of detectors ex-
perience varying degrees of performance degradation. Overall,
Image-based detectors show the most significant performance
drop under concept drift. In addition, using a new training set
leads to more severe performance degradation for detectors
than using an old training set.

Reasons & Explanations: Android software development tech-
nique undergoes continuous evolution, changing the features ex-
tracted from apps. We will explore which features undergo the
most significant changes over time, resulting in the degradation
of detector performance. First, we randomly select 2000 samples
with comparable sizes from each year between 2017 and 2020. We
identify the top-100 commonly-used sensitive API calls, top-40
commonly-used permissions and actions in the samples of 2016.
We then analyze their frequency of use in the samples from 2017 to
2020. As shown in Figure 5, the frequency of API usage decreases
each year. Its median is 30.04% in 2017, which decreases to 28.24%

0 20 40 60 80 100

2017
30.04%

A
PI

s (
To

p1
00

)
 2017
 2018
 2019
 2020

2018
28.24%

2019
26.46%

2020
13.65%

0 20 40 60 80 100

 2017
 2018
 2019
 2020

Pe
rm

iss
io

ns
 a

nd
 a

ct
io

ns
 (T

op
 4

0)

2017
24.10%

2018
22.63%

2019
25.80%

2020
26.73%

Figure 5: The usage frequency of APIs, permission and ac-
tions in different years.

and 26.46% in 2018 and 2019, respectively. In 2020, its median fur-
ther decreases to 13.65%. In contrast, the frequency of permissions
and actions remains more stable, with the median hovering around
25% across the four different years.

The above analyses indicate that using too many sensitive APIs
as features may reduce a model’s robustness against concept drift.
As shown in Figure 4, ALDroid selects more permissions and actions
as its features, while Malscan and Drebin choose more sensitive
APIs as their features. Therefore, ALDroid has stronger resilience
compared to the other two detectors. Although APIGraph helps to
mitigate semantic differences between APIs from different years, its
effectiveness in countering software evolution is actually limited,
particularly over significant time spans. Moreover, through com-
paring MaMa-fml and MaMa-pkg, we observe that coarse-grained
features exhibit greater resilience to software evolution, as an API’s
name may change but its family name often remains unchanged.

F5: The negative impact of concept drift caused by software
evolution has a stronger association with the sensitive APIs
adopted in features. This effect is even more significant when
the time span between training and test samples is large.

A Comprehensive Study of Learning-based Android Malware Detectors under Challenging Environments ICSE ’24, April 14–20, 2024, Lisbon, Portugal

(2) New malware category emergence
To explore the potential of existing detectors in identifying new-

category samples, now we focus on the concept drift induced by
new malware category emergence. In our experiments, the test
set contains the samples of a new category unseen in the training
set. We sequentially evaluate all the detectors under 100 thresholds
ranging from 0.01 to 1. We choose the threshold that yields the
highest macro average F1-score (M-F1) as the final threshold. For
illustration, we consider EFCG as an example and show its M-F1 un-
der all thresholds in the left part of Figure 6. Clearly, EFCG achieves
the highest M-F1 0.83 when the threshold is 0.81. We then show the
final threshold and the highest M-F1 of every detector in the right
part of Figure 6. It can be seen that the Graph-based detectors ex-
hibit the strongest capability for recognizing new-category samples,
with each detector achieving an M-F1 above 0.8. This is because
the Graph-based detectors use the features that can better describe
software behavior and possess stronger discriminability. Moreover,
RevealDroid, Drebin and Bai’s in the category of String-based de-
tectors also have distinct advantages in identifying samples from
new malware categories. Furthermore, no detector achieves an F1
above 0.9. When the distribution of test samples differs from that of
training samples, the decision boundary learned through training
should be shifted to adapt to the new distribution. This tells us that
detectors should be continuously updated to handle new malware
category emergence.

0 . 4 0 . 6 0 . 8 1 . 0

0 . 6

0 . 7

0 . 8
M - F 1

T

0 . 8 3 0

0 . 8 1

Detector T F1

Drebin 0.59 0.871
RevealDroid 0.83 0.875
MudFlow 0.84 0.625
ALDroid 0.33 0.775
Bai’s 0.75 0.868

ImgDroid 0.99 0.762
MDMC 0.99 0.854

MaMa-fml 0.58 0.827
MaMa-pkg 0.83 0.843
Malscan 0.83 0.870

APIGraph_p 0.83 0.875
APIGraph_f 0.79 0.843

EFCG 0.81 0.830

Figure 6: Threshold (T) and F1 in recognizing new category.

F6: All types of detectors have limited ability to recognize the
samples of unseen categories. Comparatively speaking, Graph-
based and String-based detectors perform better than Image-
based detectors when new malware categories emerge.

4.4 RQ4: Performance under adversarial attacks
We utilize Evasive Detection Ratio (EDR) to assess the detectors’

capability to defend against AEs. EDR is defined as the ratio of
the number of evasive malware (𝑁𝑒𝑣𝑎𝑠𝑖𝑜𝑛) to the total number of
malware (𝑁𝑡𝑜𝑡𝑎𝑙), i.e., 𝐸𝐷𝑅 = 𝑁𝑒𝑣𝑎𝑠𝑖𝑜𝑛/𝑁𝑡𝑜𝑡𝑎𝑙 . Figure 7 illustrates
the defense capability of various detectors in resisting AE attacks.1
Obviously, the Graph-based detectors (e.g., MaMa-pkg and MaMa-
fml) are usually more robust than the String-based detectors (e.g.,
1Due to space limit, we only show the representative of the experimental results.

4.31%

4.31%

5.40%

5.40%

5.32%

5.32%

5.96%

5.96%

3.14%

3.14%

96.63%

96.63%

87.08%

92.75%

42.36%

49.02%

63.89%

92.95%

56.17%

61.99%

dfgsm_k

rfgsm_k

dfgsm_k

rfgsm_k

HIV_CW

HIV_JSMA

HIV_CW

HIV_JSMA

HIV_CW

HIV_JSMA

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Bai's

MaMa-pkg

MaMa-fml

Drebin

RevealDroid

ORI
AE

EDR

Figure 7: 𝐸𝐷𝑅 of detectors on natural samples and AEs.

Drebin and Bai’s). Our explanations are given below. The existence
of AEs is due to the imperfect decision boundary learned through
model training [37]. Note that the String-like features are not good
at accurately describing the runtime behavior of malware. Accord-
ingly, the classification boundaries learned by the String-based
detectors are not good enough. Contrarily, the Graph-based fea-
tures provide a more accurate description for malware behavior,
making the learned classification boundary closer to the ideal one.
Under this situation, it is very difficult for attackers to launch effec-
tive AE attacks. Furthermore, MaMa-pkg performs more robustly
than MaMa-fml in resisting AEs. This is because MaMa-fml uses
coarser-granularity features obtained through clustering different
package-level functions into a family-level function. Accordingly,
these features describe malware behavior more vaguely, leaving
more room for AEs.

Moreover, RevealDroid demonstrates stronger robustness com-
pared to other detectors. This can be attributed to the fact that Re-
vealDroid utilizes 454 native calls as features, while the AE attacks
(i.e., HIV_JSMA and HIV_CW) cannot change native binaries. In ad-
dition, we do not evaluate the defense of the Image-based detectors
against AEs. In fact, it is not hard to find adversarial perturbations
for a bytecode image to induce misclassification. However, it is very
challenging or even impossible to implement these perturbations
at the APK level [37][18]. That is, the feature-space perturbations
usually cannot be appropriately mapped into the problem-space
modification of the Android app’s source code.

F7: Graph-based detectors are usually more robust than String-
based under AE attacks. Furthermore, Image-based detectors are
less exposed to AE attacks, since generating realistic AEs based
on a perturbed bytecode image is too challenging to achieve.

4.5 RQ5: Efficiency
To evaluate the efficiency of each detector, we calculate the size

of feature encoding model and classification model, as well as the
average test time of each sample in Data-MD.

As shown in Table 6, only Drebin, APIGraph, and EFCG require
a feature encoding model. ImgDroid, MDMC and EFCG need a

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Cuiying Gao, Gaozhun Huang, Heng Li, Bang Wu, Yueming Wu, and Wei Yuan

Table 6: Efficiency comparison for various detectors.

Detector Feature model Classification model Testing time

Drebin 13870 KB 1169 KB 88.35s
RevealDroid ˜ 556 KB 125.21s
MudFlow ˜ 707 KB 55.43s
ALDroid ˜ 1393 KB 2.86s
Bai’s ˜ 626 KB 2.54s

ImgDroid ˜ 29284 KB 1.52s
MDMC ˜ 29282 KB 1.83s

MaMa-fml ˜ 322 KB 107.35s
MaMa-pkg ˜ 630 KB 110.42s
Malscan ˜ 372 KB 3.65s

APIGraph_p 3795 KB 554 KB 118.76s
APIGraph_f 3795 KB 556 KB 109.64s

EFCG 1.05 GB 1261 KB 6.84s

larger classification model. The Image-based detectors ImgDroid
and MDMC are the most efficient, whose average test time is only
1.52s and 1.83s, respectively. This is because that the Image-based
detectors do not require decompiling the classes.dex file, which is a
time-consuming task. The String-based detectors are generally less
efficient due to their need for parsing multiple files. RevealDroid is
particularly inefficient because it requires extra time for extracting
reflective features and native calls. The Graph-based detectors often
take a long time to build features, because decompilation and graph
construction require additional time overhead.

F8: Image-based detectors have the highest detection efficiency,
but their classification models require more storage space.
Graph-based detectors are usually the most inefficient in mal-
ware detection.

5 LESSONS
Based on the above experiments and analyses, we comprehen-

sively evaluate the studied detectors from different aspects in Figure
8. We summarize the lessons learned for Android malware detector
users and researchers below.

5.1 Lessons for users
Our suggestions for users are summarized below. 1) For malware

detection, we recommend using RevealDroid, MaMa-pkg, Bai’s and
Malscan, as they are more robust under challenging environments.
For multi-category classification, we recommend using Drebin, Re-
vealDroid, Malscan and APIGraph_p, because they have relatively
stronger capabilities in recognizing unseen malware category sam-
ples. 2) If a user aims to analyze the malicious behavior of malware,
we recommend utilizing Graph-based detectors, as they can provide
a more comprehensive description of an app’s runtime behavior.
Additionally, String-based detectors (e.g. MudFlow) may also help
to achieve this goal since they can utilize interpretable techniques to
identify the key features that facilitate a better understanding of ma-
licious behaviors. 3) For the task of large-scale malware detection,
we recommend using the Image-based detectors as the first defense
line, because their processing time is short, less than 2s for a sample
on average. To further prevent malware from evading detection,
these detectors can be used in collaboration with other tools. For ex-
ample, we can use MDMC for detection first, and then use the other
more robust tools (e.g. Malscan) to recheck the software identified

0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

C D - N D

C D - E v l

O b f u s c a t e

C L W - M C

C L W - M D

E f f i c i e n c y

 S t r i n g - b a s e d
 I m a g e - b a s e d
 G r a p h - b a s e d

0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

C D - N D

C D - E v l

O b f u s c a t e

C L W - M C

C L W - M D

E f f i c i e n c y

 A P I G r a p h _ p
 A P I G r a p h _ f
 E F C G

 M a M a - f m l
 M a M a - p k g
 M a l s c a n

0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

C D - N D

C D - E v l

O b f u s c a t e

C L W - M C

C L W - M D

E f f i c i e n c y

 I m g D r o i d
 M D M C

0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

C D - N D

C D - E v l

O b f u s c a t e

C L W - M C

C L W - M D

E f f i c i e n c y

 D r e b i n
 R e v e a l D r o i d
 M u d F l o w
 A L D r o i d
 B a i ' s

S t r i n g - b a s e d I m a g e - b a s e d

G r a p h - b a s e d A L L

C L D - M D : m a l w a r e d e t e c t i o n p e r f o r m a n c e i n i d e a l s e t t i n g
C L D - M C : m u l t i - c a t e g o r y c l a s s i f i c a t i o n p e r f o r m a n c e i n i d e a l s e t t i n g
O b f u s c a t e : p e r f o r m a n c e a g a i n s t o b f u s c a t i o n t e c h n i q u e s

C D - E v l : p e r f o r m a n c e a g a i n s t c o n c e p t
d r i f t o f s o f t w a r e e v o l u t i o n

C D - N D : p e r f o r m a n c e w h e n n e w c a t e g o r i e s e m e r g i n g

Figure 8: Comprehensive evaluation of various detectors.
as benign. 4) For the task of on-device detection, we recommend
using Malscan and Bai’s, as their classification models are more
lightweight, do not require feature embedding, and have a certain
guarantee of detection speed. In particular, we do not recommend
the EFCG detector because its feature-embedding model occupies
a large storage space. 5) Last but not least, although the current
detectors have achieved good performance under the ideal setting,
they perform unstably under challenging environments. Therefore,
we suggest combining the learning-based detectors with manual
analysis techniques in malware detection. It is also worth exploring
how to make the detectors collaborate more harmoniously with
manual analyses.

5.2 Lessons for researchers
The following suggestions may help researchers to build a more

resilient detector under challenging environments.
How to resist code obfuscation? (A) Selecting the feature source

that is less considered by most obfuscation tools. For example, more
than 95% of obfuscation techniques target classes.dex. So extracting
features from other files can help to enhance the robustness against
obfuscation. (B) Selecting the features that are stable when facing
obfuscation. For instance, extracting features directly based on class
names or function names is not recommended, since the latter can
be easily changed by obfuscation. Instead, we should give the fea-
tures richer semantic information. For the Graph-based detectors,
we can assign every node in the feature with node attributes. For
the Image-based detectors, we can highlight those meaningful byte-
codes instead of treating all bytecodes equally. (C) Constructing
multi-view features. Features possess different defense capabilities
for code obfuscation. It is difficult to count on one single feature
to defend against all obfuscation techniques [21]. Therefore, com-
bining multiple features that complement each other in resisting
obfuscation is a better choice.

How to alleviate concept drift? (A) Solely relying on features
to withstand concept drift is not advisable. In fact, concept drift

A Comprehensive Study of Learning-based Android Malware Detectors under Challenging Environments ICSE ’24, April 14–20, 2024, Lisbon, Portugal

significantly impacts all three types of detectors, particularly when
the samples used for model training are too old. (B)Amore effective
countermeasure might be to introduce a concept drift detection and
adaptation mechanism [55]. For example, model updates should be
listed on the agenda, once the detection performance is observed
to be rapidly decreasing (even if it is still satisfactory). (C) Since
early malware are likely still prevalent, model updates should not
only take into account newly emerged samples. The updated model
still needs to maintain the recognition ability for the old samples.
Incremental learning [32] can well balance model stability and
model plasticity, and hence is suitable for updating the detectors.

How to defend against AEs? Apart from traditional defense meth-
ods such as adversarial training, increasing the difficulty of launch-
ing attacks in feature space and problem space is the key to resisting
AEs. (A) In feature space, enhancing the representative capability of
features usually helps to defend against AEs. Graph-based features
are preferred over String-based features in terms of AEs defense, and
fine-grained graph-based features bring about stronger robustness
than coarse-grained ones. In addition, sophisticated feature trans-
formation can also be used to augment the robustness of features
against AEs [27]. (B) In problem space, selecting feature sources
that are difficult to modify can cause trouble for AE attackers. For
example, modifying native binaries requires advanced assembly
language skills, which is much more difficult than modifying the
classes.dex file. On the other hand, blocking the transition from
feature space attacks to problem space attacks is also important
for AEs defense. For example, it is extremely hard to accurately
translate the pixel-level perturbations on bytecode images into code
modifications on Android apps, due to the absence of precise mean-
ings associated with pixel values, making it difficult to generate
AEs in problem space.

6 THREAT TO VALIDITY
Here we discuss the threats to validity of this study.

1) Reproduction: When reproducing detectors, we refer to the
study of Daniel et al. [6] to avoid pitfalls. For example, we strictly
require that test data or other background information that is not
usually available cannot affect the training process, in order to avoid
data snooping. 2) Dataset: Due to the limit in time and resources,
we do not start from scratch when preparing the data. Instead, we
download data from publicly available datasets. We then conduct
de-duplicating, re-labeling and balancing on the data, in order to
improve their quality and make them better serve our evaluation.
Note that the label aggregation strategy may lose some interesting
true malware. In the future, we will use more advanced strategies
to label samples if they are proposed. 3) Obfuscation tool: We
select Obfuscapk [5] because it is open-source and supports many
advanced obfuscation techniques in addition to those trivial ones.
Furthermore, Obfuscapk is a new obfuscation tool. The obfuscated
samples generated by Obfuscapk have a lower likelihood of being
included in the original dataset. Moreover, we use a commercial
obfuscation tool Allatori [2] and show its experimental results in
our link [1]. It can be seen the impact of various obfuscation tools
on different detector types demonstrates similar patterns. 4) AE
attack: Up to now, almost all the AE generation algorithms are
delicately developed for a pre-determined detector. Their AEs are

difficult to fool different detectors. Hence we cannot evaluate the
detectors under the same AE attacks. Instead, we produce different
AEs for these detectors, and analyze the latter’s robustness against
their own AEs.

7 RELATEDWORK
Here we summarize the existing studies and highlight the differ-

ences between our work and them.
Literature review: Qiu et al. [38] surveyed the Androidmalware

detection with deep neural networks. Wu et al. [47] presented a
review of machine learning based Android malware static detection
technology. Tam et al. [43] reviewed the existing Android malware
analysis techniques and analyzed their performance against evolv-
ing malware. Yan et al. [52] summarized the attacks and defenses
for the learning-based malware detectors of Windows PE, Android
and PDF, etc.

Empirical study: Daoudi et al. [17] explored the reproducibility
of 5 machine learning-based Android malware detectors. TESSER-
ACT [36] proposed a set of constraints to mitigate spatial and tem-
poral biases which can inflate the performance of detectors, and
evaluated three detectors in the corresponding setting. Borja et
al. [34] constructed a unified evaluation framework and evaluated
10 detectors. Sawadogo et al. [39] investigated the impact of data
imbalance on detectors. Ma et al. [28] provided an empirical study
of learning-based PE malware family classification methods. Zhan
et al. [57] conducted an empirical study of Android’s third-party
library detection for Android apps. Alejandro et al. [23] studied the
dynamic features of Android apps released from 2011 to 2018.

In summary, the main differences between our study and exist-
ing studies include the scale and settings of experiments. 1) We
considered three types of Android malware detectors, and selected
a total of 12 detectors for performance evaluation. 2) We evaluated
the selected detectors under three challenging environments, i.e.,
code obfuscation, concept drift, and AEs. These settings are realis-
tic and will be encountered in the real world. Through extensive
experiments, we aim to understand how these challenging factors
impact different types of detectors, reveal the reasons behind the
strengths and weaknesses of various detectors, and provide practi-
cal suggestions from the perspectives of both users and developers.

8 CONCLUSION
Recently, there has been growing concern over the performance

of learning-based Android malware detectors under challenging
environments. In this paper, we classify the existing detectors into
three categories (i.e., String-based, Image-based and Graph-based),
and conduct a comprehensive evaluation for them in the scenarios
of code obfuscation, concept drift and adversarial attack. Through
extensive experiments and deep analyses, we evaluate these detec-
tors’ performance and figure out the reasons behind their diverse
performance. We also sum up the lessons and offer practical sug-
gestions for both detector users and researchers. We hope our work
can provide valuable assistance to the security community.

ACKNOWLEDGMENTS
This work is supported in part by the Fundamental Research

Funds for the Central Universities, HUST: 2022JYCXJJ035.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Cuiying Gao, Gaozhun Huang, Heng Li, Bang Wu, Yueming Wu, and Wei Yuan

REFERENCES
[1] 2023. https://github.com/Maruko912/AMDs.
[2] 2023. Allatori. https://allatori.com/.
[3] Abdullah Al-Dujaili, Alex Huang, Erik Hemberg, and Una-May O’Reilly. 2018.

Adversarial deep learning for robust detection of binary encoded malware. In
Proceedings of the 2018 IEEE Security and Privacy Workshops (SPW). IEEE, 76–82.

[4] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
AndroZoo: Collecting Millions of Android Apps for the Research Community. In
Proceedings of the 13th International Conference on Mining Software Repositories
(MSR) (Austin, Texas). New York, NY, USA, 468–471.

[5] Simone Aonzo, Gabriel Claudiu Georgiu, Luca Verderame, and Alessio Merlo.
2020. Obfuscapk: An open-source black-box obfuscation tool for Android apps.
SoftwareX 11 (2020), 100403.

[6] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio
Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. 2022.
Dos and don’ts of machine learning in computer security. In Proceedings of the
USENIX Security Symposium.

[7] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,
and CERT Siemens. 2014. Drebin: Effective and explainable detection of android
malware in your pocket. In Proceedings of Symposium on Network and Distributed
System Security (NDSS), Vol. 14. 23–26.

[8] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. Pscout:
analyzing the android permission specification. In Proceedings of the 2012 ACM
conference on Computer and communications security. 217–228.

[9] AV-TEST. 2022. Total amount of malware and PUA under Android. https:
//portal.av-atlas.org/malware/statistics.

[10] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven
Arzt, Siegfried Rasthofer, and Eric Bodden. 2015. Mining Apps for Abnormal Us-
age of Sensitive Data. In Proceedings of the 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering (ICSE), Vol. 1. 426–436.

[11] Yude Bai, Zhenchang Xing, Xiaohong Li, Zhiyong Feng, and Duoyuan Ma. 2020.
Unsuccessful Story about Few Shot Malware Family Classification and Siamese
Network to the Rescue. In Proceedings of the ACM/IEEE 42nd International Con-
ference on Software Engineering (ICSE) (ICSE ’20). 1560–1571.

[12] Yude Bai, Zhenchang Xing, Duoyuan Ma, Xiaohong Li, and Zhiyong Feng. 2021.
Comparative analysis of feature representations and machine learning methods
in android family classification. Computer Networks 184 (2021), 107639.

[13] Minghui Cai, Yuan Jiang, Cuiying Gao, Heng Li, and Wei Yuan. 2021. Learning
features from enhanced function call graphs for Android malware detection.
Neurocomputing 423 (2021), 301–307.

[14] CL Philip Chen and Zhulin Liu. 2017. Broad learning system: An effective and
efficient incremental learning system without the need for deep architecture.
IEEE transactions on neural networks and learning systems 29, 1 (2017), 10–24.

[15] Xiao Chen, Chaoran Li, Derui Wang, Sheng Wen, Jun Zhang, Surya Nepal, Yang
Xiang, and Kui Ren. 2019. Android HIV: A study of repackaging malware for
evading machine-learning detection. IEEE Transactions on Information Forensics
and Security 15 (2019), 987–1001.

[16] Davide Chicco and Giuseppe Jurman. 2020. The advantages of the Matthews
correlation coefficient (MCC) over F1 score and accuracy in binary classification
evaluation. BMC Genomics 21 (01 2020).

[17] Nadia Daoudi, Kevin Allix, Tegawendé F Bissyandé, and Jacques Klein. 2021.
Lessons learnt on reproducibility in machine learning based Android malware
detection. Empirical Software Engineering 26, 4 (2021), 1–53.

[18] Asim Darwaish, Farid Naït-Abdesselam, Chafiq Titouna, and Sumera Sattar. 2021.
Robustness of Image-based Android Malware Detection Under Adversarial At-
tacks. In Proceedings of the 2021 IEEE International Conference on Communications
(ICC). 1–6.

[19] DashO. 2022. DashO. https://www.preemptive.com/products/dasho/overview.
[20] Ming Fan, Jun Liu, Xiapu Luo, Kai Chen, Zhenzhou Tian, Qinghua Zheng, and

Ting Liu. 2018. Android malware familial classification and representative sam-
ple selection via frequent subgraph analysis. IEEE Transactions on Information
Forensics and Security 13, 8 (2018), 1890–1905.

[21] Cuiying Gao, Minghui Cai, Shuijun Yin, Gaozhun Huang, Heng Li, Wei Yuan,
and Xiapu Luo. 2023. Obfuscation-Resilient Android Malware Analysis Based
on Complementary Features. IEEE Transactions on Information Forensics and
Security 18 (2023), 5056–5068.

[22] J. Garcia, M. Hammad, and Sam Malek. 2017. Lightweight, Obfuscation-Resilient
Detection and Family Identification of Android Malware. In Transactions on
Software Engineering and Methodology (TOSEM).

[23] Alejandro Guerra-Manzanares, Marcin Luckner, and Hayretdin Bahsi. 2022. Con-
cept Drift and Cross-Device Behavior: Challenges and Implications for Effective
Android Malware Detection. Computers & Security (2022), 102757.

[24] Mahmoud Hammad, Joshua Garcia, and SamMalek. 2018. A large-scale empirical
study on the effects of code obfuscations on Android apps and anti-malware prod-
ucts. In Proceedings of the 40th International Conference on Software Engineering
(ICSE). 421–431.

[25] Heng Li, Zhang Cheng, BangWu, Liheng Yuan, Gao Cuiying,Wei Yuan, and Xiapu
Luo. 2023. Black-box Adversarial Example Attack towards FCG Based Android

Malware Detection under Incomplete Feature Information. In Proceedings of the
USENIX Security Symposium.

[26] Heng Li, ShiYao Zhou, Wei Yuan, Jiahuan Li, and Henry Leung. 2020. Adversarial-
Example Attacks Toward Android Malware Detection System. IEEE Systems
Journal 14, 1 (2020), 653–656.

[27] Heng Li, Shiyao Zhou, Wei Yuan, Xiapu Luo, Cuiying Gao, and Shuiyan Chen.
2021. Robust android malware detection against adversarial example attacks. In
Proceedings of the Web Conference 2021. 3603–3612.

[28] Yixuan Ma, Shuang Liu, Jiajun Jiang, Guanhong Chen, and Keqiu Li. 2021. A com-
prehensive study on learning-based PE malware family classification methods. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering. 1314–1325.

[29] Samaneh Mahdavifar, Dima Alhadidi, Ali Ghorbani, et al. 2022. Effective and
efficient hybrid android malware classification using pseudo-label stacked auto-
encoder. J. Netw. Syst. Manag. 30, 1 (2022), 1–34.

[30] Samaneh Mahdavifar, Andi Fitriah Abdul Kadir, and et al. 2020. Dynamic an-
droid malware category classification using semi-supervised deep learning. In
Proceedings of DASC/PiCom/CBDCom/CyberSciTech.

[31] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon J. Ross, and Gianluca Stringhini. 2017. MaMaDroid: Detecting
Android Malware by Building Markov Chains of Behavioral Models. In Proceed-
ings of the 24th Annual Network and Distributed System Security Symposium, NDSS
2017, San Diego, California, USA, February 26 - March 1, 2017.

[32] Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D. Bag-
danov, and Joost van de Weijer. 2022. Class-Incremental Learning: Survey and
Performance Evaluation on Image Classification. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2022), 1–20.

[33] Frank J Massey Jr. 1951. The Kolmogorov-Smirnov test for goodness of fit. Journal
of the American statistical Association 46, 253 (1951), 68–78.

[34] Borja Molina-Coronado, Usue Mori, Alexander Mendiburu, and Jose Miguel-
Alonso. 2023. Towards a fair comparison and realistic evaluation framework
of android malware detectors based on static analysis and machine learning.
Computers & Security 124 (2023), 102996.

[35] Ali Muzaffar, Hani Ragab Hassen, Michael A. Lones, and Hind Zantout. 2022. An
in-depth review of machine learning based Android malware detection. Comput-
ers & Security 121 (2022), 102833.

[36] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and
Lorenzo Cavallaro. 2019. TESSERACT: Eliminating Experimental Bias in Malware
Classification across Space and Time. In Proceedings of the 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara, CA, 729–746.

[37] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro.
2020. Intriguing Properties of Adversarial ML Attacks in the Problem Space. In
Proceedings of the 2020 IEEE Symposium on Security and Privacy (S&P). 1332–1349.

[38] Junyang Qiu, Jun Zhang, Wei Luo, Lei Pan, Surya Nepal, and Yang Xiang. 2020. A
survey of android malware detection with deep neural models. ACM Computing
Surveys (CSUR) 53, 6 (2020), 1–36.

[39] Zakaria Sawadogo, Gervais Mendy, Jean Marie Dembele, and Samuel Ouya. 2022.
Android malware detection: Investigating the impact of imbalanced data-sets
on the performance of machine learning models.. In Proceedings of the 24th
International Conference on Advanced Communication Technology (ICACT). IEEE,
435–441.

[40] Siegfried Rasthofer Steven Arzt and et al. 2014. FlowDroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android apps.
In Proceedings of the 2014 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI) (Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI)). Association for
Computing Machinery.

[41] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks.
In Proceedings of the 2nd International Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings.

[42] Kimberly Tam, Aristide Fattori, Salahuddin Khan, and Lorenzo Cavallaro. 2015.
Copperdroid: Automatic reconstruction of android malware behaviors. In Pro-
ceedings of the NDSS Symposium 2015. 1–15.

[43] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Lorenzo Caval-
laro. 2017. The evolution of android malware and android analysis techniques.
ACM Computing Surveys (CSUR) 49, 4 (2017), 1–41.

[44] Virustotal. 2022. Virustotal. https://www.virustotal.com/.
[45] Sinan Wang, Yibo Wang, Xian Zhan, Ying Wang, Yepang Liu, Xiapu Luo, and

Shing-Chi Cheung. 2022. APER: Evolution-Aware Runtime PermissionMisuse De-
tection for Android Apps. In Proceedings of the 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE). 125–137.

[46] MaxWelling and Thomas N Kipf. 2016. Semi-supervised classification with graph
convolutional networks. In Proceedings of the 2017 International Conference on
Learning Representations (ICLR).

[47] Qing Wu, Xueling Zhu, and Bo Liu. 2021. A survey of android malware static
detection technology based on machine learning. Mobile Information Systems
2021 (2021).

https://github.com/Maruko912/AMDs
https://allatori.com/
https://portal.av-atlas.org/malware/statistics
https://portal.av-atlas.org/malware/statistics
https://www.preemptive.com/products/dasho/overview
https://www.virustotal.com/

A Comprehensive Study of Learning-based Android Malware Detectors under Challenging Environments ICSE ’24, April 14–20, 2024, Lisbon, Portugal

[48] Yueming Wu, Shihan Dou, Deqing Zou, Wei Yang, Weizhong Qiang, and Hai Jin.
2022. Contrastive Learning for Robust Android Malware Familial Classification.
IEEE Transactions on Dependable and Secure Computing (2022).

[49] Yueming Wu, Xiaodi Li, Deqing Zou, Wei Yang, Xin Zhang, and Hai Jin. 2019.
MalScan: Fast Market-Wide Mobile Malware Scanning by Social-Network Cen-
trality Analysis. In Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 139–150.

[50] Yueming Wu, Deqing Zou, Wei Yang, Xiang Li, and Hai Jin. 2021. Homdroid:
detecting android covert malware by social-network homophily analysis. In
Proceedings of the 30th acm sigsoft international symposium on software testing
and analysis (ISSTA). 216–229.

[51] Xusheng Xiao and Shao Yang. 2019. An image-inspired and cnn-based android
malware detection approach. In Proceedings of the 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 1259–1261.

[52] Senming Yan, Jing Ren, Wei Wang, Limin Sun, Wei Zhang, and Quan Yu. 2023. A
Survey of Adversarial Attack and Defense Methods for Malware Classification in
Cyber Security. IEEE Communications Surveys & Tutorials 25, 1 (2023), 467–496.

[53] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, and G. Wang. 2021.
CADE: Detecting and explaining concept drift samples for security applications.
In Proceedings of the USENIX Security Symposium.

[54] Baoguo Yuan, JunfengWang, Dong Liu, Wen Guo, PengWu, and Xuhua Bao. 2020.
Byte-level malware classification based on markov images and deep learning.
Computers & Security 92 (2020), 101740.

[55] Liheng Yuan, Heng Li, Beihao Xia, Cuiying Gao, Mingyue Liu, Wei Yuan, and
Xinge You. 2022. Recent Advances in Concept Drift Adaptation Methods for
Deep Learning. In Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, IJCAI-22. 5654–5661. Survey Track.

[56] Wei Yuan, Yuan Jiang, Heng Li, and Minghui Cai. 2019. A Lightweight On-Device
Detection Method for Android Malware. IEEE Transactions on Systems, Man, and

Cybernetics: Systems (2019).
[57] Xian Zhan, Lingling Fan, Tianming Liu, Sen Chen, Li Li, Haoyu Wang, Yifei

Xu, Xiapu Luo, and Yang Liu. 2020. Automated third-party library detection for
android applications: Are we there yet?. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 919–930.

[58] Jiliang Zhang and Chen Li. 2020. Adversarial Examples: Opportunities and
Challenges. IEEE Transactions on Neural Networks and Learning Systems 31, 7
(2020), 2578–2593.

[59] Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, and Min Yang. 2020.
Enhancing State-of-the-art Classifiers with API Semantics to Detect Evolved
Android Malware. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security (CCS).

[60] Kaifa Zhao, Hao Zhou, Yulin Zhu, Xian Zhan, Kai Zhou, Jianfeng Li, Le Yu, Wei
Yuan, and Xiapu Luo. 2021. Structural Attack against Graph Based Android Mal-
ware Detection. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’21). New York, NY, USA, 3218–3235.

[61] Yanjie Zhao, Li Li, Haoyu Wang, Haipeng Cai, Tegawendé F Bissyandé, Jacques
Klein, and John Grundy. 2021. On the impact of sample duplication in machine-
learning-based android malware detection. ACM Transactions on Software Engi-
neering and Methodology (TOSEM) 30, 3 (2021), 1–38.

[62] Shuofei Zhu, Jianjun Shi, Limin Yang, Boqin Qin, Ziyi Zhang, Linhai Song, and
Gang Wang. 2020. Measuring and Modeling the Label Dynamics of Online Anti-
Malware Engines. In Proceedings of the 29th USENIX Security Symposium (USENIX
Security 20). 2361–2378.

[63] Deqing Zou, YuemingWu, Siru Yang, Anki Chauhan, Wei Yang, Jiangying Zhong,
Shihan Dou, and Hai Jin. 2021. IntDroid: Android malware detection based on API
intimacy analysis. ACM Transactions on Software Engineering and Methodology
(TOSEM) 30, 3 (2021), 1–32.

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Learning-based Android malware detector
	2.2 Code obfuscation
	2.3 Concept drift
	2.4 Adversarial examples

	3 Evaluation Framework Design
	3.1 Detectors selection
	3.2 Research questions
	3.3 Dataset and metrics
	3.4 Experimental setup

	4 Evaluation
	4.1 RQ1: Performance under the ideal setting
	4.2 RQ2: Performance under code obfuscation
	4.3 RQ3: Performance under concept drift
	4.4 RQ4: Performance under adversarial attacks
	4.5 RQ5: Efficiency

	5 Lessons
	5.1 Lessons for users
	5.2 Lessons for researchers

	6 Threat to Validity
	7 Related Work
	8 Conclusion
	References

