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ABSTRACT
Ponzi schemes, a form of scam, have been discovered in Ethereum
smart contracts in recent years, causing massive financial losses.
Rule-based detection approaches rely on pre-defined rules with lim-
ited capabilities and domain knowledge dependency. Additionally,
using static information like opcodes and transactions for machine
learning models fails to effectively characterize the Ponzi contracts,
resulting in poor reliability and interpretability.

In this paper, we propose PonziGuard, an efficient Ponzi scheme
detection approach based on contract runtime behavior. Inspired by
the observation that a contract’s runtime behavior is more effective
in disguising Ponzi contracts from the innocent contracts, Ponzi-
Guard establishes a comprehensive graph representation called
contract runtime behavior graph (CRBG), to accurately depict the
behavior of Ponzi contracts. Furthermore, it formulates the detec-
tion process as a graph classification task, enhancing its overall
effectiveness. We conducted comparative experiments on a ground-
truth dataset and applied PonziGuard to Ethereum Mainnet. The
results show that PonziGuard outperforms the current state-of-the-
art approaches and is also effective in open environments. Using
PonziGuard, we have identified 805 Ponzi contracts on Ethereum
Mainnet, which have resulted in an estimated economic loss of
281,700 Ether or approximately $500 million USD.
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1 INTRODUCTION
With the popularity of Ethereum and the anonymity it provides, var-
ious scams have been discovered to implement themselves through
smart contracts [36]. Ponzi schemes are one of the typical scams
found in Ethereum smart contracts [3, 5], namely Ponzi contracts,
disguising as investment programs to lure users under the promise
of high profits while users gain profits only if the investments made
by subsequent users join the Ponzi schemes. Ponzi schemes have
been one of the biggest consumers of gas on Ethereum, heightening
already bad congestion and jacking up transaction fees [31].

Several approaches have been proposed [3, 6, 7, 13–15, 21, 25, 35,
45] to detect Ponzi contracts on Ethereum. Rule-based approaches [3,
6, 35] require domain knowledge on Ponzi schemes and can hardly
cover all possible scenarios based on the existing known Ponzi con-
tracts, which limits their capability to detect Ponzi contracts that
fall outside the scope of the rules. Other detection approaches use
static information such as opcode frequency and transactions for
machine learning models to improve detection capabilities[7, 13–
15, 21, 25, 45]. However, this static information has a low correlation
with Ponzi schemes themselves, and these approaches fail to effec-
tively characterize the Ponzi contracts, resulting in poor reliability
and interpretability. For instance, Figure 1 shows the frequency dis-
tributions of some most frequently used operations in some Ponzi
contracts and non-Ponzi contracts. These operations are predomi-
nantly stack operations and do not capture the characteristics of
Ponzi contracts. The Kullback-Leibler Divergence (KL divergence)
calculated from Figure 1 measures the difference between two fre-
quency distributions. It can be concluded from the KL divergence
that the distributions of opcode frequency exhibit low differences
between Ponzi and non-Ponzi contracts, and no substantial similar-
ities between different Ponzi contracts by comparison. Moreover,
those approaches utilizing Ethereum transactions cannot detect
0-day Ponzi contracts, i.e., having none real transactions.

https://doi.org/10.1145/3597503.3623318
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Figure 1: Opcode FrequencyDistributions. TheKL divergence
between Ponzi and non-Ponzi contracts ranges from 0.011
to 0.018, while the KL divergence between different Ponzi
contracts ranges from 0.012 to 0.016.

To address this gap, we delved deeper into the behaviors of Ponzi
contracts at runtime and found that the contract runtime informa-
tion provides more valuable insights into the unique characteristics
of Ponzi contracts. We will discuss this insight in more detail in
Section 2. Motivated by this observation, we propose a comprehen-
sive graph representation called contract runtime behavior graph
(CRBG) to characterize the runtime behaviors of Ponzi contracts.

In this paper, we propose PonziGuard, an effective Ponzi scheme
detection approach based onCRBG. Specifically, we construct CRBG
based on the runtime information of smart contratcs and empower
Graph Neural Networks (GNNs) for CRBG analysis. We formu-
late the detection of Ponzi contracts as a graph classification task.
We have experimentally validated the effectiveness of CRBG and
conducted comparative experiments on a ground-truth dataset to
evaluate the performance of PonziGuard. We further applied Ponzi-
Guard to Ethereum Mainnet to evaluate the effectiveness of our
approach in open environments. The dataset and experimental re-
sults are publicly available online1. In summary, this paper makes
the following contributions.

• We propose PonziGuard, an efficient approach for detecting
Ponzi schemes on Ethereum. It does not require any domain
knowledge on Ponzi schemes, and on-chain transaction data. It
can pre-identify Ponzi contracts before the transactions occur.
• We introduce CRBG, a comprehensive graph representation for
effectively characterizing the behaviors of Ponzi contracts . We
model the detection of Ponzi contracts as a graph classification
task and prove that CRBG is effective in disguising the Ponzi
contracts from the innocent contracts.
• Experimental results show that PonziGuard outperforms the
current state-of-the-art approaches on the ground-truth dataset
and is also effective in open environments. We have found 805
Ponzi contracts using PonziGuard out of 14,000,000 Ethereum
Mainnet blocks which have resulted in an estimated economic
loss of 281,700 Ether or approximately $500 million USD.

1https://github.com/PonziDetection/PonziGuard

2 BACKGROUND AND INSIGHT
In this section, we introduce Ethereum smart contracts, explore
the typical behavioral characteristics of Ponzi schemes, and outline
objective criteria for identifying them. Additionally, we discuss our
insight into utilizing the contract runtime behavior graph (CRBG)
to detect Ponzi schemes.

2.1 Ethereum Smart Contracts
Ethereum smart contracts are programs running on top of Ethereum.
They can be written in several programming languages, includ-
ing Solidity, Viper, and Serpent. To deploy smart contracts on the
blockchain, they need to be compiled into bytecode and then sub-
mitted to the blockchain with transactions. Once deployed on-chain,
the contracts become immutable and the implementation of their
logic relies on message calls from transactions. When invoked by
a transaction, contracts will be executed in Ethereum Virtual Ma-
chine (EVM), a stack-based architecture [41]. There are three areas
to store data in EVM:

• Stack: The stack is an object for basic stack operations in EVM.
Data is pushed or popped from the top of the stack through
instructions.
• Memory: The memory is a simple word-addressed byte array.
It is used for temporary data storage, transfer of arguments and
return values, and code copying [41]. The data in the memory
comes from the stack or the external environments.
• Storage: Unlike the memory and stack that are volatile, the stor-
age is non-volatile and maintained as part of the smart contract
state. Variables in the storage region are called state variables,
and they are persistent variables stored in the form of key-value
pairs. Transactions can update the state variables of smart con-
tracts by invoking the execution of contracts in EVM.

2.2 Ponzi Schemes
A Ponzi scheme is an investment fraud that involves the payment
of purported returns to existing investors from funds contributed
by new investors [34]. It is a classic fraud that originated at least
150 years ago and now appears on blockchains [3]. Leveraging
smart contracts, Ponzi schemes become more threatening and
stealthy than ever and have grabbed a huge amount of profits
on the blockchain [5].

Code Example. Listing 1 shows a code snippet of a typical Ponzi
contract. The snippet comprises two functions, namely enter()
and pay(), where enter() is responsible for receiving Ether from
investors and pay() handles the redistribution of Ether. This con-
tract promises investors very high return rates (Line 13) in exchange
for their initial investment. The promised returns are paid out of
new investments to attract additional investors until the scammers
close up their scam and abscond with the illicit profits. Without
legitimate earnings, a Ponzi scheme needs a steady stream of new
investors to keep it running, otherwise, it will inevitably collapse
and let the vast majority of participants bear the loss [2].

Criteria. Based on some previous studies [3, 6, 34] and our
analysis of known Ponzi contracts, we have developed explicit
criteria for objectively identifying Ponzi contracts in our study. Our
proposed criteria include:
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1 function enter(){
2 if(msg.value <1/100 ether){
3 msg.sender.send(msg.value);
4 return ;}
5 uint amount = msg.value;
6 uint idx = persons.length;
7 persons.length += 1;
8 persons[idx]. etherAddress = msg.sender;
9 persons[idx]. amount = amount ;}
10
11 function pay(){
12 while(this.balance > persons[payoutIdx ]. amount /

100 * 500){
13 uint transactionAmount = persons[payoutIdx ].

amount / 100 * 500;
14 persons[payoutIdx ]. etherAddress.send(

transactionAmount);
15 payoutIdx += 1;} }

Listing 1: A code snippet of Ponzi contract.

CALLVALUE
LT

JUMPI

CALLER
SSTORE
SSTORE

(a) (b)

SLOAD
BALANCE

GT
JUMPI

SLOAD
CALL

investor

JUMP

investment

(c)

TIMESTANP
SLOAD
EQ

JUMPI

SLOAD
CALLgambler

number

Figure 2: Contract Runtime Behaviors. (a) and (b) are from
the Ponzi contract in Listing 1, and (c) is from a gambling
contract (non-Ponzi contract).

• A Ponzi contract must incorporate at least two explicit behav-
ioral logics: investment and reward. This criterion excludes con-
tracts that receive cryptocurrency but provide users with assets
through external markets such as real-world trades or auctions
that utilize cryptocurrency for payments.
• The assets of a Ponzi contract must come from a multitude of
investors rather than a specific source. This means that Ponzi
contracts have no sources of income other than attracting invest-
ments. This criterion excludes contracts specifically designed to
fulfill certain functions, such as enterprises distributing incen-
tives to employees.
• In a Ponzi contract, all the investors are promised rewards that
are typically expected to exceed their initial investment, al-
though the implementation of these rewards is contingent upon
attracting further investments. In other words, as long as there
are constant new investments, everyone can theoretically reap
the rewards. This criterion excludes the contracts that are likely
to be mistaken for Ponzi contracts, such as gambling and puzzle
contracts. In such contracts, not all users are promised rewards
as they would be in a Ponzi contract. (There are always losers
in gambling or puzzle games.)

2.3 Contract Behaviors and Our Insight
Through our proposed criteria, we can observe that the most crucial
distinction between Ponzi contracts and benign contracts lies in
their behavioral characteristics, such as the investment and reward
logics and the flow of Ether, rather than specific transaction or
instruction-level statistics. Therefore, in this section, we explore
the contract runtime behaviors, trying to find an effective represen-
tation of these behaviors.

We invoke the smart contracts, gather their runtime informa-
tion, and construct graphs based on this information, as depicted
in Figure 2. It is important to note that the graphs in Figure 2
have been intentionally simplified to highlight the core logic of
the contracts for the sake of clarity. Figure 2(a) depicts the invest-
ment behavior of the enter() function within the Ponzi contract
shown in Listing 1. This contract first utilizes the CALLVALUE and
LT operations to compare the Ether amount provided by investors
(corresponding to Line 2 in Listing 1), and then utilizes SSTORE
to store the investment amount and the address of the investors
(Line 8 and Line 9). As it only relies on the comparison of the in-
vestment amount as the condition for receiving Ether, the source
of Ether for the contract is not restricted to a specific address but
encompasses all investors, which aligns with our second criterion
for Ponzi contracts. Figure 2(b) depicts the reward behavior of the
pay() function within the Ponzi contract shown in Listing 1. It first
uses SLOAD to load the investment amount of the investor and cal-
culates the promised reward (corresponding to Line 12 in Listing 1).
If the contract balance is deemed sufficient to cover the reward,
as determined through the comparison using BALANCE and GT, it
proceeds to load the investor’s address and completes the transfer
(Line 14). Since this reward process iterates in a loop where the
only condition for transferring Ether to investors is a sufficient
contract balance, it can be inferred that every investor can poten-
tially receive a reward as long as there is a continuous influx of
investors, which aligns with our third criterion. The behaviors in
Figure 2(a) and Figure 2(b) combined also satisfy our first criterion
for Ponzi contracts. For comparison, consider Figure 2(c), which
represents the reward behavior of a gambling contract2. In this case,
the contract only rewards the gambler whose pre-selected number
precisely matches the current timestamp. While this gambling con-
tract fulfills the first and second criteria, it falls short of meeting
our third criterion for Ponzi contracts.

In conclusion, these graphs depict the behaviors of the Ponzi
contract as reflected in its source code and fulfill the criteria we
have proposed, distinguishing it from benign contracts. This demon-
strates that the graphs we constructed have the capability to effec-
tively reveal the distinctive behavioral traits of Ponzi contracts. We
refer to these graphs as contract runtime behavior graphs (CRBG).
The illustrated graphs in Figure 2 serve as a preliminary illustration
for clarity, while a more comprehensive description of CRBG can
be found in Section 3.4.

3 PONZIGUARD
We first give an overview of PonziGuard. Then, we describe each
step in detail.

20x4f9048d95616dbf7acc16fc4179f5ac6ee37bce6
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Figure 3: Overview of PonziGuard.

3.1 Overview
As shown in Figure 3, PonziGuard takes the smart contract as in-
put and collects contract runtime information. Then, PonziGuard
constructs a raw graph to depict the contract runtime behaviors.
Next, PonziGuard preprocesses the raw graphs to construct the
CRBG, which is better suited for model training due to improved
node embeddings and more comprehensive behavioral informa-
tion. Finally, PonziGuard trains a graph neural network using the
CRBG, modeling the identification of Ponzi contracts as a graph
classification task.

3.2 Runtime Information Collection
In order to obtain detailed insights into the contract’s behavior,
PonziGuard compiles the contract, generates transactions to invoke
it, and then performs dynamic taint analysis to collect the contract
runtime information.

Compilation and Fuzzing. We use solc [10] as the compiler to
get the contract bytecode and ABI (Application Binary Interface).
We select solc versions in descending order to find a compatible ver-
sion. To invoke the contract, we employ the fuzzing [17] technique
to generate transaction sequences for each contract. In order to
trigger the behavior of the Ponzi contract with a higher probability,
specific preferences are configured within the fuzzer. As is shown
in Algorithm 1, given a contract C as input, the fuzzer first gets all
the function ABI from the compiler (Line 1) and then generates the
transaction sequences in the loop (Lines 3-16). During the genera-
tion loop, the fuzzer applies priority rules to sort the ABI (Line 6).
Payable functions (i.e., functions capable of receiving Ether) and
functions with names containing strings such as "enter" or "deposit"
are given higher priority. The selected ABI is analyzed to gener-
ate transaction elements, such as function arguments, Ether, and
caller accounts (Line 7). To generate function arguments, the fuzzer
randomly selects values within the valid input range for fixed data
types, such as uint256, while for non-fixed data types like string,
it first determines a positive number as the data length and then
generates an input of that length. Regarding the Ether, we use a
continuously increasing flow of Ether attached to transactions to
facilitate the activation of specific behaviors of Ponzi contracts,
such as investment and reward. Afterwards, the fuzzer integrates
the transaction elements to generate a valid transaction, which is
then added to the transaction sequence (Lines 8-9). If the transac-
tion sequence successfully triggers the contract to receive and send

Algorithm 1: Transaction Sequences Generation.
Input :Contract C

1: ABI_Pool← GetABIFromCompiler (C)
2: g← 0 #The number of generated transaction sequences
3: while g < MAX do
4: Txs← []
5: while Txs.length < ABI_Pool.length do
6: ABI← SelectByPriority (ABI_Pool, Txs)
7: elements← Analyze (ABI, g)
8: Tx← Generate (ABI, elements)
9: Txs← Add (Tx, Txs)

10: end
11: res← Run (C, Txs)
12: if ReceiveEth (res) AND SendEth (res) then
13: break
14: end
15: g← g + 1
16: end

Ether outward (Line 12), or if the number of generated transaction
sequences reaches the predefined limit (i.e., MAX) (Line 3), we stop
invoking the contract.

It is worth noting that the fuzzer directly interacts with an
independent instrumented EVM instead of a private Ethereum
blockchain. The efficiency of contract execution on the independent
EVM far surpasses that on the complete private chain due to the
elimination of transaction packaging and block mining.

Dynamic Taint Analysis. Dynamic taint analysis is a popular
technique to analyze the data flow in programming [33]. We have
designed a taint engine for EVM to perform dynamic taint analysis
and gather runtime details of smart contracts.

Sources and Sinks: As shown in Table 1, we have selected some
operations as taint sources to introduce taint data. These opera-
tions will push some external data into the stack or memory, such
as CALLER, CALLVALUE, CALLDATALOAD, CALLDATACOPY, which are
related to the transaction sender and arguments, and TIMESTAMP,
BLOCKHASH, which are related to the blockchain environment. In
addition, we also consider some operations related to the contract it-
self, such as BALANCE and ADDRESS. Data derived from these sources
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Table 1: Taint Sources and Sinks.

Sources Opcode Type

CALLVALUE/CALLDATASIZE/
CALLER/ORIGIN/
CALLDATALOAD/CALLDATACOPY

Transaction Related

TIMESTAMP/BLOCKHASH Blockchain Environment
BALANCE/ADDRESS Contract Related

Sinks Opcode Type

EQ/LT/SLT/GT/SGT Comparison
MSTORE/MSTORE8/MLOAD Memory Related
SSTORE/SLOAD Storage Related
CALL/CALLCODE/
DELEGATECALL/STATICCALL Call

JUMPI Jump

is marked as tainted, while other data is marked as untainted. Re-
garding taint sinks, we select some meaningful operations as the
location to check the flow of taint data. These operations either
take taint data as their arguments (e.g., GT, CALL and SSTORE), or
load taint data and push it into the stack (e.g., MLOAD and SLOAD).

Taint Propagation: To achieve the taint propagation, we imple-
ment the taint engine that encompasses the components such as
a taint stack, a taint memory, and a taint storage. Each slot of the
taint stack contains a taint that marks the corresponding slot in the
EVM stack. Since the EVMmemory is a byte array, each taint in the
taint memory is responsible for a byte in the EVM memory. Both
the taint stack and taint memory are volatile regions that are freed
and allocated at the start of each new transaction. In contrast, the
EVM storage is non-volatile and stores state variables in key-value
pairs. In these key-value pairs, a 32-byte address calculated from
the state variable is stored as the key, and the state variable is stored
as the value. We maintain the taint storage in the same structure,
with the address of the state variable as the key and the taint as the
value. As storage is non-volatile, the taint storage is kept until all
transactions are completed, as part of the Ethereum world state. In
general, when one operand of an arithmetic operation is tainted,
the result of the operation is also tainted regardless of the other
operands. The implementation of the taint engine enables us to
capture and trace the data flow throughout the contract execution.

3.3 Feature Extraction
We gather the information obtained in the contract execution and
construct a raw graph that integrates the control flow and data flow
of the contract runtime. The nodes of the graph are the operations
executed during runtime, and we add control flow and data flow
edges as the graph edges. The control flow edges are categorized
into six types, with the most common type being the adjacent edge.
This edge connects two operations whose program counters differ
by only 1, indicating that they are executed in a successive manner..
The other types of control flow edges include the jump edge, which
connects JUMP(I) and the operation executed after the jump, as
well as the call, return, and creation edges that similarly connect
the corresponding operation (e.g., CALL, RETURN, CREATE) and its
successor. Regarding the data flow edges, we follow the principle
of adding edges from taint sources to taint sinks, representing the

LT

JUMPI

SSTORE

CALLER

SSTORE

CALL-
VALUE

CALL-
VALUE

SLOAD

SSTORE

enter() pay()

SLOAD

BALANCE

SLOAD

GT

JUMPI

SLOAD

SLOAD

SLOAD

SLOAD

CALL

SLOAD

SSTORE

Data Flow EdgeControl Flow Edge Embedded Node
Node (Sink)

Node (Source)

(a) Raw Graph (b) CRBG

Figure 4: CRBG Construction. (a) shows the raw graphs from
feature extraction, each graph corresponds to a contract in-
voking. (b) is the CRBG with better node embeddings and
more comprehensive runtime information. We simplify the
graphs by keeping only the nodes representing the taint
sources and sinks that capture the main logic of the func-
tions for the convenience of display.

propagation of taint data. There are eight kinds of data flow edges
according to the taint sources in Table 1.

Figure 4(a) shows examples of the output graphs from our feature
extraction stage. The two graphs presented in Figure 4(a) are the
result of invoking enter() and pay() within the contract shown
in Listing 1. For the sake of clarity, only the nodes representing the
taint sources and sinks that capture the main logic of the functions
are included in these simplified graphs shown in Figure 4(a).

3.4 CRBG Construction
The raw graph obtained from the feature extraction stage may not
be suitable for training an effective model as described below.

Independent Graphs and Incomplete Data Flow: As each
transaction can invoke the contract and generate a graph in our
previous steps, a contract with multiple functions may correspond
to multiple graphs as shown in Figure 4(a). However, an individual
graph may not be sufficient to fully capture the behavior of the
contract. For instance, in Figure 4(a), each graph only depicts a
single stage of the contract (i.e., the investment stage for enter()
and the reward stage for pay()), and neither of these graphs alone
can conclusively determine that it is a Ponzi contract. Moreover,
the data flow of the contract is isolated among graphs as depicted
in Figure 4(a). Since smart contracts have persistent variables, there
may also be data flow across transactions, which cannot be captured
by individual graphs.
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Table 2: Introduction of JUMPI.

Value Mnemonic 𝛿 𝛼 Description

0x57 JUMPI 2 0

Conditionally alter the program counter.

JJUMPI (𝜇) ≡
{
𝜇𝑠 [0] 𝑖 𝑓 𝜇𝑠 [1] ≠ 0
𝜇𝑝𝑐 + 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

To address these issues, we connect all graphs of the same con-
tract sequentially using a new type of edge called connection edge.
This creates a connected graph that can better represent the be-
havior of the contract across multiple transactions. Furthermore,
we complete the across-transaction data flow among previously
independent graphs using taint storage. The taint storage records
the taint status of variables at the end of each transaction, and
this information is used to propagate taints to subsequent transac-
tions. With these enhancements, we are able to capture data flow
that spans multiple transactions and more accurately analyze the
behavior of smart contracts.

Inadequate Node Feature: In the raw graph, nodes are dis-
tinguished by the type of operation they include. This results in
each node being represented by a 139-dimensional one-hot vector
(corresponding to 139 unique operations), with a single non-zero
entry corresponding to the type of operation. However, one-hot
vectors do not capture any information about the relationships
between nodes in the graph, which are crucial for understanding its
structure and properties. To improve the classification accuracy, we
need better node embeddings that can capture these relationships.

We noticed that there is an introduction for each operation in
the Ethereum Yellow Paper [41] as exemplified in Table 2. In Ta-
ble 2, 𝛼 represents the additional items placed on the stack, while 𝛿
represents the items removed from the stack [41]. The description
section explains how the operation works in text, and shows how
it operates the data in the EVM in the formula. To embed the nodes,
we first remove the formula in the description section and keep
only the text explanation to preserve the functional information
of the operation. For each node, we use Doc2Vec [23], a model for
generating embeddings of variable-length pieces of text, to convert
the text explanation into a 100-dimensional vector, which we stitch
together with 𝛼 and 𝛿 to form the node feature. After that, we
have completed the construction of CRBG which will be labeled for
model training later. Figure 4(b) shows the constructed CRBG after
the raw graphs in Figure 4(a) were preprocessed. The CRBG in Fig-
ure 4(b) has better node embeddings, more comprehensive contract
runtime information, and can better characterize the contracts.

3.5 GNN Model
Unlike traditional neural network models that primarily handle
vector or matrix data, graph neural networks (GNNs) excel at mod-
eling and processing graph-structured data [42]. In this section, we
introduce our GNN solution to the Ponzi contract identification
problem. As illustrated in Figure 5, our GNNmodel consists of three
parts: graph input, graph embedding learning, and classification.

Graph input. We use CRBG (G) as the input graph which con-
tains nodesV = {1, ..., 𝑛} and edges E. The node features matrix X
has a dimension of ( |V|, 102), where each node is represented by a

G
A

T

M
ean-Pooling

FC

R
eL

U

G
A

T

Graph input Graph embedding learning Classification

Label

in_channels: 102
out_channels: 64

D
ropout

in_channels: 64
out_channels: 64

in_channels: 64
out_channels: 2

Figure 5: GNN Model.

102-dimensional feature vector. The edge index I has a dimension
of (2, |E |), where each column corresponds to an edge and contains
the indices of the nodes that the edge connects. The edge features
matrix E has a dimension of ( |E |, 15), where each edge is repre-
sented by a 15-dimensional feature vector. |V| and |E | represent
the number of nodes and edges in G.

Graph embedding learning. In graph embedding learning,
we choose Graph Attention Networks (GAT) as the component of
GNN convolutional layers. GAT performs the aggregation based on
the self-attention mechanism, i.e., calculating the weights between
nodes and edges through learnable weight matrices W and W𝑒 ,
so that each node can be weighted and aggregated according to
the characteristics of its surrounding nodes. Since CRBG has multi-
dimensional edge features, the attention coefficients 𝛼𝑖, 𝑗 in the
self-attention mechanism are computed as:

𝛼𝑖, 𝑗 =
exp(e𝑖, 𝑗 )∑

𝑘∈N𝑖∪𝑖 exp(e𝑖,𝑘 )
(1)

where e𝑖, 𝑗 represents the attention score indicating the importance
of node 𝑗 ’s features to node 𝑖 , andN𝑖∪𝑖 represents the set of adjacent
nodes of node 𝑖 . e𝑖, 𝑗 is obtained by concatenating the feature vectors
of node 𝑖 and node 𝑗 and performing linear transformation:

e𝑖, 𝑗 = LeakyReLU(®a𝑇 [W®h𝑖 | |W®h𝑗 | |W𝑒 ®m𝑖, 𝑗 ]) (2)

where LeakyReLU represents the activation function, ®a represents
the weight vector, | | represents the concatenation operation, ®h𝑖
represents the feature vector of node 𝑖 , and ®m𝑖, 𝑗 represents the
multi-dimensional edge features between node 𝑖 and 𝑗 .

By calculating the weight between nodes, the weighted sum of
the adjacent nodes of node 𝑖 can be obtained:

®h
′
𝑖 = 𝜎

©­«
∑︁
𝑗∈N𝑖

𝛼𝑖,𝑗W ®h𝑗
ª®¬ (3)

where ®h
′
𝑖 represents the updated eigenvector of node 𝑖 , 𝜎 represents

the activation function, N𝑖 represents the adjacent node of node 𝑖 .
We set two GAT layers and use ReLU in the middle for non-

linearly transforming the node features in order to better handle
the nonlinear relationship of data and increase the expressiveness
of the network. We utilize mean-pooling to aggregate the node
features and obtain the global feature representation of the graph.
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Classification. The classifier comprises a dropout and a fully
connected layer (FC). The dropout randomly sets a fraction of
the output of neurons to zero, which helps prevent overfitting
and improves the model’s generalization ability. The purpose of
a fully connected layer is to learn non-linear combinations of the
features in the input data, allowing themodel tomakemore accurate
predictions. We input the global feature representation into the
classifier and obtain the predicted class label for the graph.

4 IMPLEMENTATION
We modified ContractFuzzer [20], a smart contract fuzzer, to in-
tegrate our transaction sequences generation algorithm. We in-
strumented the official Golang implementation of EVM (version
1.10.6) [11] to collect contract runtime information. We imple-
mented our dynamic taint engine in Golang (version 1.16.6) to
cooperate with the instrumented EVM and construct the CRBG.
Our GNN model was implemented using Pytorch [29], and we
employed Graph Attention Networks as the convolutional layers.

5 EXPERIMENTS
5.1 Research Questions
We conduct experiments to answer the following four questions.
• RQ1:How effective is PonziGuard in identifying Ponzi contracts
compared to the existing tools?
• RQ2: How effective is the CRBG compared to the raw graph
obtained directly from runtime?
• RQ3: How does PonziGuard perform in open environments?
• RQ4:What is the overhead of PonziGuard?

5.2 Experiment Setup
Our test environment is comprised of a server with a 16-core
Intel(R)-Xeon(R)-Gold-5218 CPU @2.30 GHz, 340GB of RAM, and
the Ubuntu 18.04 LTS operating system.

5.3 RQ1: Effectiveness of PonziGuard
5.3.1 State-of-the-art. We evaluated the effectiveness of Ponzi-
Guard and compared it with the studies of Chen et al. [7], Yu et
al. [45] and Chen et al. [6]. Chen et al. [7] detects Ponzi contracts
using XGBoost mainly based on the opcode frequency. Yu et al. [45]
utilizes the transactions on Ethereum to identify Ponzi contracts.
Chen et al. [6] detects Ponzi contracts based on symbolic execution.
We used [7] as the baseline for opcode-based machine learning
approaches, [45] as the baseline for transaction-based machine
learning approaches, and attempted to replicate their models based
on the descriptions in their papers and conducted experiments on
our own dataset. We used [6] as the baseline for rule-based ap-
proaches which is open-sourced on github [22], and we applied it
directly to our dataset.

5.3.2 Dataset. We obtained 184 Ponzi contracts from Bartoletti
et al. [3]. After manually inspecting the contracts, we excluded 12
non-Ponzi contracts and 33 contracts without source code. This
resulted in a set of 139 ground-truth Ponzi contracts. We obtained
1300 non-Ponzi contracts from an open-sourced smart contract
dataset [27]. These contracts are real-world contracts running on
Ethereum, which have already been labeled as non-Ponzi contracts

Table 3: Overall Evaluation Results. Values in parentheses
represent the standard deviations across the K-fold.

Approach Precision Recall F1-score

OpML[7] 88.2% (0.03) 75.0% (0.05) 81.0% (0.04)
TxML[45] 75.2% (0.06) 57.9% (0.06) 65.2% (0.05)

SADPonzi[6] 91.3% 71.9% 80.4%
PonziGuard 96.5% (0.02) 97.1% (0.03) 96.8% (0.02)

and manually inspected by us. We added the 12 previously excluded
non-Ponzi contracts to this dataset. As a result, we obtained a
ground-truth dataset of 139 Ponzi contracts and 1312 non-Ponzi
contracts. On average, the code length of this dataset is 407, with
1078 contracts having a length below 500 and 373 contracts having
a length above 500.

5.3.3 Evaluation Metrics. We use the following evaluation metrics
to measure the effectiveness of our approach.

Precision measures the proportion of true positive predictions
made by the approach out of all positive predictions:

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (4)

Recall measures the proportion of true positive predictions made
by the approach out of all actual positive instances in the dataset:

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (5)

F1-score is the harmonic mean of Precision and Recall, providing
a single measure of the approach’s overall performance:

F1-score = 2 × Precision × Recall
Precision + Recall (6)

5.3.4 Result and Analysis. While we used the same dataset in the
comparative experiment, different approaches processed the data
differently. In our approach, we generated 1451 graphs from 1451
contracts in the dataset for model training and testing. In the ap-
proach of Chen et al. [7] (OpML), we compiled the 1451 contracts
into bytecode and counted the opcode frequency as inputs for model
training and testing. In the approach of Yu et al. [45] (TxML), we
collected the transactions of these contracts on Ethereum and per-
formed a random selection process to obtain a transaction network
as input. The contract bytecode could be directly applied by the sym-
bolic execution tool of Chen et al. [6] (SADPonzi). For the machine
learning-based approaches, we randomly divided the dataset into 5
folds and performed K-fold cross-validation. The mean values of the
evaluation metrics across the K models, as well as their correspond-
ing standard deviations, were calculated to measure the average
performances. As shown in Table 3, PonziGuard outperformed all
the baselines on the test set, achieving 96.5% precision, 97.1% re-
call, and 96.8% F1-score. We believe that the poor performance of
the state-of-the-art approaches can be attributed to the fact that
static information cannot characterize the Ponzi contracts (OpML
and TxML), and not all Ponzi contracts conform to the pre-defined
behavior patterns (SADPonzi).
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Figure 6: Ablation study.

In order to evaluate the effectiveness of our design choices for
the fuzzing component, we replaced it with the native Contract-
Fuzzer [20] while keeping the remaining setup unchanged and
conducted the same evaluation on the dataset. It achieved a preci-
sion of 72.4%, recall of 75%, and F1-score of 73.9%, indicating that the
fuzzing component, without our transaction sequences generation
algorithm, performed poorly in triggering the specific behavior of
Ponzi contracts.

Answer to RQ1: PonziGuard outperforms the state-of-the-art
approaches in the comparative experiment, demonstrating the
effectiveness of our approach in identifying Ponzi contracts.

5.4 RQ2: Effectiveness of CRBG
In Section 3.4, we constructed CRBG by incorporating both control
flow and data flow into the raw graph and adopting better node
embeddings. In this section, we demonstrated the effectiveness of
CRBG compared to the raw graph by experimentally evaluating
the contributions of control and data flow, as well as the node
embeddings we have adopted.

5.4.1 Effectiveness of runtime data flow and control flow in CRBG.
To gain a better understanding of the effectiveness of control and
data flow in CRBG, we performed an ablation study by configuring
PonziGuard in four distinct modes: data flow only (DF), control
flow only (CF), both (DF+CF), and neither (NE). In DF mode, we
removed control flow edges and only kept data flow edges in CRBG.
On the contrary, in CFmode, we removed data flow edges and only
kept control flow edges. In NE mode, we removed both data flow
edges and control flow edges in CRBG. The mode DF+CF is the
native PonziGuard which includes both control and data flow.

Figure 6 shows the performance of these four modes after 5-fold
cross-validation on the same dataset. Compared to the native Ponzi-
Guard baseline, there were drops of 9.3%, 15%, and 12.2% in the
evaluation metrics of the CF mode. In the DF mode, the evaluation
metrics decreased to a greater extent compared to the native Ponzi-
Guard baseline, with a drop of 13.5%, 24.2%, and 19.3%, respectively.
Undoubtedly, NE mode exhibited the worst performance, with a
significant drop of 26.4%, 42.1%, and 35.3%, respectively. The main
reason for the poor performance of the CF mode is that, with con-
trol flow only, PonziGuard cannot capture the flow of investors’
investments in contracts. Therefore, some contracts with Ether re-
distribution logic may be misreported. On the other hand, the lack

Table 4: Comparing model performance between different
node embedding settings.

Test Node Embeddings
adopted in Test Set Model Precision Recall F1-score

1 One-hot vectors MOE 88.5% 82.1% 85.2%
2 Enhanced MEE 96.4% 96.4% 96.4%
3 Variant 1 MEE 96.3% 92.9% 94.5%
4 Variant 2 MEE 96.2% 89.3% 92.6%

of control flow in theDFmode results in the loss of contract context
information, such as the functions and order in which variables are
used. This ablation study highlights that both control flow and data
flow are crucial in capturing the behavioral patterns of Ponzi con-
tracts, and the gathering of this runtime information significantly
improves the performance of PonziGuard.

5.4.2 Effectiveness of node embeddings adopted in CRBG. In Sec-
tion 3.4, we utilized Doc2Vec to enhance node embeddings in CRBG
based on the operation descriptions from the Ethereum Yellow Pa-
per. We believe that the semantic information conveyed in these
descriptions is representative and can capture the relationships be-
tween the nodes in CRBG. We conducted a comparative experiment
to evaluate the efficacy of the node embeddings we enhanced. In
this comparative experiment, one model was trained on the dataset
described in Section 5.3.2 using our enhanced node embeddings
(Model with enhanced node embeddings, abbreviated asMEE). In
contrast, another model was trained on the same dataset, but re-
placing our node embeddings with one-hot vectors (Model with
one-hot vectors as node embeddings, abbreviated as MOE). We
used 80% of the dataset for training and 20% for testing. As shown
in Table 4, compared with the one-hot vectors as node embeddings
(Test 1), the node embeddings based on the operation description
(Test 2) performed better in the evaluation metrics. It demonstrates
that the node embeddings generated from operation descriptions
capture the underlying semantics, leading to a better understanding
of the graph’s structure and properties, which accounts for this
performance improvement.

To ascertain that the performance improvement is primarily
attributed to the semantics themselves, rather than the way the
semantics are described, we conducted additional analysis. We
rewrote the operation descriptions in the Ethereum Yellow Paper
with two principles while retaining the original semantics. The first
principle is using synonyms substitution. By substituting words
with their synonyms, we retained the original semantics while us-
ing a different expression. Another principle is changing sentence
structure or grammar. This can be done by using different sentence
patterns, altering the word order, or adjusting the placement of
clauses. For instance, the description for JUMPI in Table 2 can be
rewritten as "Conditionally change the instruction pointer" and "Alter
the program counter based on the condition" according to these two
principles. Based on these two alternative description rewriting
principles, we re-extracted the node embeddings and created two
variants of the test set (Variant 1 and Variant 2). Then, we eval-
uated our model (MEE, the model trained with enhanced node
embeddings) on these two variant test sets. As shown in Table 4,
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our model exhibited similar performance on the variant test sets
(Test 3 and 4) compared to the native test set (Test 2), suggesting
that the improvement in model performance is primarily attributed
to the semantic information rather than the specific way in which
the semantics are conveyed.

Answer to RQ2: Through the evaluation of runtime control
flow and data flow, as well as the enhanced node embeddings,
the CRBG is proven to be effective and greatly improves the
detection precision, recall, and F1-score.

5.5 RQ3: Performance in open environments
5.5.1 Experiment Description. In order to evaluate the effective-
ness of PonziGuard in open environments and roughly estimate
the number of Ponzi contracts on Ethereum, we conducted a pre-
liminary experiment on the Ethereum Mainnet. Firstly, we ran the
Geth client with the option: sync-mode-full to synchronize with
the Ethereum Mainnet. The number of smart contracts has expe-
rienced explosive growth in recent years (about one million per
quarter [1]), which is a significant amount for our approach based
on runtime information. Therefore, we set the synchronization
time until January 2022 (approximately 14,000,000 blocks), only as
a preliminary experiment to verify the performance of PonziGuard
in open environments. Then, we replaced the native EVM with our
instrumented EVM and integrated the dynamic taint engine. We
re-executed every transaction on the synchronized blockchain from
the genesis block, which is a time-consuming process. Finally, we
fed the generated graphs into our GNN model for prediction.

As a result, PonziGuard successfully identified 805 Ponzi con-
tracts on Ethereum Mainnet, out of which 497 contracts have ac-
cessible source code on Etherscan [12]. We randomly selected 50
contracts3 from these 497 contracts and conducted a manual exam-
ination through Remix [28], a solidity IDE, to ensure they meet our
predefined criteria for Ponzi contracts, resulting in a 100% true posi-
tive rate. To gain deeper insights into these 805 Ponzi contracts, we
conducted further analysis using the data collected from Etherscan
in the remainder of this section.

5.5.2 Creation Time of Ponzi Contracts. Figure 7 shows the distribu-
tion of these 805 Ponzi contracts. Ponzi schemes started appearing

3https://github.com/PonziDetection/PonziGuard/tree/main/dataset/Result/verified

on Ethereum as early as 2015. Subsequently, the rapid develop-
ment of Ethereum led to a significant growth of Ponzi contracts
during the years 2016-2019. Then, we witnessed a brief recession
in Ponzi schemes possibly linked to the impact of the COVID-19
pandemic [24]. The global crypto mining boom in 2021 [9] resulted
in another minor peak in Ponzi schemes. With the increasing popu-
larity of various tokens on Ethereum, ERC-20 Tokens for instance,
we anticipate another peak in Ponzi schemes on Ethereum in the
near future.

5.5.3 Lifetime of Ponzi Contracts. We regard the time from the
creation of a Ponzi contract to its last transaction as its lifetime.
We investigated the lifetime of these 805 Ponzi contracts, as shown
in Figure 8. While some of these contracts remain active in 20234,
the majority of Ponzi contracts have a lifetime of less than three
months, and their average lifetime is about seven months. These
findings indicate that Ponzi contracts are likely to collapse within
a short period of time, and most of their users will not be unable to
reclaim their promised returns.

5.5.4 Financial Impact. We analyzed the financial impact of the
805 Ponzi contracts identified by PonziGuard on EthereumMainnet
by aggregating their transactions and the inflow of Ether. Figure 9
shows their monthly distribution, revealing a positive correlation
between the inflow of Ether and the number of transactions of the
contracts. The peak was in February 2018, when a total of 117,953
Ether flowed into Ponzi contracts, equivalent to $108 million at the
exchange rate of that time. From January 2015 to July 2023, 615,483
transactions, totaling 281,700 Ether, flowed into Ponzi contracts.
At the current exchange rate, the value of these tokens can reach
as high as $500 million. It is also evident that, in recent years, the
involvement of Ether may not be substantial in a Ponzi scheme,
as some of them began adopting ERC tokens for investments and
rewards. However, it is important to note that such kinds of Ponzi
contracts still meet the criteria outlined in Section 2.2, and our
method remains effective in identifying them5.

Answer to RQ3: Our preliminary experiment on Ethereum
Mainnet successfully identified 805 Ponzi contracts with a

4For instance: 0xa90be2201bfed97587a2a17949e8624eafe51d13 and
0xf8f04b23dace12841343ecf0e06124354515cc42
5Evidenced by the example of 0xb3836d31d43d315ba74c21aad3818f9378256152
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high accuracy rate, demonstrating the effectiveness of Ponzi-
Guard in open environments. These contracts have resulted
in significant financial losses, amounting to millions of USD,
which emphasizes the severity of Ponzi contracts on Ethereum
and the urgency of identifying them effectively.

5.6 RQ4: Overhead of PonziGuard
In PonziGuard, we instrument the EVM and build a dynamic taint
engine to obtain contract runtime information, which introduces
a certain amount of time overhead compared to the native smart
contract execution environment. We conducted experiments to
evaluate this overhead.

5.6.1 Ground-Truth Dataset. For the experiment described in Sec-
tion 5.3, the contracts were executed in an independent instru-
mented EVM with the taint engine. To evaluate the time overhead,
we generated 1,000 transactions for a contract and sent them along
with the contract to both the native EVM and the instrumented
EVM separately. To accurately assess the time overhead, we re-
peated the process 10 times and recorded the average time it took
to process these transactions. The results, shown in Figure 10, indi-
cate that when the processing of 1,000 transactions was completed,
the average overhead of the instrumented EVM reached a maximum
of approximately 30.2%.

5.6.2 Open Environments. In the experiment described in Sec-
tion 5.5, we conducted re-execution of historical transactions on
the synchronized blockchain. To evaluate the time overhead, we re-
executed the transactions of the first 500,000 blocks on the synchro-
nized blockchain using both the native Geth and the Geth modified
by PonziGuard separately. To accurately assess the time overhead,
we repeated the process 10 times and recorded the average time it
took to complete the re-execution. As shown in Figure 11, when
it comes to 500,000 blocks, the time overhead amounts to 25.5%,
which is smaller than the overhead on the ground-truth dataset.
This can be attributed to the fact that re-execution involves addi-
tional reading and verification operations on the blockchain, in
addition to the time consumed by contract execution.

Answer to RQ4: The time overhead introduced by our taint
engine and the modification of EVM is an acceptable compro-
mise to obtain contract runtime information.

6 RELATEDWORK
In this section, we first describe the previous studies about Ponzi
schemes on Ethereum. Then, we describe the studies related to the
techniques we use.

6.1 Ponzi Scheme on Ethereum
Bartoletti et al. [3], the first to study Ponzi schemes on Ethereum,
use the Normalized Levenshtein Distance (NLD) to measure the
similarity of contract bytecode. Similarly, the rule-based approaches
have been developed by Sun et al. [35] who leverage behavior forest
similarity to detect Ponzi contracts, and Chen et al. [6] who use sym-
bolic execution for detection. These approaches require a compre-
hensive summary of existing Ponzi schemes and expert experience.
However, it is challenging to cover all possible scenarios based on
the existing known Ponzi contracts, which limits their capability to
detect Ponzi contracts that fall outside the scope of the summarized
rules. Additionally, other approaches [7, 14, 21, 25, 45] use static
information like opcode or transactions for machine learning mod-
els to improve detection capabilities. However, these approaches
suffer from the limitation that static information cannot well distin-
guish Ponzi contracts from other contracts, and transaction-based
machine learning approaches cannot detect 0-day Ponzi schemes.

6.2 Smart Contract Fuzzing
Fuzzing has been proven to be effective to exploit vulnerabilities
in smart contracts [18, 20, 26, 38, 43, 47]. ContractFuzzer [20] is a
black-box fuzzer for Ethereum smart contracts to detect security
bugs such as gasless send and timestamp dependency. Some grey-
box fuzzers [18, 26, 38, 43, 47] have also been proposed for smart
contracts. These methods are designed to exploit vulnerabilities in
smart contracts, while PonziGuard uses fuzzing to invoke contracts
and obtain their runtime information.

6.3 Taint Analysis
Taint analysis is an effective technique to analyze the data flow in
programs. There have been studies that leverage taint analysis to
help analyze smart contract such as Osiris [39], Sereum [30] and
EthPloit [47]. Osiris [39] is an integer bug detection framework
that combines taint analysis and symbolic execution. Sereum [30]
leverages taint analysis to protect smart contracts with re-entrancy
vulnerabilities from being exploited. EthPloit [47] adopts taint anal-
ysis to generate exploit-targeted transaction sequences, in order to
make the contract fuzzing process more efficient. Those studies are
orthogonal to this paper: they aim to uncover security vulnerabili-
ties in smart contracts, while our tool is designed specifically for
for identifying malicious contracts.

6.4 Graph Neural Network
Graph Neural Networks (GNNs), are a class of neural networks
that are designed to process and learn from data that is structured
in the form of graphs [42]. GNNs have been shown to be highly
effective in a variety of tasks, such as node classification [19, 37],
link prediction [44, 46], and graph classification [4, 40]. In this paper,
we leverage GNNs for CRBG analysis and formulate the detection
of Ponzi contracts as a graph classification task.
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1 Origin:
2 uint index = Calculator.length + 1;
3 Calculator[index]. ethereumAddress = msg.sender;
4 Modified:

5 uint index = Calculator.length;

6 Calculator.length += 1;

7 Calculator[index]. ethereumAddress = msg.sender;

Listing 2: Snippet of squareRootPonzi

7 DISCUSSION
We note that some static analysis tools [8, 16, 32] can obtain the
Static control and data flow with lower overhead, which also reflect
the contract behavior to some extent. In this section, we provide
the explanation for our decision to use Runtime information rather
than Static information to construct our CRBG.

Firstly, static analysis is inherently imprecise following the prin-
ciple of over-approximation. This conservative approach preserves
all "could happen" or "could exist" cases, which is useful for captur-
ing program errors and vulnerabilities but inappropriate for char-
acterizing a program’s behavior. For instance, squareRootPonzi6 is
a false positive case in the previous study [3], and its code snippet
is shown in Listing 2. This contract appears to follow the logic of
a typical Ponzi scheme, however, the incorrect assignment to the
variable index will cause the typical IndexError during its runtime.
Consequently, the contract will always exit with an error. The cor-
rect code is demonstrated in Line 5 and Line 6. However, static
analysis tools cannot recognize this invalid execution path due to
the lack of runtime information, and following the principle of over-
approximation. If we utilize the static information to characterize
the contract behaviors, it is likely to misreport it as a Ponzi scheme.

Secondly, the output of static analysis includes all possible exe-
cution paths and data flows of the contract, making it challenging
to determine which information should be pruned. Constructing
this information into a graph structure can result in a significant
increase in size and contain redundant data, which is not efficient
for model training.

8 CONCLUSION
In this paper, we propose PonziGuard, an approach for identify-
ing Ponzi schemes on Ethereum based on the contract runtime
behavior graphs (CRBG). The experimental results demonstrate that
PonziGuard is effective on both the ground-truth dataset and open
environments with acceptable overhead. Moreover, our prelimi-
nary experiment conducted on Ethereum Mainnet has identified
805 Ponzi contracts that have caused millions of USD in financial
losses. This highlights the severity of Ponzi contracts on Ethereum
and the pressing need to effectively identify them.
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