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ABSTRACT
As software engineering advances and the code demand rises, the
prevalence of code clones has increased. This phenomenon poses
risks like vulnerability propagation, underscoring the growing im-
portance of code clone detection techniques. While numerous code
clone detectionmethods have been proposed, they often fall short in
real-world code environments. They either struggle to identify code
clones effectively or demand substantial time and computational
resources to handle complex clones. This paper introduces a code
clone detection method namely Toma using tokens and machine
learning. Specifically, we extract token type sequences and employ
six similarity calculationmethods to generate feature vectors. These
vectors are then input into a trained machine learning model for
classification. To evaluate the effectiveness and scalability of Toma,
we conduct experiments on the widely used BigCloneBench dataset.
Results show that our tool outperforms token-based code clone
detectors and most tree-based clone detectors, demonstrating high
effectiveness and significant time savings.
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1 INTRODUCTION
Code clone refers to the behaviour of copying and pasting code
fragments [8]. Depending on the similarity of the code fragments,
code clone is divided into syntactic code clone (i.e., Type-1, Type-2,
and Type-3), where two code fragments are syntactically similar,
and semantic code clone (i.e., Type-4), where two code fragments
use different syntax to achieve the same semantics. Code cloning
can be a time and effort saver for software developers, so it is be-
coming increasingly prevalent as the field of software engineering
grows and the demand for code increases. However, code cloning is
not an entirely positive endeavour, it can lead to a reduction in code
quality [31, 34], the potential for legal conflicts [66], an increase
in software maintenance costs [39], and an increased risk of vul-
nerability propagation [10, 35, 45]. Therefore, the research of code
clone detection techniques has become increasingly important.

Nowadays, many code clone detection methods have been pro-
posed. Some tools are dedicated to large scale code clone detection,
such as token-based techniques [21, 22, 27, 30, 36, 49, 57], which con-
vert the code into a sequence of tokens to detect clones. Although
token-based methods are low-complexity and highly scalable, they
cannot detect complex clones because they only consider the lexical
aspects of the program and ignore the syntactic information of the
code. To address this problem, some tools strive to improve the
detection of semantic clones by extracting intermediate representa-
tions of the code, e.g., tree-based methods and graph-based methods.
Tree-based approaches [28, 29, 37, 60, 67] extract the parse tree of a
program (e.g., abstract syntax tree), providing more insight into the
syntax of the program. Graph-based approaches [32, 33, 56, 68, 70]
extract the graph structure of the code (e.g., program dependency
graph and control flow graph), which can contain more semantic
details of the code and thus enable more effective detection of se-
mantic clones. Both methodologies have traditionally leveraged
tree matching algorithms or graph mining techniques for clone
detection. Nonetheless, these methods are accompanied by con-
siderable computational overhead and often lack scalability when
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dealing with expansive datasets. In addition to these traditional
clone detection methods, a number of learning-based clone detec-
tion techniques have emerged in recent years [26, 36, 48, 60, 67, 68].
For example, ASTNN [67] is based on the use of recurrent neural
network to detect clones, and SCDetector [65] employs siamese
network for clone detection. In fact, these techniques often apply
complex neural networks with underlying techniques and rely on
GPUs to train the networks, which are computationally intensive.

Overall, current approaches either have limited ability to identify
code clones or incur significant time overhead, or require significant
computational resources to cover complex clones. However, a recent
study [59] has shown that most code clones in real-world open-
source communities are simple clones, and complex clones are
rarely seen. Therefore, these approaches that sacrifice scalability to
develop complex clone detection capabilities may not be practical in
real life and do not enable large-scale code clone detection. Hence,
we aim to explore the construction of a simpler, more convenient,
and lightweight code clone detection method that can efficiently
identify a broader range of complex clones. This pursuit seeks
to strike a balance between the effectiveness and the overhead,
catering to the demands of clone detection in real-world scenarios.

Specifically, our paper mainly addresses two challenges:

• Challenge 1: Current methods persistently prioritize the enhance-
ment of the detection of complex semantic code clones at significant
costs, even though such clones are infrequent in real-world scenar-
ios. Then, how can we design a lightweight approach to make clone
detection tools meet real-life code clone detection needs?

• Challenge 2: Training complex neural networks consumes consid-
erable computational resources and is thus very time-consuming
during the training phase. Then, how can we avoid high overheads
to achieve fast and accurate classification?

To solve the first problem, we extract the token sequences, which
require very little time overhead and can rapidly complete large-
scale token extraction. For the extracted token sequences, we use six
similarity calculation methods to calculate the similarity of the code
pairs. Different similarity calculators can evaluate the degree of code
similarity from different perspectives and improve the effectiveness
of clone detection. To solve the second problem, we use a machine
learning model to process the classification of clones. Machine
learning requires only CPU to complete the training process. In
comparison to the training of neural networks, training machine
learning models can save significant computational resources while
further reducing the time overhead and enabling scalability.

We implement a prototype system called Toma and compare
the effectiveness and scalability of Toma with nine code clone de-
tection systems on the widely used Java code clone benchmark
dataset BigCloneBench (BCB) [1, 52]. The baseline system consists of
SourcererCC [49], RtvNN [62] (which are based on token), Deckard
[28], ASTNN [67], TBCNN [40], CDLH [60] (which are based on
tree), SCDetector [65], DeepSim [68], and FCCA [26] (which are
based on graph). The results show that Toma outperforms detectors
based on token in terms of effectiveness by a significant margin,
but it is true that Toma is not as good as tree-based and graph-based
tools in detecting Type-4 clones. However, for the majority of sim-
ple code clones occurring in real-world, we are already sufficient
for detecting them and can outperform most of the tree-based tools.

This phenomenon suggests that the use of machine learning is
sufficient to achieve the desired detection results when only code
token information is used. Meanwhile, an even greater advantage
is that our approach is very scalable and can save time overhead to
a large extent. For example, when only using CPU, our method is
65.68 times faster than DeepSim in terms of prediction time.

In summary, our contributions to this paper are as follows:
• We present a new lightweight token-based code clone detection
method that uses a straightforward approach to extract similarity
features of code pairs.

• By training a machine learning model, we implement a prototype
system Toma [7] to accomplish an effective and scalable code
clone detector.

• We analyse the effectiveness and scalability of Toma and nine
comparison systems on the BigCloneBench [1, 52] datasets. Ex-
perimental results show that Toma achieves good detection re-
sults using only a very short time overhead compared to the
comparison systems.

• Our approach demonstrates that machine learning is powerful
enough to detect code clones when only simple token feature
extraction algorithms are used.

Paper organization. The rest of the paper is organized as follows:
Section 2 presents the definition of clone types. Section 3 describes
our system. Section 4 reports the evaluation results. Section 5 dis-
cusses the paper. Section 6 describes the related work. Section 7
concludes the paper.

2 CLONE TYPES
In our paper, adopting the definitions for each type [11, 47], we cat-
egorize code clone into four types based on the degree of similarity:
• Type-1 (textual similarity): Code fragments falling under this
type are identical, except for variations in white-space, layout,
and comments.

• Type-2 (lexical similarity): Code fragments falling under this
type are nearly identical, but they can differ in identifier names,
lexical values, as well as white-space, layout, and comments, as
seen in Type-1 clones.

• Type-3 (syntactic similarity): Code fragments falling under
this type exhibit syntactic similarities but differ at the statement
level. In addition to the differences found in Type-1 and Type-
2 clones, fragments of this type may have statements added,
modified, or removed in comparison to each other.

• Type-4 (semantically similarity): Code fragments belonging
to this type are not syntactically similar, yet they implement the
same functionality.
To illustrate the difference between these four clone types, Fig-

ure 1 gives an example incorporating Type-1 to Type-4 clones. The
original fragment computes the factorial of a number. The Type-1
fragment is identical to the original except for the removal of the
comment. The Type-2 fragment changes the name of the argument
from 𝑛 to 𝑛𝑢𝑚. The Type-3 fragment is similar in syntax, but dif-
ferent in statements, changing the method name and argument
type, and the condition of the for loop is changed. Finally, the Type-
4 fragment uses an iterative method to calculate the factorial of
a number, which differs from the original method in syntax and
statements but achieves the same functionality.
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private long factorial(long 

num){

    long sum = 1;

    for(int i=1;i<=num;i++){

sum *= i;

    }

    return sum;

}

// original

private long factorial(long n){

    long sum = 1;

    for(int i=1;i<=n;i++){

sum *= i;

    }

    return sum; //return

}

public static int get_factorial(int 

n){

     if(n == 1){

          return 1;

     }else {

          return n*get_factorial(n-1);  

     }

}

private long factorial(long 

n){

    long sum = 1;

    for(int i=1;i<=n;i++){

sum *= i;

    }

    return sum;

}

public static int get_factorial(int 

num){

    int sum = 1;

    for(int i=num;i>=1;i--){

sum = sum *i;

    }

    return sum;

}

Type-4Type-2

Type-3Type-1

private long factorial(long n){

    long sum = 1;

    for(int i=1;i<=n;i++){

sum *= i;

    }

    return sum; //return

}// Original

private long factorial(long 

n){

    long sum = 1;

    for(int i=1;i<=n;i++){

sum *= i;

    }

    return sum;

}// Type-1

private long factorial(long 

num){

    long sum = 1;

    for(int i=1;i<=num;i++){

sum *= i;

    }

    return sum;

}// Type-2

public static int get_factorial(int 

num){

    int sum = 1;

    for(int i=num;i>=1;i--){

sum = sum *i;

    }

    return sum;

}// Type-3

public static int get_factorial(int 

n){

     if(n == 1){

          return 1;

     }else {

          return n*get_factorial(n-1);  

     }

}// Type-4

Figure 1: Examples of different clone types

3 SYSTEM
We present the details of our system in this section, including the
overall framework and a detailed description of each phase.
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Figure 2: System architecture of Toma

3.1 Overview
As depicted in Figure 2, the system consists of three phases: Tok-
enization, Feature Extraction, and Classification.
• Tokenization: In this phase, the code undergoes lexical analysis,
where it is scanned and broken down into individual tokens.
The primary input to this phase is the program code, and the
resulting output is the token sequence

• Feature Extraction: The main goal of this phase is to extract the
similarity features between two token sequences by computing
the similarity. The input to this phase is the two token sequences
and the output is the similarity features between them.

• Classification: The purpose of this phase is to employ machine
learning to predict whether the code pair to be detected is clone
or not. The input to this phase is the similarity feature and the
output is the classification result of the model.

3.2 Tokenization
In this paper, we want to design a lightweight clone detector using
a simple code feature extraction technique, so we take only lexical
analysis to extract the code tokens. However, extracting only the to-
kens may not be able to counteract modifications such as renaming,
so we abstract variable names to “V ”. In addition to this, in order to
take the abstraction even further, we convert each extracted token
to its corresponding type. For instance, the token “private” can
be substituted with its corresponding type “Modifier”, while the
token “num” can be substituted with its type “Identifier”. Recent
work [25, 64] proposes that there are 14 types accounting for over
99.7% of all types, which basically covers most of the tokens. For
the tokens that could not be covered, we add an Null type to repre-
sent them. Therefore, we choose these 15 types as the final token
types. This means that all tokens will be classified as one of the
15 types. In this phase, we make the following two operations on
the extracted token sequences: i) No processing: We do not modify

the token sequence. ii) Token-to-type conversion: We convert the
token sequence into a sequence of corresponding token types. The
same subsequent operations are performed on these two sequences,
and we will implement more detailed experiments in each of the
two cases in Section 4.2 to evaluate whether the manipulation of
token extraction types improves the detection of the clone detector.

3.3 Feature Extraction
After obtaining the token sequences and type sequences, we mea-
sure the similarity of code pairs by calculating the similarity of the
sequences of the two code segments. Firstly, we measure similarity
by simply counting the number of identical elements between two
sequences, which is a common approach for computing similarity.
Therefore, we choose two widely used methods to compute similar-
ity: Jaccard similarity [43] and Dice similarity [55]. However, both
of these methods do not take into account any order information,
while code, as a form of language, also contains certain grammat-
ical information within the sequence of its tokens. For example,
“𝐷 = 𝐴 + 𝐵 ∗𝐶” and “𝐷 = 𝐴 ∗ 𝐵 +𝐶” are two lines of code sharing
entirely identical tokens. However, due to the different order of
tokens, they express different syntactic meanings. Therefore, to
compensate for the shortcomings of the first two methods in order
similarity, we add two similarity calculations Levenshtein distance
[42] and Levenshtein ratio [50]. However, to enhance the detection
of Type-3 code clones, we allow tokens to undergo some degree of
sequence variation. Therefore, we introduced Jaro similarity [20] to
detect local similarities, permitting changes in order within a spec-
ified matching window. Additionally, the Jaro-Winkler similarity
[58] adds emphasis onmatching common prefixes, and we have also
taken this into account. The use of multiple similarity calculation
methods allows our method to assess the similarity between two
code fragments from different angles (such as common elements,
order, local similarity, and prefix similarity) to improve the accuracy
of detection. These six algorithms are applied in various fields like
information search and data mining [54]. We choose them as our
similarity computation approaches for their good performance.

Jaccard similarity coefficient also known as the Jaccard index
is a measure commonly used to compare the similarity between
sets. The value of Jaccard similarity is between 0 and 1, with higher
values indicating that the objects being measured are more similar.
Given two sets 𝐴 and 𝐵, it is calculated as:

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 (𝐴, 𝐵) = |𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | =

|𝐴 ∩ 𝐵 |
|𝐴| + |𝐵 | − |𝐴 ∩ 𝐵 | (1)

Dice similarity coefficient is a set similarity metric, also used
to calculate the similarity between two finite sets. The value of Dice
similarity is between 0 and 1, with higher values indicating that
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the objects being measured are more similar. Given two sets 𝐴 and
𝐵, it is calculated as:

𝐷𝑖𝑐𝑒 (𝐴, 𝐵) = 2 ∗ |𝐴 ∩ 𝐵 |
|𝐴| + |𝐵 | (2)

Levenshtein distance is a metric that measures the difference
between two sequences. It is a type of Editor Distance and is the
measure of the minimum number of editing operations needed to
transform one string into another. Permissible editing operations
encompass character replacements, insertions, and deletions. The
number of edit operations is increased by one if there is an allowed
edit operation. The range of Levenshtein distance is distributed from
0 to positive infinity, with higher values indicating that the objects
being measured are less similar.

Levenshtein ratio is also a measure of the similarity between
two sequences. But it is obtained by calculating the edit-like dis-
tance. In the edit-like distance, the edit times are increased by one
for each occurrence of deletion and insertion of a character, but
increased by two for each occurrence of substitution of a character.
Given two sequences of strings 𝐴 and 𝐵, and the edit-like distance
𝑙𝑑𝑖𝑠𝑡 of them, the Levenshtein ratio is calculated as:

𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛_𝑟𝑎𝑡𝑖𝑜 (𝐴, 𝐵) = |𝐴| + |𝐵 | − 𝑙𝑑𝑖𝑠𝑡 (𝐴, 𝐵)
|𝐴| + |𝐵 | (3)

Jaro similarity measures the similarity of two strings to derive
the degree of similarity between them. The value of Jaro similarity
is between 0 and 1, with higher values indicating that the objects
being measured are more similar. For two strings 𝐴 and 𝐵, where
|𝐴| and |𝐵 | denote the lengths of the strings𝐴 and 𝐵.𝑚 denotes the
number of matching characters of the two strings. If the difference
between the positions of the same characters in 𝐴 and 𝐵 does not
exceed the matching window

⌊
max( |𝐴 |, |𝐵 | )

2

⌋
−1, they are considered

to be matched. 𝑡 denotes half of the number of transpositions. The
number of transpositions indicates the number of characters in
the matching characters that are in different positions. The Jaro
similarity is given by the following formula:

𝐽aro (𝐴, 𝐵) = 1
3

(
𝑚

|𝐴| +
𝑚

|𝐵 | +
𝑚 − 𝑡

𝑚

)
(4)

Jaro-Winkler similarity is an algorithm that improves on the
Jaro similarity. For two strings 𝐴 and 𝐵 and their Jaro similarity
𝐽aro (𝐴, 𝐵), the number of common prefix characters between two
strings 𝑙 , which can be at most 4, a scaling factor constant 𝑝 that
describes the contribution of the common prefix to the similarity,
with larger 𝑝 indicating a greater common prefix weight, up to a
maximum of 0.25, taking the default value of 0.1. The Jaro-Winkler
similarity is given by the following formula:

𝐽aro-Winkler (𝐴, 𝐵) = 𝐽aro (𝐴, 𝐵) + 𝑙 ∗ 𝑝 ∗ (1 − 𝐽aro (𝐴, 𝐵)) (5)

We calculate six similarity (distance) scores for each pair of token
type sequence, and then stitch these six scores into a 6-dimensional
vector, which is the extracted similarity feature vector. We will
evaluate the different effects and importance of these six features
through the interpretability of our method in Section 4.5.

3.4 Classification
In order to address the issue of requiring significant computational
resources and practical expenses for training complex neural net-
works, we utilize machine learning models to handle the classifica-
tion problem for code clones. Machine learning is widely applied
in fields such as data analysis and mining, pattern recognition,
and bioinformatics, particularly excelling in handling classifica-
tion problems. It saves computational resources and requires low
time overhead. Therefore, we employ machine learning models
to accomplish our classification stage. During the training phase
of the model, we extract similarity vectors from the test set. The
machine learning algorithm is trained using the input vectors and
their corresponding labels. Once trained, the resulting model is
saved for future use. During the prediction phase, the code pairs to
be tested are also processed in the aforementioned two phases to
obtain their feature vectors. These vectors are then inputted into
the model for prediction, resulting in the detection outcome for the
code pairs (i.e., zero indicating non-clone pairs, and one indicating
clone pairs). In Section 4.2, we select different machine learning
algorithms such as k-nearest neighbor (KNN) [15] and random forest
(RF) [12] to achieve more comprehensive experiments. Addition-
ally, we also compare the ensemble of all the machine learning
algorithms with the use of a single machine learning algorithm to
determine whether it can achieve better results in Section 4.3.2.

4 EXPERIMENTS
In this section, we discuss the following five questions through
experimental implementation:
• RQ1: How does the detection performance vary when type are used
or not used during the tokenization phase, and different machine
learning algorithms are employed during the classification phase?

• RQ2: Do individual components have a positive impact on the
detection performance?

• RQ3: What is the detection performance of Toma compared to other
clone detection tools for different types of clones?

• RQ4: Which similarity calculation methods are the most effective?
• RQ5: What is the time overhead of Toma?

4.1 Experimental Settings
4.1.1 Experimental Dataset. We conduct our experiments on the
widely used BigCloneBench (BCB) [1, 52] dataset. The clone pairs
from the BCB dataset are at the function level, which aligns with
the granularity of our detection method. Furthermore, the clone
pairs from the BCB dataset are manually labeled with clone types
to facilitate testing the detection effect of Toma on different types
of clone pairs. In the BCB dataset, the boundary between Type-
3 and Type-4 is ambiguous. To address this, Svajlenko et al. [52]
subdivided Type-3 and Type-4 into three subtypes based on line-
level and token-level similarity: i) Strongly Type-3 (ST3) clones have
a similarity range of [0.7, 1.0), ii) Moderately Type-3 (MT3) clones
have a similarity range of [0.5, 0.7), and iii) Weakly Type-3/Type-
4 (WT3/T4) clones have a similarity range of [0.0, 0.5). Since the
BCB dataset only consists of 278,838 non-clone pairs, we randomly
select almost 270,000 clone pairs from the total eight million clones.
Among them, there are 48,116 T1 clones, 4,234 T2 clones, 21,395
ST3 clones, 86,341 MT3 clones, and 109,914 WT3/T4 clones.
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4.1.2 Machine Learning Algorithms. We select some commonly
used machine learning algorithms: k-nearest neighbor (KNN) [15],
random forest (RF) [12], decision tree (DT) [46], adaptiva boosting
(Adaboost) [18], gradient boosting decision tree (GDBT) [19], eXtreme
Gradient Boosting (XGBoost) [13], and logistic regression (LR) [16] to
conduct classification experiments. For KNN, we use 1NN, 3NN, and
5NN, by selecting three widely used K (i.e., K = 1, 3, 5) to commence
our experiments. In total, we implement nine machine learning
algorithms.

4.1.3 Comparative Tools. There have been numerous code clone
detection tools proposed, many of which have demonstrated good
performance in terms of effectiveness and scalability. However,
most of them are not open source. Therefore, we have chosen the fol-
lowing open-source code clone detection methods to compare with
our approach. SourcererCC [49] : a sophisticated traditional clone
detector based on token. RtvNN [62] : a sophisticated learning-
based clone detector that utilizes a recurrent neural network (RNN)
for its detection mechanism. Deckard [28] : a sophisticated tradi-
tional clone detector based on Abstract Syntax Tree. ASTNN [67] :
a sophisticated learning-based and AST-based clone detector that
employs a gate recurrent unit network for its detection process.
TBCNN [40] : a sophisticated learning-based and AST-based clone
detector that utilizes a convolutional neural network (CNN) for its
detection process. CDLH [60] : a sophisticated learning-based and
AST-based clone detector that utilizes a long short-term memory
network. SCDetector [65] : a sophisticated learning-based and CFG-
based clone detector that employs centrality and Siamese network.
DeepSim [68] : a sophisticated learning-based and graph-based
clone detector that utilizes binary matrix and deep neural network.
FCCA [26] : a sophisticated clone detector that leverages hybrid
code representations to achieve its detection capabilities. The pa-
rameter settings used in the implementation of these tools are
derived from the parameters described in their respective papers
that achieved the best results.

4.1.4 Experimental Environment and Metrics. Since we are using a
dataset in the Java programming language, for the first phase of
static analysis, we employ the Javalang [5] package in Python to
tokenize the code. For the second phase of feature extraction, we use
the Levenshtein [4] package in Python to calculate similarity. For the
third phase of classification, we utilize Sklearn [3] library in Python
to implement these machine learning algorithms. We conduct all
experiments on a server running the Ubuntu 16.04 operating system,
with 62GB RAM, an Intel Xeon CPU with 12 cores, and an RTX
2080 Ti GPU. We employ ten-fold cross-validation to record the F1
score, precision, and recall for each validation run, calculate the
average of these metrics across the ten validations, and consider
this average as the final performance. We use some widely-used
metrics for evaluating detection performance. F1 score is defined
as 𝐹1 = 2 ∗ 𝑃 ∗𝑅/(𝑃 +𝑅). Precision is defined as 𝑃 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃).
Recall is defined as 𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 ). TP represents true positive,
refers to the number of samples correctly classified as clone pairs, FP
represents false positive, refers to the number of samples incorrectly
classified as clone pairs, and FN represents false negative, refers to
the number of samples incorrectly classified as non-clone pairs.

4.2 RQ1: Determination of Methods to Be Used
at Tokenization and Classification Phases

In the tokenization phase, we not only extract token sequences of
program but also transfer these tokens to their corresponding types
to get type sequences. In order to verify the effectiveness of these
two sequence extraction methods for clone detection, we evaluate
the effectiveness in two separate cases in this subsection.

In the classification phase, we employ different machine learning
algorithms to classify. We aim to determine which machine learning
algorithm yields the optimal detection results for Toma.

8 1 6 3 2 6 4 1 2 8 2 5 68 2
8 3
8 4
8 5
8 6
8 7
8 8
8 9
9 0
9 1

F1
Sco

res
wit

ht
oke

no
nB

CB
P a r a m e t e r s

R F
D T
A d a b o o s t
G D B T
X G B o o s t

8 1 6 3 2 6 4 1 2 8 2 5 68 2
8 3
8 4
8 5
8 6
8 7
8 8
8 9
9 0
9 1

F1
Sco

res
wit

ht
ype

on
BC

B

P a r a m e t e r s

R F
D T
A d a b o o s t
G D B T
X G B o o s t

Figure 3: The F1 scores achieved by five machine learning
algorithms under different parameter settings

For machine learning algorithms, selecting appropriate parame-
ters is crucial as different parameter choices can significantly impact
classification performance. Therefore, we first need to determine
suitable parameters for each machine learning algorithm. In the
KNN algorithm, the neighbor parameter K determines the number
of nearest neighbors considered by the model. It is common prac-
tice for us to choose odd values such as one, three, or five for K
to avoid ties in classification and generally achieve better results
in practice. LR is a linear classifier that typically does not require
explicitly setting parameters like KNN. The default values provided
in the Sklearn package are usually reasonable choices. For RF, DT,
Adaboost, GBDT, and XGBoost algorithms, they are based on tree
ensemble methods, they possess a parameter for controlling the
depth of the trees. Selecting the depth parameter requires experi-
mentation within a reasonable range. We choose depths of 8, 16,
32, 64, 128, and 256 for these algorithms to test their classification
performance and identify the optimal parameter setting.

Figure 3 displays the F1 scores achieved by them under different
parameter settings for both token sequences and type sequences.
Combining the performance in both cases, we can observe that
when the depth parameters for RF, DT, Adaboost, GBDT, and XG-
Boost are set to 32, 32, 64, 16, and 32 respectively, they attain their
highest F1 scores for the first time. Therefore, we utilize the detec-
tion results obtained using these parameter values to compare the
performance of different machine learning algorithms.

We plot the F1 values for each machine learning algorithm ob-
tained each time using the ten-fold cross-validation method in
Figure 4. From the figure, two phenomena can be observed. Firstly,
in comparison to other machine learning algorithms, GDBT, XG-
Boost, and RF exhibit relatively higher F1 scores. Secondly, using
type sequences yields better results compared to token sequences.
For instance,GDBT achieves an average F1 score of 90.10%, XGBoost
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Figure 4: F1 scores of Toma using different machine learning
classification methods

Table 1: The P-values between each pair of algorithms, with
 indicating a P-value less than 0.05 and # indicating a P-
value greater than 0.05

P-value
Mean(%)token type

G X RF G X RF

token
G # #     89.31
X # # #    89.46
RF  # #    89.56

type
G    #   90.10
X     # # 90.59
RF     # # 90.45

achieves 90.59%, while RF achieves 90.45% when type sequences
are used. In contrast, 1NN achieves an average F1 score of 87.80%,
3NN achieves 87.14%, 5NN achieves 87.02%, DT achieves 88.33%,
Adaboost achieves 88.89%, and LR achieves 74.57%. When token
sequences are used, GDBT, XGBoost, and RF achieve an average F1
score of 89.31%, 89.46%, and 89.56%, respectively, which are also
better than other machine learning algorithms. However, the top-
performing three machine learning algorithms exhibit minimal
differences between each other (0.2% on average). Furthermore,
compared to the case of using token sequences, the average im-
provement of all three results is about 1%.

Therefore, we conduct a statistical test on the results of GDBT,
XGBoost, and RF in both cases to validate whether there are signifi-
cant differences between the results. Due to the non-normal distri-
bution of our data, we used the Kolmogorov-Smirnov Test (ks-test)
[38] for statistical testing. The ks-test is a common non-parametric
test, and the two-sample test is used to determine whether two
samples belong to the same distribution. When the calculated P-
value [61] is less than 0.05, it indicates that the two corresponding
algorithms have significantly different effects. Table 1 displays the
P-values between each pair of algorithms, where G denotes GDBT
and X denotes XGBoost. Since this matrix is a symmetric matrix, we
can just focus on the upper triangular region. We need to select the
optimal combination from three machine learning algorithms and
two sequences. The selection follows these principles: when there is
a significant difference in performance, we choose the method with

better performance, and when there is no significant difference, we
choose the more scalable approach.

From the table, we can observe that there is a significant differ-
ence in the effect of using type sequences and token sequences,
regardless of the machine learning algorithm (as shown by the nine
 with yellow backgrounds in the table). The performance of using
type sequences is higher than that of token sequences. These re-
sults indicate that incorporating type information can improve the
detection effectiveness in code clone detection. By extracting token
types alongside the tokens themselves, we reduce false negatives
caused by local variations, thereby enhancing the recall of clone
pairs. Therefore, type sequences will be used in the subsequent
comparative experiments.

We continue to observe the performance of three machine learn-
ing algorithms in the case of using type sequences. Among them,
GDBT has a significant difference from RF and XGBoost (as shown
by the two  in the green background in the table), GDBT has
worse performance, so it is excluded. As for RF and XGBoost, there
is no significant difference in the performance between them (as
shown by the # on the red background in the table). However, the
training speed of RF is about 3.5 times faster compared to XGBoost.
Therefore, in the subsequent comparative experiments, we select
RF to compare its classification performance.

In Summary: When type sequence is used during the tokeniza-
tion phase, and RF is employed during the classification phase,
Toma can have a relatively high F1 score and is more scalable. As
a result, we select type sequences and RF as the components of
Toma.

4.3 RQ2: Individual Components Effectiveness
4.3.1 Machine Learning. To investigate the improvement of ma-
chine learning in code clone detection, we conduct this experiment.
We employ these similarity calculation methods directly to assess
the similarity of type sequences without utilizing machine learning
algorithms. If the similarity score for a pair of codes surpasses a
specified threshold, they will be labeled as a clone. Our experiments
record the clone detection performance using six similarity calcu-
lation methods under various thresholds. Then we compare these
results with the performance achieved using the RF algorithm.

Table 2: The detection performance of each similarity calcu-
lation method and random forest

Metrics P R F1 P R F1 P R F1
Threshold 150 100 50
L_dis 53.1 80.6 64.0 54.9 73.0 62.7 63.4 56.9 60.0

Threshold 0.7 0.8 0.9
Jaccard 80.7 63.3 71.0 90.2 48.3 63.0 99.0 29.1 45.0
Dice 70.0 76.7 73.2 77.9 66.9 71.9 92.1 44.8 60.3
Jaro 62.6 83.6 71.6 80.5 63.7 71.1 99.6 26.2 41.5
JW 62.6 83.6 71.6 74.1 73.0 73.5 96.5 38.7 55.2

L_ratio 76.0 70.8 73.3 95.3 47.4 63.3 99.8 27.8 43.5
RF Precison = 92.9, Recall = 87.9, F1 score = 90.3

The experimental results are presented in Table 2, with JW rep-
resents Jaro_winkler, L_dis represents Levenshtein_distance, and
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L_ratio represents Levenshtein_ratio. Levenshtein_distance is a dis-
tance calculation method, so its threshold is different from other
similarity calculation methods. For instance, when the threshold
is set to 0.8, using the Jaro_winkler similarity calculation method
achieves the highest F1 score of 73.50% among all similarity meth-
ods. At this time, its precision is 74.07%, and recall is 72.95%. In
contrast, RF achieves 92.95% precision, 87.87% recall, and 90.34%
F1 score. Compared to using only a specific similarity calculation
method, the machine learning algorithm significantly enhances the
code clone detection performance. This improvement is attributed
to the machine learning algorithm’s ability to comprehensively
utilize the outputs of different similarity calculation methods and
automatically assign weights to similarity scores from different per-
spectives. Consequently, it can consider code clone similarity more
comprehensively, mitigating the bias caused by a single method,
and thus achieving better detection results. The use of multiple
similarity calculation methods allows our method to assess the sim-
ilarity between two code fragments from different angles, thereby
improving the accuracy of detection.

4.3.2 Ensemble Learning. The machine learning algorithms we
have chosen excel in solving classification problems, employing
different algorithmic logic to classify the same problem. In the pre-
vious subsection, we discuss the comparative performance of these
machine learning algorithms within our method. However, their
specific performance depends on the nature of the classification
task and the characteristics of the data. Each machine learning
algorithm has its own strengths and advantages. Given the diverse
advantages of different machine learning algorithms, we consider
the utilization of ensemble learning to integrate the results from
multiple classifiers and investigate whether their combination could
lead to better performance in terms of accuracy and robustness for
our clone detection tool.

Table 3: The detection performance of ensemble learning
and random forest, and the P-value between these scores

F1 Precision Recall
Random Forest 90.39% 92.98% 87.95%

Ensemble Learning 90.25% 93.27% 87.42%
P-value # #  

We construct a meta-classifier that combines the predictions of
multiple base classifiers. These base classifiers are trained using
the nine machine learning algorithms mentioned in RQ1, and each
provides predictions for the given code pairs to be detected. The
meta-classifier learns to make the final prediction based on the
outputs of the base classifiers, effectively leveraging their diverse
perspectives. In the ensemble learning approach, if the number
of base classifiers predicting “clone” for a code pair is equal to or
greater than five, the ensemble learning classifier determines the
code pair as a “clone”. Otherwise, it is classified as a “non-clone”.

To evaluate the effectiveness of ensemble learning, we compare
the performance of the individual classifier (i.e., RF ) selected in RQ1
with the ensemble learning classifier. From Table 3, we can observe
that the F1 scores and Precision of ensemble learning are not signif-
icantly different from those of RF, and the F1 score is even slightly
lower than those of RF in terms of the average value. Furthermore,

the Recall is significantly lower than RF. This may be due to the
fact that ensemble learning classifier identifies code pairs as “clone”
only when more than or equal to five classifiers give “clone” predic-
tions. Therefore, ensemble learning has a lower recall. In addition,
some of the selected machine learning methods may not be suitable
for our approach, introducing noise to the detection results and
interfering with the final decision of the ensemble learning. As a
result, the effectiveness of ensemble learning is not as outstanding
as we initially anticipated.

In Summary: Compared to using only a specific similarity
calculation method, the machine learning algorithm significantly
enhances the detection performance. The effectiveness of ensemble
learning is not as outstanding as we initially anticipated, so we
do not use it.

4.4 RQ3: Overall Effectiveness
In the previous experiments, we have already demonstrated the
accuracy of using token types and the RF algorithm in code clone
detection. Now, we compare the detection results by using these
two approaches with other comparative tools to further analyze
our overall effectiveness. Firstly, we run Toma on the BCB dataset
that contains clone pairs of all types and compare Toma against
baseline techniques to evaluate its effectiveness in detecting all
types of clones. Next, we specifically evaluate the performance of
Toma on different types of clone pairs, such as T1, T2, ST3, MT3,
and WT3/T4. We compare the performance of Toma with baseline
tools to assess its effectiveness in detecting different types of clones.

Table 4: Results on BigCloneBench dataset
Group Method F1 Precision Recall

Token-based SourcererCC 0.14 0.98 0.07
RtvNN 0.01 0.95 0.01

Tree-based

Deckard 0.12 0.93 0.06
ASTNN 0.93 0.92 0.94
TBCNN 0.85 0.90 0.81
CDLH 0.82 0.92 0.74

Graph-based
SCDetector 0.92 0.97 0.94
DeepSim 0.98 0.97 0.98
FCCA 0.92 0.98 0.95

Our method Toma 0.90 0.93 0.88

Table 4 provides a comprehensive comparison of the perfor-
mance of Toma with other tools. As a token-based method utiliz-
ing machine learning, our approach effectively balances precision
and recall, resulting in F1 scores that surpass the majority of the
token-based and tree-based compared tools, but not as good as
graph-based comparison tools.

Compared to token-based tools, our F1 score significantly sur-
passes the two compared tools. This can be attributed that Sourcer-
erCC is a token-based clone detection tool that primarily considers
token overlap similarity to detect code clones. While SourcererCC
performswell in terms of clone detection accuracy, its limited ability
to handle complex clone code arises from the lack of consideration
for semantic information and the absence of machine learning tech-
niques. This limitation leads to lower F1 scores. RtvNN is also a
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token-based tool that uses recursive neural networks to compute
the similarity of code pairs based on the Euclidean distance between
tokens and abstract syntax trees. However, this distance calculation
approach results in minimal differences between most code pairs,
making it difficult to effectively differentiate between clones and
non-clones. RtvNN relies on threshold settings to maintain high
precision but cannot achieve a balance between precision and recall,
resulting in very low F1 scores.

Compared to tree-based tools, Toma’s detection performance
outperforms the majority of them. Deckard exhibits low recall but
high precision. This is because Deckard represents the syntax struc-
ture information of the parse tree using vectors and then uses
clustering to find neighboring vectors to determine the similarity
of code pairs. This approach requires the feature vectors of parse
tree roots to be very close. As a result, Deckard achieves high pre-
cision when detecting highly similar clone pairs (i.e., T1 or T2) in
our dataset. However, in slightly more complex code clone pairs,
where more than half of them have different parse tree structures,
Deckard fails to recognize these clones, resulting in low recall and
consequently low F1 scores. ASTNN decomposes each large AST
into a series of smaller statement trees and encodes them as vec-
tors. It utilizes BiGRU and RvNN encoders to automatically capture
more important node information, resulting in the highest F1 score.
The detection outcomes of TBCNN and CDLH exhibit a slightly re-
duced performance compared to Toma. CDLH undertakes an initial
transformation of program ASTs into binary trees, subsequently
utilizing binary Tree-LSTM [53] for tree representation. However,
this binary tree conversion raises concerns related to the long-
term dependency of the original semantics, thereby impeding the
achievement of optimal detection results. Similarly, the utilization
of a sliding convolution kernel in TBCNN gives rise to challenges re-
lated to the absence of context information over extended distances,
potentially leading to suboptimal detection outcomes, especially as
the depth of the AST increases.

Compared to graph-based tools, all of them achieve improved
detection results by leveraging semantic information. SCDetector
follows a different approach by associating semantic details with
tokens based on the analysis of each basic block’s centrality in the
control flow graph. DeepSim adopts a strategy where it abstracts
variables and basic code blocks, along with their relationships, into
a binary matrix. This matrix is then utilized as input for a deep
learning model, enabling effective detection of semantic clones
and yielding ideal performance in this regard. FCCA stands out by
extracting diverse representations of code, including token, tree, and
graph. These representations are processed by deep learning model
that incorporates an attention mechanism, enabling the detection
of most semantic code clones.

In contrast, our method only extracts lexical information from
the code and does not incorporate additional structural or semantic
information. The absence of additional code information in our
method leads to the inability to detect more clone pairs, resulting
in lower recall. However, while most tree-based and graph-based
methods achieve good detection performance by extracting seman-
tic information from tree and graph using neural networks, with
significant time and computational resource overhead. They require
the involvement of GPUs for complex network training, whereas

our method can be completed using CPU alone. Therefore, Toma is
more scalable compared to tree-based and graph-based methods.

Table 5: The F1 score, Precision, and Recall in detecting each
clone type

Metrics T1 T2 ST3 MT3 WT3/T4
F1 1.00 1.00 0.99 0.93 0.77

Precision 1.00 1.00 0.99 0.94 0.86
Recall 1.00 1.00 0.99 0.93 0.70

Next, we proceed with an analysis of Toma’s performance in
detecting different types of clones. The F1 scores obtained for each
type will be compared with those of the baseline tools. As shown in
Table 5, Toma achieves a precision, recall, and F1 score of 99% when
detecting clones of types T1, T2, and ST3. When detecting clones of
type MT3, Tomamaintains a relatively high recall score of 93%. This
suggests that Toma is sufficient to detect most clones in the real
world. When it comes to detecting clones of type WT3/T4, Toma’s
performance is relatively weaker. This is because clones of these
types often exhibit higher complexity and variability. However,
Toma solely considers the lexical information of the code, and the
token sequences only reflect a very basic code structure. Despite
of these limitations, our method still achieves an F1 score of 77%,
providing strong evidence that a simple approach based on machine
learning algorithms is sufficient for detecting the majority of clones.

Table 6: F1 scores for each clone type of Toma and compara-
tive tools

Group Method T1 T2 ST3 MT3 WT3

Token-based SourcererCC 1.00 1.00 0.65 0.20 0.02
RtvNN 1.00 0.97 0.6 0.03 0.00

Tree-based

Deckard 0.73 0.71 0.54 0.21 0.02
ASTNN 1.00 1.00 0.99 0.98 0.92
TBCNN 1.00 1.00 0.93 0.80 0.86
CDLH 1.00 1.00 0.94 0.88 0.82

Graph-based
SCDetector 1.00 1..00 0.97 0.97 0.94
DeepSim 0.99 0.99 0.99 0.98 0.95
FCCA 1.00 1.00 0.99 0.97 0.95

Our method Toma 1.00 1.00 0.99 0.93 0.77

Table 6 presents the F1 scores of the baseline tools and Toma in
detecting different clone types. It can be observed that Toma outper-
forms the majority of the baseline tools when detecting clones of
types T1, T2, and ST3. In the case of detecting clones of type MT3,
Toma achieves an F1 score of 93%, slightly lower than ASTNN ’s F1
score of 98% and graph-based tools, but with a significant advantage
over the other tree-based tools and token-based tools. When detect-
ing clones of type WT3/T4, SourcererCC, RtvNN, Deckard, ASTNN,
TBCNN, CDLH, SCDetector, DeepSim, and FCCA can attain the F1
scores of 2%, 0%, 2%, 92%, 86%, 82%, 94%, 95%, and 95% respectively.
Toma achieves an F1 score of 77%. It is evident that our method
performs significantly better than token-based tools, but falls short
compared to tools based on graph and tree, except for Deckard. This
is because tree-based methods consider the syntactic information
of the code, which can reflect the similarity between code pairs at
the syntactic level. Graph-based methods consider more semantic
information such as control flow and data flow of the code. Our
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approach only extracts the lexical information of the code and does
not extract any syntactic and semantic information, thus lacking of
the ability to detect semantic clones. Through the current recent
research [59], we can clearly know that most of the real-life clones
are simple clones (i.e., T1, T2, ST3, and MT3), and the proportion
of complex semantic clones is very small (i.e., 6%). Therefore, the
effectiveness of Toma is sufficient to detect most of the clones in
the real world and can meet the needs of real-life.

In Summary: Overall, although Toma is not as effective as tree-
based and graph-based methods in detecting complex clones, it
has been able to achieve high enough effectiveness in detecting
some simple clones and can meet the needs of real-life.

4.5 RQ4: Interpretability
In order to ascertain the most effective similarity calculation meth-
ods among the six used in our approach, we leverage the inter-
pretability of machine learning algorithms to assess the importance
of each feature. By extracting the weights assigned to each feature
in the input feature vectors of the random forest algorithm, we can
gain a clear understanding of the significance of these six similarity
calculation methods for clone detection.

From Table 7, we can observe that the feature derived from the
Levenshtein_distance calculation exhibits the highest level of impor-
tance, followed by the Levenshtein_ratio feature. This is because the
Levenshtein_distance represents the minimum number of edit oper-
ations required to transform one sequence into another, and this
count of edits directly reflects the differences between the two se-
quences. Furthermore, the Levenshtein_distance partially preserves
the order of tokens in the sequence, which enables it to capture
modifications involving statement insertions and deletions, thus
enhancing the precision of Toma in detecting Type-3 clones. In
contrast, the Levenshtein_ratio incorporates the lengths of the two
sequences, allowing for differentiation between sequences of vary-
ing lengths even when they have the same class of edit distance.
In the context of clone detection, we may prioritize capturing the
differences between code fragments rather than their lengths. There-
fore, the introduction of sequence lengths by the Levenshtein_ratio
does not confer higher importance for clone detection purposes.

Table 7: The importance of features in detecting code clones
Rank Feature Name Weight
1 Levenshtein_distance 0.241239
2 Levenshtein_ratio 0.226567
3 Jaro_winkler 0.172471
4 Jaro 0.134083
5 Dice 0.11441
6 Jaccard 0.11123

Both Jaro_winkler and Jaro similarity metrics incorporate a
threshold matching window. This setting emphasizes local similar-
ity and can accommodate certain changes in the order of statements
while limiting code variations within a certain range. The emphasis
on local similarity judgments enhances detection accuracy but sac-
rifices recall. The Jaro_winkler algorithm places greater emphasis
on the importance of matching prefixes compared to Jaro similarity.
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Figure 5: The distribution of similarity scores (distances)
computed by each method

If two strings have the same initial characters, they will receive a
higher similarity score. This algorithm aligns more closely with
the development patterns observed in code, such as control flow
and data flow. It assumes that two code fragments with the same
semantic meaning have the same semantic understanding at the
beginning of the code. Therefore, the Jaro_winkler algorithm is
considered to have higher importance in clone detection tasks.

Two similarity algorithms that have relatively lower importance
areDice and Jaccard. These two similarity calculationmethods focus
only on the number of shared features between sequences, while
disregarding the order of the sequences. However, the execution
order of identical statements can influence the semantic meaning
of a program, the order of token sequences largely reflects the
progression of the program and its control or data flow changes.
The disregard for sequence order in Dice and Jaccard can lead to a
certain amount of false positives, hence their lower importance.

To assess the efficacy of similarity calculationmethods in discern-
ing between clone and non-clone pairs, we analyze the distribution
of computed similarity scores or distances for each method. The
results are recorded in Figure 5, where JW represents Jaro_winkler,
L_ratio represents Levenshtein_ratio, and L_dis represents Leven-
shtein_distance. Levenshtein_distance is a distance calculationmethod,
a smaller distance score indicates higher similarity, while a larger
score suggests less similarity. The data in the figure clearly demon-
strates that there is a distinct difference in the distribution of similar-
ity scores between clone pairs and non-clone pairs, indicating that
those similarity calculation methods are effective in distinguishing
clones. To demonstrate the significance of their differences, we also
calculate the P-value of the similarity scores between clone and
non-clone pairs for these similarity calculation methods. The results
show that the P-value for all six sets of data is much less than 0.05,
for example, the P-value for Levenshtein_distance is 1.72𝑒−49. Fur-
thermore, different similarity calculation methods have varying lev-
els of discriminative power. For instance, the Levenshtein_distance
method shows considerable overlap in the distribution of distance
scores between clone and non-clone pairs. This may be because the
distance scores span from zero to positive infinity, where scores
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tend to increase with longer sequences. This complexity hinders
effective detection using a straightforward threshold-based method.
With the incorporation of machine learning, the sequence informa-
tion in Levenshtein_distance can be leveraged effectively, becoming
the most important feature in the detection process.

In Summary: Levenshtein_distance is the most important fea-
ture, its count of edits directly reflects the differences between
the two sequences. The observed score distribution disparity be-
tween clone pairs and non-clone pairs suggests the efficacy of the
employed similarity calculation methods in distinguishing clones.

4.6 RQ5: Scalability
In this section, we analyze the scalability of our system by com-
paring the runtime overhead of Toma against baseline tools. We
randomly select 1,000,000 pairs of code from the BCB dataset as
test set. We perform ten random selections, resulting in ten sets of
test objects. The average runtime overhead of each set is calculated
and presented as the final result. To give a more comprehensive
comparison of these code clone detection methods in real-life sce-
narios, we also run these algorithms in an environment with only
CPU, to observe how their training time and prediction time would
change without GPU acceleration.

It can be observed that compared to non-learning-based clone
detection tools, Toma demonstrates a prediction time that is only
slightly longer than that of SourcererCC, with a mere 4-second dis-
parity. This is because SourcererCC uses overlap similarity based on
Jaccard index, while Toma uses six similarity calculation methods,
including Jaccard similarity, which requires more time for process-
ing. Deckard has a slightly longer prediction time than Toma, but
its overall runtime is shorter because the tree-based clone detection
tool Deckard extracts the structural information of syntax trees
into vector representations and determines clones through vector
clustering, resulting in a short prediction time.

Table 8: Time performance of the baseline tool and Toma
with and without GPU, where T denotes training time and P
denotes prediction time

Group Method GPU CPU
T(s) P(s) T(s) P(s)

Token-based SourcererCC - - 0 12
RtvNN 3,862 26 23,176 1,747

Tree-based

Deckard - - 0 53
ASTNN 11,940 2,147 101,833 4,851
TBCNN 30,538 64 201,167 1,914
CDLH 33,616 67 219,436 2,020

Graph-based
SCDetector 2,179 103 17,640 2,985
DeepSim 10,048 25 62,903 1,445
FCCA 42,111 68 243,621 2,221

Our method Toma - - 914 22

Compared to learning-based approaches, although both training
and prediction processes of these methods are accelerated using
GPUs, Toma still requires the least amount of training and predic-
tion time. When testing the runtime of these tools using only the
CPU, we obtain significantly slower results. For example, in terms

of prediction time (which is more important than training time),
the fastest DeepSim takes 1,445 seconds to complete its prediction,
which is 65.68 times longer than Toma. This proves once again
that these approaches that sacrifice scalability to develop complex
clone detection capabilities may not be practical in real life. This is
because deep learning and neural network training itself require
significant computational resources and consume a considerable
amount of time. In contrast, Toma leverages token sequences ac-
quired through lexical analysis, employs straightforward similarity
techniques to extract features, and utilizes a lightweight training
process for the random forest machine learning algorithm. This
training process only demands CPU resources and is time-efficient.
Therefore, the prediction process exhibits notable speed.

In Summary: Toma achieves a good balance between detec-
tion performance and runtime efficiency, providing efficient clone
detection with minimal time overhead.

5 DISCUSSION
5.1 Threats to Validity
5.1.1 External Validity. The first threat comes from the number of
types. In the tokenization phase, we transform the extracted token
sequences into type sequences. 99.7% tokens can be categorised into
14 types, but these 14 types may not be enough to cover all tokens.
To mitigate this threat, we add a Null type to cover the tokens
beyond the 14 types. This addition helps to improve the generality
of our methods by extending them to more Java codes. The second
threat stems from our dataset. We only evaluated our method on the
BCB dataset, which can not be representative of all data. Therefore,
we plan to use more challenging and more representative datasets
to further evaluate the capabilities of our method in future work.

5.1.2 Internal Validity. The first threat arises from the selection of
parameters in the machine learning model, as diverse parameter
choices can lead to outcome variations. To mitigate this threat, we
evaluate the detection performance of different depth parameter
values on our dataset, aiming to determine the optimal value for the
machine learning methods. When the depth parameters for RF, DT,
Adaboost,GBDT, andXGBOOST are respectively set to 32, 64, 256, 16,
and 256, they achieve the best F1 scores on our dataset for the first
time. The second threat arises from the recording of time overhead.
Different machine states, such as CPU utilization, may impact the
running time of the experiments. So, it is hard to obtain absolutely
accurate and universally applicable data. To mitigate this threat,
we conduct ten experiments and record the time overhead for each
run. By calculating the average time overhead from multiple runs,
we can reduce the influence of individual experimental variations
and provide more reliable and stable time overhead data.

5.2 Programming Language Generalizability
In our paper, we design our tool specifically for Java since the test
dataset is based on a Java corpus. The subsequent stages of clone de-
tection are language-independent and do not require modifications.
For example, utilizing dedicated tools like pycparser [6] designed
for lexical analysis in C language can enhance our approach to code
clone detection in C.
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5.3 Colinearity of Features
We conduct an analysis of the collinearity [17] of features. Collinear-
ity among features can pose issues for the interpretability of feature
weights in linear regression models. However, for tree models like
RF used in our experiment, it usually does not have a significant
impact on the predictive performance and interpretability even if
there is collinearity among features. Nonetheless, we still use the
Pearson correlation coefficient [14] to calculate the correlation be-
tween our features. The Pearson correlation coefficient ranges from
-1 to 1, and the closer to zero the value is, the weaker the correlation
between features. The experimental results show that the absolute
values of the correlation coefficients between our features are far
less than 0.01, indicating that our features operate from different
perspectives. Due to space constraints, the complete experimental
results are presented on our website [7].

6 RELATEDWORK
In this section, we will focus on current research related to code
clone detection. Efforts in this field can be categorized into two
main aspects: improving scalability and enhancing the effectiveness
of semantic clone detection.

Efforts to improve scalability in clone detection typically involve
token-based clone detection techniques [21, 22, 27, 30, 36, 41, 49, 57].
These techniques extract token sequences from the target source
code. Subsequently, they compare the token sequences’ similar-
ity to detect code clones by searching for duplicate token sub-
sequences. Golubev et al. [22] proposes a modification of the to-
ken bag-based clone detection technique by implementing a multi-
threshold search to detect more clones, to obtain a larger diversity
of pairs without loss of precision. NIL [41] utilizes N-grams to con-
struct a reverse index from the extracted token sequences, and
subsequently employs the common subsequence technique to ver-
ify clones. This approach demonstrates excellent performance in
detecting T1 and T2 type clones, as well as some highly similar
T3 clones. Moreover, it exhibits strong scalability. An optimization
method is also proposed that significantly reduces the overlap of
detected clones between searches and can detect T3 clones.

In order to enhance the capability of code clone detection for
semantic clones, some methods focus on extracting representations
of code trees [23–25, 28, 29, 37, 44, 60, 63, 64, 67, 69] and graphs [32,
33, 51, 56, 65, 68, 70], and utilize machine learning and deep learning
[36, 60, 65, 67, 68] to improve the detection of semantic clones.
CClearner [36] is the first token-based clone detector to employ
deep learning. It detects clones by training deep learning models
with token sequences as input. CDLH [60] is a clone detection
tool based on AST, using LSTM networks to extract binary tree
representations as vectors. ASTNN [67] utilizes a bidirectional RNN
model to integrate subtree vectors predefined by rules into the
final vector representation. It achieves high precision in detecting
semantic clones but lacks scalability. DeepSim [68] leverages PDG-
based semantic high-dimensional sparse matrices to extract feature
vectors and then combines deep learning models for clone detection.
SCDetector [65] is based on control flow graphs, utilizing social
network centrality and Siamese neural networks. The tree-based
and graph-based methods extract rich semantic information from
intermediate representations of code, and exhibit strong capabilities

in detecting complex clones. Learning-based code clone detection
techniques with powerful learning abilities can effectively extract
semantic information from code, thereby improving the detection
of semantic clones.

In summary, traditional token-based methods are only able to
detect very simple lexically similar clones and lack the ability to
deal with some slight modifications in the statements. Tree-based
and graph-based approaches tend to prioritize the extraction of
semantically rich intermediate representations to achieve high-
precision detection of complex semantic code clones. However com-
plex matching algorithms impose high time overheads. Learning-
based approaches typically involve the deployment of intricate
neural network architectures that consume a lot of computational
resources. Compared with these methods, our method only extracts
the type sequences through lexical analysis and employs six similar-
ity calculation methods to increase the representation of the code
from different perspectives. Subsequently, the use of machine learn-
ing models makes our approach accurate, scalable, and interpretable
without the need for large computational resources.

7 CONCLUSION AND FUTUREWORK
In this paper, we propose a code clone detection method based on to-
kens and machine learning. We start by extracting token sequences
of code through lexical analysis. Then six similarity calculation
methods are used to obtain six similarity scores between the two
type sequences, forming a feature vector. This vector is then fed
into a trained machine learning model to determine whether the
code pairs are clones. We conduct effectiveness and scalability com-
parisons of our system with nine code clone detection systems on
the widely used dataset BigCloneBench. Experimental results show
that our method can ensure detection performance surpassing most
tree-based clone detectors with minimal time overhead. Besides, our
method contributes to exploring the powerful detection capabilities
of machine learning. We demonstrate that even with simple feature
extraction algorithms, machine learning still possesses strong clone
detection capabilities. In fact, with generative AI [9], such as Chat-
GPT [2], it is easier than before to transform a code segment into
another with the same semantics but with different syntax. This
may increase the ratio of complex code clones in our real world. In
our future work, we will explore more machine learning methods,
more token details, and some lightweight tree details to enhance
the ability to detect such complex clones.
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