1484

IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

A Multigranularity Forensics and Analysis Method
on Privacy Leakage in Cloud Environment

Deqing Zou ', Jian Zhao
Hai Jin

Abstract—The problem of cloud forensics aims at processing
multidimensional, massive, and heterogeneous data to collect and
recover evidence in cloud environment. Existing approaches focus
on excavating all suspicious behaviors from data and ignore pri-
vacy leakage details and behavioral characteristics. In order to
conduct privacy leakage analysis in cloud specifically, we propose
a multigranularity privacy leakage forensics method to analyze
privacy violations caused by malware in cloud environment. By
simulating the target virtual machine environment, our method
can detect privacy leakage behaviors of malware without touch-
ing user’s privacy data. We combine continuous RAM mirroring
technology and dynamic taint analysis to assist the forensics inves-
tigation. To demonstrate the efficacy and utility of our method, we
evaluate its performance with some real-world malware samples
by comparing with some state-of-the-art malware analysis sys-
tems. Experimental results indicate that our method can identify
more privacy leakage paths and behaviors.

Index Terms—Cloud computing, cloud forensics, malware,
privacy violation.

I. INTRODUCTION

ITH the rapid development of the Internet of Things

(IoT) technology, it has become one of the research
hotspots in both industrial and academic area and the IoT
devices have penetrated into people’s life. Cloud computing,
as the key technology of 10T, it does provide a powerful stor-
age ability and computing power for loT. However, with the
particularity of the IoT equipment, it carries a large number

Manuscript received January 22, 2018; revised April 9, 2018; accepted
May 3, 2018. Date of publication May 21, 2018; date of current ver-
sion May 8, 2019. This work was supported in part by the National Key
Research and Development Plan of China under Grant 2017YFB0802205, in
part by the National Science Foundation of China under Grant 61370230,
and in part by the Shenzhen Fundamental Research Program under Grant
JCYJ20170413114215614. (Corresponding author: Weiming Li.)

D. Zou is with the Services Computing Technology and System Laboratory,
Big Data Technology and System Laboratory, Cluster and Grid Computing
Laboratory, School of Computer Science and Technology, Huazhong
University of Science and Technology, Wuhan 430074, China, and also with
the Shenzhen Huazhong University of Science and Technology Research
Institute, Shenzhen 518057, China.

J. Zhao, Y. Wu, W. Qiang, and H. Jin are with the Services Computing
Technology and System Laboratory, Big Data Technology and System
Laboratory, Cluster and Grid Computing Laboratory, School of Computer
Science and Technology, Huazhong University of Science and Technology,
Wuhan 430074, China.

W. Li is with the Network and Computing Center, Huazhong University of
Science and Technology, Wuhan 430074, China (e-mail: lwm@hust.edu.cn).

Y. Wu and Y. Yang are with the Baidu Security Department, Baidu Online
Network Technology (Beijing) Company Ltd., Beijing 100085, China.

Digital Object Identifier 10.1109/JI0T.2018.2838569

, Weiming Li, Yueming Wu, Weizhong Qiang ~,
, Senior Member, IEEE, Ye Wu, and Yifei Yang

of user’s privacy data [1], which would cause a great loss if
leaked out by malicious programs [2]. Therefore, a great con-
cern should be paid in cloud-based IoT on the protection and
leakage prevention of privacy data [3], [4]. At the same time,
it also puts forward higher requirements to cloud forensics.

The privacy disclosure crimes in cloud-based IoT envi-
ronment demands more accurate and precise forensics tech-
niques to analyze malicious activities. One typical paradigm
of cloud forensics follows four stages of operations [5]:
1) evidence source identification and preservation; 2) foren-
sic data collection; 3) forensic data examination and analy-
sis; and 4) evidence reporting and presentation. There exist
many sophisticated methods for forensics investigation in
cloud environment, such as the log-based approaches [6]-[10],
the product-based approaches [S5], [11]-[13], and the vir-
tual machine introspection (VMI)-based approaches [14]-[17].
However, these techniques have not paid enough attention
to information leakage caused by malware, especially ran-
somware and spyware.

In early 2017, the rise of global ransomware reached a
new level of sophistication [18]. For example, by exploit-
ing a vulnerability CVE-2017-0144 [19], WannaCrypt [20]
had affected more than 100000 organizations and institu-
tions in nearly 100 countries around the world including
schools, railway stations, self-service terminals, postal, gas
stations, hospitals, government terminals, and so on. The
destructive behaviors of vulnerabilities have induced serious
leakage problem of privacy data. In particular, Wang et al. [21]
focus on the information leakage caused by “Heart Bleed”
over-read vulnerability [22]. They propose a quantitative risk
measurement of information leak through buffer over-read.
Keyloggers have been reported stolen credentials including
SMTP, FTP, or remote databases [23]. Attacks on privacy
information in cloud environment are becoming prevailing
and damaging. Therefore, it is decisive to pay more attention
to privacy leakage problems during the process of forensic
analysis.

In the cloud computing environment, the issue of user pri-
vacy protection and privacy violation forensics has always
been a challenge [24], because privacy leakage clues are easy
to be destroyed and privacy violation behaviors are difficult
to track and trace. The typical Internet infrastructure only has
basic access control system and nonstandardized logging sys-
tem, and the design of these mechanisms is just for resource
use and business debugging, which is far from the purpose of
computer forensics. For the issues mentioned above, in this

2327-4662 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8534-5048
https://orcid.org/0000-0002-3283-7206
https://orcid.org/0000-0003-4390-3819
https://orcid.org/0000-0002-3934-7605

ZOU et al.: MULTIGRANULARITY FORENSICS AND ANALYSIS METHOD ON PRIVACY LEAKAGE IN CLOUD ENVIRONMENT

paper, we aim to design a novel forensics method to achieve
three goals.

1) To analyze user’s privacy leaks in cloud environment
caused by malware without touching user’s privacy.

2) To identify multiple privacy leakage paths and behaviors.

3) To do forensics on malware behaviors during its
lifecycle.

Our system detects privacy leaks by adopting a multigranu-
larity forensics technique. We propose a new method to focus
on the propagation of user’s privacy information during mal-
ware’s lifecycle. For the purpose of protecting integrity and
security of user’s private information, we intercept the exe-
cutable binaries from the cloud environment and simulate the
target virtual machine environment with VMI technique. Based
on the achievements of the virtual environment, our forensic
method can investigate the criminal activities by integrat-
ing continuous RAM mirroring technology and dynamic taint
analysis. By analyzing the experimental results, it is proved
that our system can detect more privacy leakage paths and
behaviors.

In summary, our contributions in this paper are as follows.

1) We present a privacy detection system that combines
continuous RAM mirroring technology and dynamic
taint analysis to facilitate forensic investigation in cloud
environment, with which we can detect privacy leak-
age behaviors caused by malware related to keystroke
leak, sensitive files leak, and sensitive memory leak, and
extract the complete privacy disclosure paths.

2) Our forensic process is conducted in a completely
independent simulation environment, thus we could do
forensic analysis on privacy violations in cloud envi-
ronment without affecting the online cloud service and
accessing user data.

3) We demonstrate the effectiveness of our system in
detecting privacy leaks caused by malware. We elabo-
rate experimental evaluation including privacy detection
of ransomware and spyware. Compared to some state-of-
the-art techniques, our findings show that the proposed
system can excavate and detect more privacy leakage
behaviors.

The remainder of this paper is organized as follows. In
Section II, we discuss the related work. In Section III, we
introduce the overview and design details of our system. We
present how to implement our system in Section IV, then test
and evaluate our system in Section V and conclude this paper
in Section VI

II. RELATED WORK

In this section, we discuss the previous works regard-
ing cloud forensics. Majority cloud forensics approaches can
be divided into three categories: 1) log-based approaches;
2) product-based approaches; and 3) VMI-based approaches.

A. Log-Based Approaches

In a cloud forensic investigation, an important step is
to obtain the evidential data and take an analysis of the
dataflow [25]. Logs are one of the most important evidences

1485

during the whole forensics process. Marty [6] provided a
proactive approach on logging and accomplish a logging
skeleton with some guidelines to ensure the completeness,
accuracy, and readability of log information. In addition, in
order to address issues of little evidence gathered by tra-
ditional static digital forensics techniques, Sibiya et al. [7]
proposed and displayed a live digital forensics framework
for a cloud environment by using data-mining techniques to
fetch information from log files and employing artificial intel-
ligence techniques to analyze network communication data.
Zawoad et al. [8] first proposed secure-logging-as-a-service for
collecting virtual machines’ logs to construct a log database to
assure the confidentiality of the cloud users, and then imple-
ment a secure logging architecture for network access logs in
well-known OpenStack cloud platform. Additionally, Sang [9]
designed a forensics-friendly system for the purpose of gather-
ing log information from cloud computing faster and making
some digital forensics easier and more convenient. By mod-
ifying Nova and Horizon to add a log acquisition module,
Dykstra and Sherman [10] contributed three new forensics
tools for the OpenStack which provide authentic access of
virtual disks, API logs and guest firewall logs.

B. Product-Based Approaches

Some works attend to do forensics investigation of individ-
ual cloud products. Cho et al. [26] introduce Hadoop-based
cloud forensic steps with remarkable guidelines including
preparation, identification, live collection and analysis, statistic
collection, transport, static analysis, and reporting. Meanwhile,
a new research on forensics analysis of cloud storage services
is proposed [11], which chooses four popular public cloud
services, including Amazon S3, Google Docs, Dropbox, and
Evernote to obtain artifacts of notable devices for investigating
and analyzing. To validate the former work with respect to a
new cloud forensics framework, Martini and Choo [12] con-
ducted a detailed case study by using a popular open-source
cloud storage product ownCloud [5]. They carry out a foren-
sics analysis regarding both client and server of ownCloud
and contribute the correlation of some artifacts to a forensics
investigation. Similarly, by in-depth investigation on two pop-
ular cloud storage products including SkyDrive and Google
Drive, Quick and Choo [13] grabbed some vital information
of security concern that username and password can be deter-
mined from the conserved forensics images. Even in certain
cases, the account password may be stored in plain text in
hard drives or in memory captures or pagefile.sys files. With
further investigation, a comparative analysis has been under-
taken on forensics collection of Dropbox, Google Drive, and
Microsoft SkyDrive, and it has been determined that the con-
tents of files persist consistently during collection from the
three well-known public cloud storage products.

C. VMI-Based Approaches

VMI is a technology that allows an observer to inter-
act with a virtual machine client from outside. In 2003,
Garfinkel and Rosenblum first presented a VMI-based intru-
sion detection system [27]. Since then, VMI techniques have

1486

IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

Whitelist
9 Rules
Extract binaries filter
)—» Yara >

Suspicious Malware
samples and context

(Bro IDS

OS version

Services etc.

Custom Custom
VMO1 VMO02

Fig. 1. Architecture of PVDS.

been widely known and used in various scenarios [16], [17].
Dykstra and Sherman [14] conducted an evaluation to mea-
sure the ability of some popular forensic tools such as EnCase
Enterprise, AccessData FTK to extract data remotely from
Amazon EC2. They also use the Eucalyptus cloud platform to
inject an agent into the virtual machine to test these forensic
tools by using VMI technique. Poisel et al. [15] detailed the
potential of evidence collection from multiple virtualized envi-
ronments in cloud forensics and describe the process on data
acquisition from four different common hypervisors, namely
XEN, KVM, VMware ESXi, and Microsoft Hyper-V.

In addition to the scheme mentioned above, some mal-
ware detection systems also have the functionality of privacy
leakage detection. KingKong malware intelligent analysis sys-
tem [28] is a set of fine-grained, highly transparent malware
dynamic detection system provided by Institute of Software
Chinese Academy of Sciences, it can find subtle abnor-
mal behaviors by analyzing program’s runtime information.
Similarly, Habo [29] is a security platform developed by
Tencent anti-virus lab, through which user can upload samples
to obtain the basic information including suspicious behaviors,
safety level and so on.

However, for log-based approaches, the contents of logs are
usually very complicated, and it is not easy to extract privacy
related contents from a vast amount of logs. Furthermore,
the log-based forensics method is too coarse to accurately
depict the privacy leakage behaviors of malicious softwares.
Thus, our system adopted the multigranularity forensics anal-
ysis technology to achieve a more accurate privacy leak paths
detection. The product-based forensics method can only be
used for certain cloud environments with poor expansibility.
However, our system aims at the general cloud environment,
which is more widely applicable. For VMI-based forensics
method, the concern is that excessive access to the user’s
virtual machine memory can lead to excessive performance
loss. Our method only uses VMI technology to obtain config
information of virtual machine when doing environment sim-
ulation, and then the forensics and analysis procedures will
be conducted in the simulated environment without touching

vagrantup

Suspicious Malware
Continuous
RAM Mirroring .
Privacy
Simulated Violation
VMO02 behaviors
Privacy Leak
Paths Detection

user’s privacy data. By adopting continuous RAM mirroring
and dynamic taint tracing analysis method, privacy violation
detection system (PVDS) can do a multigranularity forensics
investigation on privacy leakage in cloud environment.

III. SYSTEM DESGIN

In this section, we first describe the system architecture then
introduce the four phases in details.

A. System Overview

We now introduce the proposed PVDS, a customized sys-
tem for privacy detection caused by malware in cloud. PVDS
can be divided into four phases, as depicted in Fig. 1. The
first phase of PVDS is suspicious malware interception. We
intercept executable binaries from cloud using intrusion detec-
tion system (IDS) Bro [30], and then adopt YARA [31]
to identify and classify malware samples from the obtained
binaries. IDS is a device or software application that mon-
itors a network or systems for malicious activity or policy
violations. Any malicious activity or violation is typically
reported to an administrator. IDS Bro is a powerful software
framework for network analysis, focusing on network secu-
rity monitoring with high expansibility. Cloud environment
simulation is our second phase, once a suspicious binary is
discovered, the virtual machine which downloads the binary
will be simulated to ensure the security and privacy of user
information. Then the forensic investigation is commenced
in the simulated environment. We adopt a coarse-grained
forensic analysis method named continuous RAM mirroring
technique to do forensics and analysis as our third phase.
For the purpose of specialized analysis of privacy leakage
paths, a fine-grained forensic method is introduced in the
fourth phase to dynamically taint and track the propagation
of user privacy. Finally, a report with respect to privacy leak-
age paths and behaviors is generated and retained as evidential
data.

Z0U et al.: MULTIGRANULARITY FORENSICS AND ANALYSIS METHOD ON PRIVACY LEAKAGE IN CLOUD ENVIRONMENT

initial RAM RAM mirror 0

1487

A4

mirror

QEMU > incremental

mirror 1

incremental

process

\
\
thread ‘
\
\

register comparative

other analysis

RAM mirror n

A4

mirror n

\
\
|
\
\
RAM mirror 1 ‘
\
\
\
\
\

Fig. 2. Workflow of continuous RAM mirroring.

B. Suspicious Malware Interception

The first phase in PVDS is to intercept the suspicious mal-
ware from cloud environment which is the essential step for
later forensic analysis. At first, we extract executable binaries
from network packets by IDS Bro, then use YARA to filter
suspicious application. We establish a whitelist of software
which may appear in a cloud environment, the binaries that
do not appear in the whitelist are identified as suspicious and
should be further analysis.

C. Cloud Environment Simulation

To assure the integrity and security of user’s privacy, we
use Vagrant [32] to implement the simulation of the target
virtual machine environment. Initially, we get the operating
system version, services and applications of the target virtual
machines with VMI technology. The operating system type is
obtained by characteristic code and the version is determined
by the offset of kernel debug structure, and finally traverse
the kernel debug structure to find all running processes and
modules in the system. Based on these information above, we
could conduct a more pertinent analysis of suspicious mal-
ware. For example, if the running SSL version exists Heart
Bleed vulnerability, a SSL private key leakage detection will
be conducted.

A vagrant deployment script is automatically generated after
the information is retrieved, and then the simulated virtual
machine environment will be constructed. When detecting
leakage of sensitive files, the simulated sensitive files would
be copied into the simulated virtual machine.

D. Continuous RAM Mirroring

Continuous RAM mirroring is the proposed forensic method
which based on the volatility framework [33]. By analyzing
multiple RAM mirrors between different time intervals, the
state changes of the system are acquired. Due to the stor-
age overhead in the acquisition process of mirrors, continuous
RAM mirroring adopts dirty page mechanism to continuously
gain the modified part of the virtual machine RAM at differ-
ent intervals, and then restores them based on the initial RAM
mirror.

We divide continuous RAM mirroring into three modules,
as shown in Fig. 2. First, we use the mounting method to copy

process

thread

register

other...

the startup program and the malicious samples into the QEMU
virtual machine. After starting the virtual machine, we save
the virtual machine data including disk, memory and device
status. And then we extract the physical memory block from
these data to generate the initial RAM mirror. The acquire
procedure of continuous RAM mirroring can be segmented
into four phases: 1) at first, scan all memory pages of virtual
machine and set as dirty pages; 2) next, save the previous dirty
pages and mark modified memory page as new dirty pages;
3) then, store dirty pages as incremental RAM mirrors; and
4) finally, patch incremental RAM mirrors onto initial RAM
mirror sequentially for analysis.

To dig specific runtime behaviors of suspicious malware,
we conduct a detailed comparison analysis to extract the state
changes between different RAM mirrors. In the comparative
analysis, we analyze the state changes of analysis objects,
such as process, registry, service, and network connection.
The states of each analysis object are unchanged, changed,
and new. According to the principle of these three states, we
can determine the differences between two mirrors and derive
the changes of the system.

In the end, the visualization module generates an easy-
to-display JSON data format analysis report, and then D3.js
(Data-Driven Documents) is adopted to implement our visu-
alization module.

E. Privacy Leak Paths Detection

We define three privacy leak paths, i.e., keystroke leak, sen-
sitive memory leak, and sensitive files leak. Keystroke leak
means that the malware records and saves the user’s keyboard
input history. Sensitive memory leak means that some special
memory regions are leaked by malware, such as those regions
that contain host information, browsing records, private keys,
etc. Sensitive files leak refers to malwares that access user’s
files and then send it to the Internet or write it to another
encrypted file. For example, WannaCrypt encrypts user’s files
and ransoms bitcoins.

We adopt the whole system dynamic taint tracing method to
do privacy leak paths detection because tainted memory related
operations are often cross processes, through the operating
system kernel to user mode. Moreover, malware often uses
anti-debug techniques, which makes it difficult to be debugged

1488
Simulate
Keystroke | Taint Input buffer
13‘_> - » Guest OS)
“Hello” Hello \
keyboard buffer Taint
memo
Hook file v v
R/W APIs L.
Check R/W buffer [« Applications
I
Buffer tainted Hook socket APIs
Kevlogger Packet tainted
yoee Check network packet
Malware
Fig. 3. Workflow of keylogger malware detection.
P

Firefox
History etc.

trace

Taint memory —| | Applications

o

System
Informations

_\‘\@é Check Filo hook file write APIs
Write Buffer
Sensitive
memory leaked
o'fe,[. Check Network hook socket APIs
age Packet

Fig. 4. Workflow of sensitive memory leakage detection.

and analyzed. Hence, the whole system dynamic taint tracing
method can make our analysis more accurate.

In the following sections, we will describe our detection
procedures of the three privacy leak paths in details.

1) Keystroke Leak: As shown in Fig. 3, by simulating
keystroke events and tainting PS2 keyboard buffer, we use
the tainted keyboard buffer as taint source to track the flow of
the tainted data. When a process reads the tainted memory, the
module name and the function name of the current program are
determined by the function call shadow stack we maintained.
In this case, we could conclude that the process has keylog-
ger behaviors. In addition, we hook the file write function
WriteFile in Kernel32.d1l and Socket transmission functions in
Ws2_32.dll, checking whether the buffer they use is tainted.
If so, the target process has keystroke leakage behaviors.

We implement our privacy leak detection system based on
the API hook framework provided by DECAF, we define sen-
sitive information transmit functions set Fya,s and privacy
leak functions set Fleax as follows. As we set PS2 keyboard
input buffer as our taint source, so keylogger detection has no
Firans set

{WriteFile, NtWriteFile, WSASend, }
Fleak = .

send, WSASendTo, sendto

2) Sensitive Memory Leak: As shown in Fig. 4, we imple-
ment the automated sensitive memory tainting and system
information tracing. In the first part, we implement Firefox
history and cookie tainting, SSL private key tainting. We set
these memory areas as taint source, tracking the flow of tainted

IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

TABLE I
SIGNATURE STRINGS OF SENSITIVE MEMORY

Sensitive memory Signature string Search domain
’0x06 0x25 0x08’
’0x06 0x25 0x09°
’0x00 0x25 0x08’
’0x00 0x25 0x09’
’0x04 0x06 0x06°
’0x05 0x06 0x06

’0x00 0x01 0x00 0x00°

’0x00 0x02 0x00 0x00’

’0x00 0x03 0x00 0x00”

’0x08 0x00 0x01 0x06’

’0x08 0x00 0x02 0x06

’0x08 0x00 0x03 0x06

’0x09 0x00 0x01 0x06’

’0x09 0x00 0x02 0x06’

’0x09 0x00 0x03 0x06
"0xe2 0x80 Oxaa’
’0xe2 0x80 Oxab’
*0xe2 0x80 Oxac’
’0xe2 0x80 Oxad’
"0xe2 0x80 Oxae’
’0xe2 0x80 0x8e’
*0xe2 0x80 0x8f’

Firefox history physical memory

Firefox cookie

physical memory

address space of pro-
cess ssh-agent

SSL private key

Chrome history physical memory

USN records physical memory

PUBLICKEY ’0x07 0x02 0x00 0x00 hysical
STRUCT 0x00 Oxa4 0x00 0x00’ physical memory
0x83 0x64 0x24 0x30
0x00 0x44 0x8b Ox4c | address space of pro-
Lsa_key(WIN7) 0x24 0x48 0x48 O0x8b | cess lsassI.)exe P
0x0d’
’0x83 0x64 0x24 0x30 address space of pro-
Lsa_key(WINB) 0x00 0x44 O0x8b 0x4d

0xd8 0x48 0x8b 0x0d’ cess Isass.exe

’0x83 0x64 0x24 0x30
0x00 0x48 0x8d 0x45 0x-
e0 0x44 0x8b 0x4d 0xd8
0x48 0x8d 0x15’

address space of pro-

Lsa_key(WIN10) cess Isass.exe

memory to analyze whether sensitive memory flows to mal-
ware processes and whether they ware leaked or not. The key
to implement automated sensitive memory tainting is sensitive
memory locating which is implemented by pattern matching
in VM memory.

Table I shows the signature string of sensitive memory, the
signature string is the beginning character string of sensitive
memory when they are loaded. We first intercept memory read-
ing and writing instructions, and then search in VM memory
to find the location of sensitive data when memory changes.
As for SSL private key’s location retrieving, we focus on RSA
key. With the knowledge of RSA key layout, we search for the
signature string and do validation. As the signature string is
too simple which leads to many false positives, a further veri-
fication based on the RSA key layout is required. In rest of the
Table I, the USN records contain file operation histories. The
PUBLICKEYSTRUC is a windows cryptography struct, which
signature string represents a public and private key pair. The
Lsa_key means LsalnitializeProtectedMemory_KEY, it is the
signature string which is used to retrieve windows password
by malware mimikatz. The active user’s encrypted password
can be obtained directly from lsass.exe and the encryption
algorithm is reversible. Thus, the plaintext password can be
retrieved.

The system information tracing is implemented through
DECAF API hook framework. We hook some system

Z0U et al.: MULTIGRANULARITY FORENSICS AND ANALYSIS METHOD ON PRIVACY LEAKAGE IN CLOUD ENVIRONMENT

Hook file open/create
»| | Applications
~ Taint file read buffer I

Sensitive files hook file write APIs

_\0@6 Check File Write hook
(2 Buffer socket
APIs

Sensitive
files leaked

Check Network
Packet

Fig. 5. Workflow of sensitive files leakage detection.

information related functions, such as GerComputerName and
GetSystemInfo, and mark their parameters as taint sources to
trace where system information goes.

For sensitive memory leakage detection, we define Fians
and Fieax as follows:

GetComputerName,
GetComputerNameEXx,
GetSystemlInfo,
GetUserName,
GetUserNameEx,
GetSystemDirectory,
GetWindowsDirectory,
ExpandEnvironmentStrings

Fro WriteFile, NtWriteFile, WSASend,
leak = send, WSASendTo, sendto ’

F; trans —

3) Sensitive Files Leak: As shown in Fig. 5, sensitive files
leakage detection is implemented by hooking the file opera-
tion APIs. We hook OpenFile and CreateFile to get the name
of opened files to identify whether it is a sensitive file, hook
ReadFile function and mark its parameters as taint source to
track the flow of tainted data. Finally, through the hook file
write function and network transmission functions, we fur-
ther confirm whether sensitive file contents are leaked out. For
sensitive files leakage detection, we define Firans and Fleak as
follows:

F _ OpenkFile, CreateFile, ReadFile,
rans =\ NtOpenFile, NtCreateFile, NtReadFile

F __ | WriteFile, NtWriteFile, WSASend,
leak = send, WSASendTo, sendto)

IV. IMPLEMENTATION

In this section, we present implementation details of the
key techniques in our system. In suspicious malware inter-
ception, we use IDS Bro and YARA to intercept suspicious
executable programs from cloud environment. IDS Bro is a
powerful network analysis framework focusing on network
security monitoring. We extract executable binaries from http
requests by bro filter scripts. As more and more websites are
using https protocol to ensure session security, we need users
to trust our root certificate to do https proxy, which makes

1489

Call VMI init

|

Use block _end cb to
detect OS version

| Call get_kpcr to get the
address of KPCR

Winxp

A

Call win_vmi_init to initialize [

A

Register #/b_call_back to Call get_new_modules to get
detect new process all modules(dlls)

| I

Call check procexit to
detect the exit of process

Call extract _export table to
get function export table

Fig. 6. Workflow of our VMI framework.

suspicious malware interception module workable on https
sessions.

We implement the continuous RAM mirroring module based
on the Volatility framework. Volatility is an open source tool
for memory forensics analysis. It can analyze the exported
memory mirroring by deriving the kernel data structure and
use the plugins to obtain the details of the memory and run-
ning status of the system. For instance, we employ its process
plugin to detect process objects, and its connect plugin to find
out network objects.

In privacy leak paths detection, we adopt the DECAF frame-
work as our primary tool [34], [35]. DECAF is a dynamic
binary analysis framework and provide precise trace track-
ing analysis and many event-driven interfaces which make our
forensics and analysis more convenient. As shown in Fig. 6, we
implemented a simple VMI framework based on DECAF. The
OS version can be first determined based on the location of
the KPCR, Then, the callback function of the translation block
can be registered to detect the creation and exit of the pro-
cesses. When a process is created, we traverse all the modules
it loaded to get the function export tables of each module and
then implement API hook framework based on these function
export tables. We use the API hook framework to hook func-
tions in Fips and taint their parameters as taint source, and
hook functions in Flegx to detect whether the tainted memory
has been leaked.

V. EVALUATION

In this section, we detail our evaluation results to validate
the effectiveness of PVDS. First, we introduce our experimen-
tal datasets. Then we describe some state-of-the-art malware

1490

IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

TABLE 1T
BASIC INFORMATION OF OUR DATASET

Malware Type | Malware Sample | Detection results
CryptoWall Kaspersky: Trojan-Ransom.Win32.Cryptodef.cng, Microsoft: Ransom:Win32/Crowti.A
Satan Malwarebytes: Ransom.Satan, Ikarus: Trojan-Ransom.Satan
Jaff Kaspersky: Trojan-Ransom.Win32.Scatter.ue, Malwarebytes: Ransom.Jaff
Win32.Locky Kaspersky: Trojan-Ransom.Win32.Locky.xvv, Microsoft: Ransom:Win32/Locky
WannaCrypt Kaspersky: Trojan-Ransom.Win32.Wanna.m, Malwarebytes: Ransom.WannaCrypt
Cerber Microsoft: Ransom:Win32/Cerber, Malwarebytes: Ransom.Cerber
Ransomware Ergop Kaspersky: Trojan-Ransom.Win32.Gen.fcd, Microsoft: Ransom:Win32/Ergop.A
Genasom Kaspersky: Trojan-Ransom.Win32.Purgen.fu, Microsoft: Ransom:Win32/Genasom
Jaffrans Kaspersky: Trojan-Ransom.Win32.Scatter.vx, Microsoft: Ransom:Win32/Jaffrans.A
Locky Kaspersky: Trojan-Ransom.Win32.Locky.yji, Microsoft: Ransom:Win32/Locky
Spora Microsoft: Ransom:Win32/Spora, Kaspersky: Trojan-Ransom.Win32.Spora
Teerac Microsoft: Ransom:Win32/Teerac, Malwarebytes: Ransom.CryptOLOcker
Petya Kaspersky: Trojan-Ransom.Win32.Petr.a, Microsoft: Ransom:Win32/Petya.A
SpyNet Symantec: W32.Spyrat, Malwarebytes: Backdoor.SpyNet
Shifu Malwarebytes: Spyware.Shifu, Microsoft: TrojanSpy:Win32/Skeeyah.Alrfn
Spyware Keylogger Kaspersky: Trojan-Spy.MSIL.KeyLogger.brse, Antiy-AVL: Trojan[Spy]/MSIL.KeyLogger
Zbot Kaspersky: Trojan-Spy.Win32.Zbot.ntpf, Malwarebytes: Spyware.Citadel
Omaneat Microsoft: TrojanSpy:MSIL/Omaneat.C, Kaspersky: Trojan. MSIL.Inject.epwf

detection tools to conduct a comparative analysis with PVDS.
Finally, our coarse-grained forensic analysis and fine-grained
privacy leakage detection results are reported. Our system is
built on an Ubuntu OS 14.04 host with Intel Xeon E5-2630 v3
and 64 GB RAM, and the malware experiments are conducted
on Windows VMs.

A. Datasets

Our malware datasets are mainly from malwaredb [36].
These malware samples are chosen from the current typical
ransomware and spyware samples. As shown in Table II, we
provide types of malware samples and detection results by
some antivirus software vendors. Malware can be divided into
corresponding families according to its behaviors, so we select
a representative sample to do experiment for each malware
family.

B. Evaluation Indicators

We choose two state-of-the-art malware detection tools, i.e.,
KingKong [28] and Habo [29], to do our comparative analysis
for continuous RAM mirroring module.

In order to obtain more comprehensive privacy violation evi-
dence, we define the detection attributes for continuous RAM
mirroring according to the key events that may be involved
in malware behaviors. Table III shows the detection attributes
and our detection purpose. sids is used to get user’s sid, which
is security identifier for windows. devicetree can get the pro-
cess tree of the system. injections can detect the vestiges of
process injection. privileges plugin is used to detect privilege
promotion events caused by malware, and dlls plugin is used
to get the modules loaded by malware. we use network plu-
gin to obtain the network connections created by malware and
the mutants plugin is used to get the mutants created by mal-
ware which is often used as a feature to identify malware. we
use mftentries plugin to detect file operation records of mal-
ware through master file table, which is the core of the NTFS
file system. The registry plugin is used to get registry opera-
tion records of malware and processes plugin is used to detect
processes created by malware.

TABLE III
DETECTION ATTRIBUTES AND PURPOSE

Detection attributes Detection purpose
sids Getting the user’s sid

devicetree Enumerating process trees
injections Detection of process injection
privileges Detect privilege promotions

dlls Module loaded by malware

network Malware network connections

mutants Mutants created by malware

mftentries Getting file operation records of malware
registry Registry operation records

processes Detect processes created by malware

Our system focuses on the detection of privacy viola-
tions caused by ransomware and spyware. File encryption and
keystroke leakage are typical behaviors of these two malware
types, so we use WannaCrypt and Keylogger samples to do
detect evaluation in our experiment.

C. Results and Discussion

We first present our coarse-grained forensic analysis results.
As shown in Fig. 7, we conduct a comparative analysis of
detection results on these ten detection attributes reported by
Habo, KingKong, and continuous RAM mirroring. During the
experiment, we set the malware running time to 100 s, the
incremental image acquisition interval to 500 ms, it takes
about 20 h to analyze 200 GB RAM mirrors for each sam-
ple. The comparative analysis results show that continuous
RAM mirroring outperforms KingKong and Habo, especially
for attributes including sids, devicetree, injections, and priv-
ileges. KingKong and Habo analysis system fails to analyze
these attributes, which are covered in our system with a more
comprehensive and detailed analysis results. This allows us to
provide more support to forensics and a wider coverage of
privacy violation behaviors, which can validate the effective-
ness of continuous RAM mirroring method and also provide
a more accurate analysis report for our fine-grained analysis.

We use WannaCrypt sample to test our sensitive file leakage
detection module and set up a private file test.txt in simulated

Z0U et al.: MULTIGRANULARITY FORENSICS AND ANALYSIS METHOD ON PRIVACY LEAKAGE IN CLOUD ENVIRONMENT

1491

sids

devicetree

injections

privileges

dlls
network

mutants
mftentries
registry
processes

Satan CryptoWall Jaff

‘Win32.Locky

SpyNet Shifu KeyLogger

sids

devicetree

injections

privileges

dlls

network

mutants
mftentries
registry
processes

Omaneat Cerber Ergop

Fig. 7.

TABLE IV
DETECTION LOG OF WANNACRYPT

WannaCrypt
Monitor CreateFile: Filename = test.txt
Target file open operation monitored !

Monitor ReadFile: Filename=test.txt, Read Buffer tainted
Monitor ReadFile: Filename=test.txt, Read Buffer tainted

Monitor CreateFile: Filename=test.txt. WNCRY
Monitor WriteFile: Filename=test.txt. WNCRY, Write Buffer

tainted 4 Bytes
Target file contents leakage detected !

VM on its desktop. As shown in Table IV, the access oper-
ations to private file of this malware sample are captured by
monitoring file open and create functions, and then monitor
ReadFile function and set read buffer as taint source. Finally,
we detect that the write buffer contains tainted data which is
written to test.txt. WNCRY. These experimental results show
that our technique can capture the privacy violation behaviors
and encryption procure of this malware sample.

We use a keylogger malware sample Spyware.KeyLogger
reported by Malwarebytes to illustrate the effectiveness of
our system. We taint the keystroke dataflow with notepad.exe
running in the foreground. As shown in Fig. 8(a), it shows
the modules and functions involved in keystroke data flow.
According to the normal keystroke dataflow, system process
first gets the keystroke data from QEMU PS2 keyboard buffer,

Genasom

ontinuous RAM mirroring

Jaffrans Locky Spora Teerac WannaCrypt

I:l KingKong

Comparative analysis of continuous RAM mirroring, KingKong, and Habo.

then flows to csrss.exe, and eventually flows to notepad.exe.
Through the continuous RAM mirroring analysis results, it
has been detected that the processes WindowsFirewall is
generated by the keylogger malware sample. As shown in
Fig. 8(b), it can be found that keystroke memory flows from
PS2 keyboard buffer to malicious processes directly and the
invoked functions have changed a lot. In view of the dataflow
as shown in Fig. 8(b), it can be concluded that this sam-
ple has keylogger behaviors which change the dataflow of
keystroke. Experimental results show that our system records
the keystroke dataflow completely and can detect the keylogger
malware effectively.

Additionally, we find that the malware sample Cerber has
sensitive memory leak behaviors, which read memory data of
system.exe, csrss.exe, winlogon.exe, and Isass.exe.

For privacy leakage paths detection module, the perfor-
mance loss experiment of PVDS under different taint source
sizes has been conducted in Windows XP VM with 2G RAM.
As shown in Fig. 9, we calculate the average running time of
MDS5 algorithm and overload in different taint source size. The
DECAF (no tainting) represents the program is running under
DECAF environment with tainting disabled, and the PVDS
represents the program is running under PVDS environment
with sensitive files leakage detection plugin loaded. The MD5
algorithm has frequent memory read—write operations and a
good taint memory diffusion effect, which can effectively illus-
trate the performance loss of our system. The experimental
results show that the average performance loss of PVDS is

1492

Keystroke dataflow without malware
QEMU PS2
Buffer
READ PORT UCHAR
tem - -
memmove

I

\ QEMU PS2
Buffer

I

IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

Keystroke dataflow with keylogger malware

Windows READ _PORT UCHAR
Firewall memmove

KeReleaselnStack QueuedSpinLock

ZwReadFile

PsGetProcessWin32Process
InterlockedPushEntrySList

Y
READ PORT UCHAR
notepad.exe memmove

ProbeForWrite
wesnepy

A

CSIss.exe | ["

I

|

I

I

|

I

I

I

I

|

} Y
} Sys!
I

I

I

|

} Y PsGetProcessWin32Process
| csrss.exe F HalEndSystemInterrupt
} ExInterlockedPopEntrySList
I

I

|

I

I

|

I

I

I

I

|

I

I

|

I

|

I

I

|

I

Fig. 8. Dataflow of keystroke with and without keylogger.

2000 r 500
%%
470 R
1800 [ZZ DECAF(no tainting) o {:::::::
XX PVDS 448 450 R
— |—O— Overload !0’0‘0‘4
o 1600 O (3% 450
[stoteds
£ (5
O 1400)39}‘01
£ [S%%!
£ s
1200 RRXK] 1400 X
o 381 K] <
= [oSoto °
g g3 [o¥otods @
£ 1097 oo B
z 103208 83 o
800 2925 KRR 1350
4] [Soto%e! [So%e%! o
o XX (KX
lo%e%e% Potete
S 600 %5098 6209
o} 300 83X 83
= [So%ede) (R
< 4004 d RZZ 05059 £ |- 300
RRXN RRX KRR
$%9%0% $%9%9% KRR
200 29365 12035 1R
K 0505]
R V0884 footod
ote%e! £ (55
2 2 i L
0 Wm 727284 8K 250
500KB 1MB 2MB 5MB 10MB

Taint Source Size

Fig. 9. Overload of PVDS in different taint source size.

about four times in different taint source size, which is less
than six times mentioned in DECAF [34].

The above experimental results show that PVDS not only
can detect privacy leak behaviors of malware on sensitive
memory, sensitive files and keystroke, but also can retrieve
the complete privacy leak paths. Moreover, PVDS provides
a lower performance loss than DECAF. Thus, it can be con-
cluded that PVDS can do forensics and analysis on privacy
violations caused by ransomware and spyware effectively in
cloud environment.

VI. CONCLUSION

This paper presented PVDS, a privacy violation detect
system in cloud environment. Our system focuses on the prop-
agation of user’s privacy data and adopts a combination of
continuous RAM mirroring technique and dynamic taint anal-
ysis to assist forensics investigation. We could do forensic

KeReleaseInStack QueuedSpinLock H

I CSrSS.eXG KfLowerlrql
| ExInterlockedPopEntrySList

5 PsGetProcessWin32Process
InterlockedPushEntrySList
ExReleaseResourceLite
ProbeForWrite

READ PORT UCHAR

memmove

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
ZwReadFile }
r I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

analysis on privacy violations in cloud environment without
affecting the online cloud service and accessing user’s VM and
private data. Our extensive experimental evaluation shows that
PVDS could detect more privacy leakage paths and behaviors,
especially regarding keylogger, sensitive file and memory.

Although evaluation results show the usability and effective-
ness of our system in privacy leak detection, our system still
suffers some limitations. For one hand, ten detection attributes
in malware behaviors detection for continuous RAM mirror-
ing are not enough. We would dig out more attributes to get
clearer and more accurate privacy disclosure behaviors in the
future. On the other hand, PVDS could do forensic analysis in
keystroke leak, sensitive memory leak and sensitive files leak,
but sensitive memory area we defined is limited and privacy
leakage paths we defined cannot cover all privacy leakage sit-
uations. Thus, more privacy leakage paths need to be added
in the future.

REFERENCES

[11 Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, “A survey on security and
privacy issues in Internet-of-Things,” IEEE Internet Things J., vol. 4,
no. 5, pp. 1250-1258, Oct. 2017.

[2] B. Dorsemaine, J.-P. Gaulier, J.-P. Wary, N. Kheir, and P. Urien, “A
new threat assessment method for integrating an IoT infrastructure in
an information system,” in Proc. IEEE Int. Conf. Distrib. Comput. Syst.
Workshops, Atlanta, GA, USA, 2017, pp. 105-112.

[3] H. Jin, W. Dai, and D. Zou, “Theory and methodology of research on
cloud security,” Sci. China Inf. Sci., vol. 59, no. 5, 2016, Art. no. 050105.

[4] M. Hossain, R. Hasan, and A. Skjellum, “Securing the Internet of
Things: A meta-study of challenges, approaches, and open problems,”
in Proc. IEEE Int. Conf. Distrib. Comput. Syst. Workshops, Atlanta, GA,
USA, 2017, pp. 220-225.

[5] B. Martini and K.-K. R. Choo, “Cloud storage forensics: OwnCloud as
a case study,” Digit. Invest., vol. 10, no. 4, pp. 287-299, 2013.

[6] R.Marty, “Cloud application logging for forensics,” in Proc. ACM Symp.
Appl. Comput., 2011, pp. 178-184.

[7]1 G. Sibiya, H. S. Venter, and T. Fogwill, “Digital forensic framework
for a cloud environment,” in Proc. Int. Inf. Manag. Corporat., 2012,

pp- 1-8.

Z0U et al.: MULTIGRANULARITY FORENSICS AND ANALYSIS METHOD ON PRIVACY LEAKAGE IN CLOUD ENVIRONMENT 1493

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]
(31]
[32]
[33]

[34]

[35]

S. Zawoad, A. K. Dutta, and R. Hasan, “Seclaas: Secure logging-as-
a-service for cloud forensics,” in Proc. 8th ACM SIGSAC Symp. Inf.
Comput. Commun. Security, 2013, pp. 219-230.

T. Sang, “A log based approach to make digital forensics easier on cloud
computing,” in Proc. 3rd Int. Conf. Intell. Syst. Design Eng. Appl., 2013,
pp. 91-94.

J. Dykstra and A. T. Sherman, “Design and implementation of FROST:
Digital forensic tools for the OpenStack cloud computing platform,”
Digit. Invest., vol. 10, no. 8, pp. S87-S95, 2013.

H. Chung, J. Park, S. Lee, and C. Kang, “Digital forensic investigation
of cloud storage services,” Digit. Invest., vol. 9, no. 2, pp. 81-95, 2012.
B. Martini and K.-K. R. Choo, “An integrated conceptual digital forensic
framework for cloud computing,” Digit. Invest., vol. 9, no. 2, pp. 71-80,
2012.

D. Quick and K.-K. R. Choo, “Forensic collection of cloud storage data:
Does the act of collection result in changes to the data or its metadata?”
Digit. Invest., vol. 10, no. 3, pp. 266-277, 2013.

J. Dykstra and A. T. Sherman, “Acquiring forensic evidence from
infrastructure-as-a-service cloud computing: Exploring and evaluating
tools, trust, and techniques,” Digit. Invest., vol. 9, no. 8, pp. S90-S98,
2012.

R. Poisel, E. Malzer, and S. Tjoa, “Evidence and cloud computing: The
virtual machine introspection approach,”J. Wireless Mobile Netw., vol. 4,
no. 1, pp. 135-152, 2013.

L. Jia, M. Zhu, and B. Tu, “T-VMI: Trusted virtual machine introspection
in cloud environments,” in Proc. 17th IEEE/ACM Int. Symp. Cluster
Cloud Grid Comput., 2017, pp. 478-487.

M. A. Kumara and C. D. Jaidhar, “VMI based automated real-time mal-
ware detector for virtualized cloud environment,” in Proc. Int. Conf.
Security Privacy Appl. Cryptograp. Eng., 2016, pp. 281-300.
Ransomware Review of Microsoft. Accessed: May 3, 2018.
[Online]. Available: https://blogs.technet.microsoft.com/mmpc/2017/09/
06/ransom-ware- 1h-2017-review-global-outbreaks-reinforce-the-value-
of-security-hygiene/

A Detailed Description of CVE-2017-0144. Accessed: May 3, 2018.
[Online]. Available: http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2017-0144

WannaCry Ransomware Attack. Accessed: May 3, 2018. [Online].
Available: https://en.wikipedia.org/wiki/Wan-naCry_ransomware_attack
J. Wang, M. Zhao, Q. Zeng, D. Wu, and P. Liu, “Risk assessment of
buffer ‘Heartbleed’ over-read vulnerabilities,” in Proc. IEEE/IFIP Int.
Conf. Depend. Syst. Netw., 2015, pp. 555-562.

The Heartbleed Bug. Accessed: May 3, 2018. [Online]. Available:
http://heartbleed.com/

K. Thomas et al., “Data breaches, phishing, or malware? Understanding
the risks of stolen credentials,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Security, 2017, pp. 1421-1434.

J. Zhou, Z. Cao, X. Dong, and A. V. Vasilakos, “Security and privacy
for cloud-based IoT: Challenges,” IEEE Commun. Mag., vol. 55, no. 1,
pp. 26-33, Jan. 2017.

K.-K. R. Choo, C. Esposito, and A. Castiglione, “Evidence and forensics
in the cloud: Challenges and future research directions,” IEEE Cloud
Comput., vol. 4, no. 3, pp. 14-19, Jan. 2017.

C. Cho, S. Chin, and K. S. Chung, “Cyber forensic for hadoop based
cloud system,” Int. J. Security Appl., vol. 6, no. 3, pp. 83-90, 2012.

T. Garfinkel and M. Rosenblum, “A virtual machine introspection based
architecture for intrusion detection,” in Proc. Netw. Distrib. Syst. Security
Symp., 2003, pp. 191-206.

KingKong Malware Intelligence Analysis — System. Accessed:
May 3, 2018. [Online]. Available: https://www.tcasoft.com:8443
Tencent Habo Analysis System. Accessed: May 3, 2018. [Online].
Available:https://habo.qq.com/

V. Paxson, “Bro: A system for detecting network intruders in real-time,”
Comput. Netw., vol. 31, nos. 23-24, pp. 2435-2463, 1999.

YARA. Accessed: May 3, 2018. [Online]. Available:https://
virustotal.github.io/yara/

Vagrant. Accessed: May 3, 2018. [Online]. Available: https:/
www.vagrantup.com/

Volatility. Accessed: May 3, 2018. [Online]. Available: http:/
www.volatilityfoundation.org/

A. Henderson et al., “Make it work, make it right, make it fast: Building
a platform-neutral whole-system dynamic binary analysis platform,” in
Proc. Int. Symp. Softw. Testing Anal., 2014, pp. 248-258.

A. Henderson et al., “DECAF: A platform-neutral whole-system
dynamic binary analysis platform,” IEEE Trans. Softw. Eng., vol. 43,
no. 2, pp. 164-184, Feb. 2017.

[36] MalwareDB. Accessed: May 3, 2018. [Online]. Available:
http://malwaredb.malekal.com/index.php

Deqing Zou received the Ph.D. degree from the
Huazhong University of Science and Technology
(HUST), Wuhan, China, in 2004.

He is a Professor of computer science with
HUST. His current research interests include sys-
tem security, trusted computing, virtualization, and
cloud security. He has applied for approximately 20
patents, authored or co-authored two books entitled
Xen Virtualization Technologies (Huazhong Univ.
Sci. Technol. Press, 2009) and Trusted Computing
Technologies and Principles (Sci. Press, 2011) and
over 50 papers, including papers published in the IEEE TRANSACTIONS
ON DEPENDABLE AND SECURE COMPUTING, the IEEE TRANSACTIONS
ON PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE TRANSACTIONS
ON SERVICES COMPUTING, and the IEEE TRANSACTIONS ON CLOUD
COMPUTING.

Dr. Zou has served as the PC Chair/PC member of over 40 international
conferences.

Jian Zhao received the B.S. degree in information
security from the China University of Geosciences
(Wuhan), Wuhan, China, in 2015. He is currently
pursuing the master’s degree in cyber security at
the Huazhong University of Science and Technology,
‘Wuhan.

His current research interests include cloud com-
puting security and vulnerability detection.

Weiming Li received the Ph.D. degree in computer
science from the Huazhong University of Science
and Technology, Wuhan, China in 2006.

He is currently an Associate Professor with
the Network and Computing Center, Huazhong
University of Science and Technology. He has
authored or co-authored over 30 refereed papers. His
current research interests include on system secu-
rity, especially malware analysis and detection using
binary analysis techniques, and network security.

Dr. Li was a recipient of the First Prize of the
Hubei Province Science and Technology Progress in 2011.

Yueming Wu received the B.S. degree in informa-
tion security from Southwest Jiaotong University,
Chengdu, China, in 2016. He is currently pursu-
ing the Ph.D. degree in cyberspace security at the
Huazhong University of Science and Technology,
‘Wuhan, China.

His current research interests include vulnerability
detection and anomaly detection.

Weizhong Qiang received the Ph.D. degree in com-
puter engineering from the Huazhong University of
Science and Technology, Wuhan, China, in 2005.
He is an Associate Professor with the Huazhong
University of Science and Technology. He has
authored or co-authored approximately 30 scientific
papers. His current research interest includes system
security about virtualization and cloud computing.

1494

Hai Jin (M’99-SM’06) received the Ph.D. degree in
computer engineering from the Huazhong University
of Science and Technology (HUST), Wuhan, China,
in 1994.

He was with the University of Hong Kong,
Hong Kong, from 1998 to 2000, and as a Visiting
Scholar with the University of Southern California,
Los Angeles, CA, USA, from 1999 to 2000. He is
a Cheung Kung Scholars Chair Professor of com-
puter science and engineering with HUST. He is the
Chief Scientist of the National 973 Basic Research
Program Project of Virtualization Technology of Computing System. In 1996,
he was awarded a German Academic Exchange Service Fellowship to visit the
Technical University of Chemnitz, Chemnitz, Germany. He has co-authored
22 books and over 700 research papers. His current research interests include
computer architecture, virtualization technology, cluster computing and cloud
computing, peer-to-peer computing, network storage, and network security.

Dr. Jin was a recipient of the Excellent Youth Award from the National
Science Foundation of China in 2001. He is a member of the ACM.

Ye Wu received the Ph.D. degree in computer
science from the Stevens Institute of Technology,
Hoboken, NJ, USA.

He is a Principal Architect with Baidu Inc.,
Beijing, China, interested in access control security,
security intelligence, and advanced applied cryptog-
raphy for real applications. He with his team created
Giano system that governs overall data and system
security for Baidu IDC with the largest scale in
Chinese Internet companies. He has authored or co-
authored over 20 research papers.

Dr. Wu has presented keynotes and invited talks in major international
academic conferences.

IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

Yifei Yang received the master’s degree in systems
engineering from Xi’an Jiaotong University, Xi’an,
China.

He is a Senior Architect with Baidu, Inc., Beijing,
China. He is responsible for engineering research
and development of Baidu’s internal security prod-
ucts, including the largest sale security platform
Giano. He was with Tencent, Inc., Shenzhen, China,
building the security system for the cloud computing
platform of Tencent.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

