
An Empirical Study on the Effects of Obfuscation on Static
Machine Learning-based Malicious JavaScript Detectors

Kunlun Ren∗
Huazhong University of Science and

Technology
Wuhan, China

kunlunren@hust.edu.cn

Weizhong Qiang∗†
Huazhong University of Science and

Technology
Wuhan, China

wzqiang@hust.edu.cn

Yueming Wu‡
Nanyang Technological University

Singapore
wuyueming21@gmail.com

Yi Zhou∗
Huazhong University of Science and

Technology
Wuhan, China

yi_zhou@hust.edu.cn

Deqing Zou∗†
Huazhong University of Science and

Technology
Wuhan, China

deqingzou@hust.edu.cn

Hai Jin§†
Huazhong University of Science and

Technology
Wuhan, China

hjin@hust.edu.cn

ABSTRACT
Machine learning is increasingly being applied tomalicious JavaScript
detection in response to the growing number of Web attacks and
the attendant costly manual identification. In practice, to hide their
malicious behaviors or protect intellectual copyrights, both mali-
cious and benign scripts tend to obfuscate their own code before
uploading. While obfuscation is beneficial, it also introduces some
additional code features (e.g., dead code) into the code. When ma-
chine learning is employed to learn a malicious JavaScript detector,
these additional features can affect the model to make it less effec-
tive. However, there is still a lack of clear understanding of how
robust existing machine learning-based detectors are on different
obfuscators.

In this paper, we conduct the first empirical study to figure
out how obfuscation affects machine learning detectors based on
static features. Through the results, we observe several findings:
1) Obfuscation has a significant impact on the effectiveness of de-
tectors, causing an increase both in false negative rate (FNR) and
false positive rate (FPR), and the bias of obfuscation in the training
set induces detectors to detect obfuscation rather than malicious
behaviors. 2) The common measures such as improving the qual-
ity of the training set by adding relevant obfuscated samples and
leveraging state-of-the-art deep learning models can not work well.

∗National Engineering Research Center for Big Data Technology and System, Services
Computing Technology and System Lab, Hubei Engineering Research Center on Big
Data Security, School of Cyber Science and Engineering, HUST, Wuhan, 430074, China
†Jinyinhu Laboratory, Wuhan, China
‡Corresponding author
§National Engineering Research Center for Big Data Technology and System, Services
Computing Technology and System Lab, Cluster and Grid Computing Lab, School of
Computer Science and Technology, HUST, Wuhan, 430074, China

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’23, July 17–21, 2023, Seattle, WA, United States
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07. . . $15.00
https://doi.org/10.1145/3597926.3598146

3) The root cause of obfuscation effects on these detectors is that
feature spaces they use can only reflect shallow differences in code,
not about the nature of benign and malicious, which can be easily
affected by the differences brought by obfuscation. 4) Obfuscation
has a similar effect on realistic detectors in VirusTotal, indicating
that this is a common real-world problem.

CCS CONCEPTS
• Security and privacy→ Malware and its mitigation.

KEYWORDS
web security, JavaScript obfuscation, machine learning, malicious
JavaScript detector

ACM Reference Format:
Kunlun Ren, Weizhong Qiang, Yueming Wu, Yi Zhou, Deqing Zou, and Hai
Jin. 2023. An Empirical Study on the Effects of Obfuscation on StaticMachine
Learning-based Malicious JavaScript Detectors. In Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA ’23), July 17–21, 2023, Seattle, WA, United States. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3597926.3598146

1 INTRODUCTION
TheWeb is the dominant software platform and the primary tool for
billions of users worldwide to interact with the Internet. At the same
time, it has naturally become one of the main targets of attacks
[25, 29, 50, 69]. In recent years, the number of web attacks has
doubled year after year, and the attacks tend to be diversified and
decentralized [18]. JavaScript, a language used by the majority of
the world’s websites, is often used by attackers to target web users
[26, 27, 31, 38, 44, 74]. JavaScript malicious code poses a significant
security risk. Therefore, academia and industry are paying more
and more attention to the detection of JavaScript malicious code.

Current methods for JavaScript malicious code detection can
be classified into two main categories: static analysis based and
dynamic analysis based. Dynamic analysis can reveal the behav-
ior of malicious code more clearly [29, 44, 47, 49, 62, 72], but the
identifiable nature of the analysis environment results in mali-
cious code being able to evade detection through inspection of
the environment. Static analysis, on the other hand, consumes

https://doi.org/10.1145/3597926.3598146
https://doi.org/10.1145/3597926.3598146

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Kunlun Ren, Weizhong Qiang, Yueming Wu, Yi Zhou, Deqing Zou, and Hai Jin

fewer resources, is simple and fast to detect malicious code, and
is more cost-effective [30, 35, 36, 59, 65]. With the emergence of
more and more new malicious JavaScript code, expensive man-
ual analysis has prompted static detection tools to leverage ma-
chine learning techniques, through which good results are achieved
[30, 33, 35, 36, 42, 59, 61, 68]. However, many malicious scripts em-
ploy obfuscation to evade static analysis [53, 64, 70]. In addition,
obfuscation techniques are also used for benign scripts to protect
intellectual property [53, 64], which can bias machine learning
methods.

It is widely believed that obfuscation can seriously affect static
analysis. However, machine learning based on features extracted
by static analysis also performs well on obfuscated samples [33,
35, 36, 42, 61, 68]. We believe that it may be that the different
obfuscation distributions of benign and malicious samples make
machine learning rely on features related to obfuscation for classi-
fication. However, they do not or only briefly discuss the impact
when applying machine learning. We consider that obfuscation
must have a significant impact on machine learning due to its own
characteristics, which seriously hinders its application in reality.
Thus we explore how obfuscation actually affects machine learning.
Specifically, we aim to answer four research questions (RQs):

• RQ1: What impact does obfuscation have on static machine
learning malicious JavaScript detectors?

• RQ2: Are the commonly used measures to mitigate the impact
of obfuscation effective?

• RQ3: What is the root cause of obfuscation affecting static
machine learning malicious JavaScript detectors?

• RQ4: How does obfuscation affect real-world static malicious
JavaScript detectors?

As necessary preparation works before the experiments, we
create the original dataset and obfuscated dataset. The original
dataset is similar to the composition of the dataset in previous
work [60]. The malicious samples come from Hynek Petrak [9],
GeeksOnSecurity [15], and VirusTotal [22]. The benign samples
come from the 150k JavaScript Dataset [57]. Since previous work
has validated these data, we consider them to be ground truth. Then
we create the obfuscated dataset by obfuscating all the samples in
the original dataset with six common obfuscation techniques.

To answer RQ1, we evaluate the performance of four detectors
and five machine learning models on obfuscated samples, as well
as the performance of the detectors when the training data shows
a bias about obfuscation type. To answer RQ2, we study the ef-
fectiveness of improving the quality of the dataset and extracting
features using deep learning models to mitigate the effects of ob-
fuscation. To answer RQ3, we find the root cause by visualizing
the distribution of vectors, analyzing the feature spaces, and in-
vestigating the distances between vector sets. To answer RQ4, we
perform an experimental investigation by submitting benign and
malicious samples obfuscated by different obfuscators to VirusTotal
for scanning.

Through the results of our experiments, we find that obfuscation
has a serious impact on static machine learningmalicious JavaScript
detectors. These detectors can not work well on obfuscated samples.
Furthermore, when there is a bias about obfuscation between the

two classes in the training set, these detectors tend to detect obfus-
cation rather than malicious behaviors. What’s worse, the common
measures to mitigate obfuscation such as improving the quality of
the dataset and introducing deep learning models are not effective.
The root cause is that the feature spaces of existing detectors can
only reflect shallow differences in code, not about the nature of be-
nign and malicious, which can be easily affected by the differences
brought by obfuscation. Moreover, we find that obfuscation has a
similar effect on real-world static malicious JavaScript detectors.

In summary, the main contributions of this paper are as follows:

• We conduct exhaustive experiments to investigate the ef-
fect of obfuscation on malicious JavaScript machine learning
detectors based on static analysis features. We find that ob-
fuscation can significantly interfere with the detector’s deter-
mination, the bias of obfuscation in the training set induces
the detectors to detect obfuscation rather than malicious
behaviors.

• We explore the root cause of obfuscation affecting static
machine learning malicious JavaScript detectors by vector
visualization, feature spaces analysis, and distances between
vector sets investigation. We find that the feature spaces
of existing detectors can only reflect shallow differences in
code, not about the nature of benign and malicious, which
can be easily affected by the differences brought about by
obfuscation.

• We evaluate obfuscation on real-world detectors using Virus-
Total as a representative. The results show that obfuscation
has a similar effect on these detectors, which allows mali-
cious samples to evade detection.

The remainder of this paper is organized as follows. Section 2
presents our motivation to conduct this research. Section 3 intro-
duces the background of JavaScript code transformation techniques
and machine-learning-based malicious JavaScript detection. Sec-
tion 4 describes the design of our study. Section 5 presents our
experiments and the results. Section 6 discusses some inspiration
from our findings and some limitations of this paper. Section 7
introduces some related works. Section 8 concludes this paper.

2 MOTIVATION
Machine learning methods based on static analysis have been ap-
plied to the detection of malicious JavaScript samples with high
accuracy [30, 33, 35, 36, 42, 59, 61]. However, malicious JavaScript
generally utilizes obfuscation techniques to disguise its malicious
behavior.

It is tempting to assume that machine-learning-based detectors
achieve such results by relying on features that distinguish be-
tween obfuscated and unobfuscated scripts. For example, Fass et
al. [35] propose a static machine-learning-based approach, which
leverages lexical, abstract syntax tree (AST), control and data flow
information, achieving over 99% accuracy on their dataset. As they
mention, their malicious dataset comes from the German Federal
Office for Information Security [6], Hynek Petrak [9], Kafeine DNC
[17], GeeksOnSecurity [15], and VirusTotal [22]. Most of these sam-
ples are obfuscated. Their benign dataset comes from Tranco top
10,000 websites [55], Microsoft products, open source games, web

An Empirical Study on the Effects of Obfuscation on Static Machine Learning-based Malicious JavaScript Detectors ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

frameworks, and Atom [1]. As they describe, over 40% of the sam-
ples obtained from the web pages are either minified or obfuscated
according to Skolka et al. [64] and the majority of benign JavaScript
from Microsoft products are also obfuscated. Nevertheless, accord-
ing to Moog et al. [53], there is a difference between the obfuscation
techniques used for these samples and those used for malicious
samples, while obfuscated benign samples from Microsoft in the
dataset of Fass et al. represent a relatively small percentage of the
overall quantity. Furthermore, as also mentioned in [53], the way
script obfuscation is evolving, these changes are likely to affect
machine learning methods that rely on training data.

Unfortunately, Fass et al. [35] and other related work [30, 33, 36,
42, 59, 61, 68] did not consider or only briefly discussed the effects
of obfuscation. This situation leads us to fully investigate the effects
of obfuscation on static malicious JavaScript detectors based on
machine learning.

3 BACKGROUND
In this section, we briefly introduce common JavaScript code trans-
formation techniques and machine-learning-based static malicious
JavaScript detectors.

3.1 JavaScript Code Transformations
Code transformations are commonly used to hide the code logic in
JavaScript, which includes obfuscation and minification.

Obfuscation makes code difficult to understand and analyze. The
common obfuscation techniques can be summarized as follows
[16, 45, 70]:

• Variable obfuscation randomly turns meaningful variable,
method, and constant names into meaningless gibberish-like
strings, reducing code readability, such as to single characters
or hexadecimal strings.

• String obfuscation arrays strings and stores them centrally,
with MD5 or Base64 encryption, so that no plaintext strings
appear in the code, thus avoiding the need to locate the entry
point using a global search for strings. We refer to it and
variable obfuscation collectively as data obfuscation.

• Property encryption transforms the properties of JavaScript
objects cryptographically, hiding the invocation relation-
ships between the code.

• Control flow flattening disrupts the original code execu-
tion flow of functions and function call relationships, making
the code logic chaotic and disorderly.

• Dead code injection randomly inserts useless dead code,
dead functions into the code to further clutter the code.

• Debugging protection checks the current runtime environ-
ment and adds some forced debugger statements based on
debugger statements to make it difficult to execute JavaScript
code in debug mode.

• Self defending inserts self-testing code into the script to
prevent formatting and variable renaming operations. If the
code is formatted, it will not run properly.

• Polymorphic mutation makes JavaScript code automat-
ically mutate itself every time it is called, changing it into
a completely different code than before, i.e. the function
remains the same but the form of the code changes, thus

eliminating the code from being dynamically analyzed and
debugged.

Minification refers to minimizing the code in a script file, which
reduces the readability of the code and of course improves the
loading speed of the website at the same time. Commonminification
techniques include removing unnecessary spaces, line breaks, etc.
from the code, or processing potentially publicly available code for
sharing, compressing, and converting some call logic into a few
lines of code [4, 11]. In a broader sense, it can also be seen as a
kind of obfuscation. In the following, we collectively refer to these
techniques as obfuscation techniques.

We transform JavaScript code based on the following commonly
used obfuscation and minification tools:

• JavaScript-Obfuscator [10] is a powerful and free obfusca-
tor for JavaScript, containing a variety of features.

• gnirts [7] is used to obfuscate string literals in JavaScript
code. It mangles string literals by using some code instead
of hexadecimal escape.

• JSObfu [12] is a JavaScript obfuscator written in Ruby, which
randomizes asmuch as possible and removes string constants
that are easily-signaturable.

• JavaScriptMinifier [19] is an easy-to-use tool for minifying
JavaScript code.

• Google closure compiler [3] is a tool for making JavaScript
download and run faster, which contains a variety of ad-
vanced optimization ways to minify JavaScript code.

We select the five obfuscation tools as they are publicly available,
popularity, and recognized by other studies. The five tools are very
convenient to use. JavaScript-Obfuscator, gnirts, and JSObfu are
open source projects on github with high stars. JavaScript Minifier
and Google closure compiler are developed by the famous companies
Toptal and Google, which are widely used by developers. More-
over, these tools are recognized by other researchers. They have
been used by works [53, 64] published in top conferences.

Based on these tools, we generalize six obfuscation techniques,
which are data obfuscation, control flow flattening, dead code injec-
tion, self defending, debug protection, and minification. For some
tools that implement the same technique, we use only one of them.

3.2 Malicious JavaScript Detection based on
Static Analysis and Machine Learning

Nowadays, machine learning has been applied tomalicious JavaScript
detection and has shown good effectiveness.

Rieck et al. [59] present CUJO for automatic detection of drive-
by-download attacks. Both static and dynamic features of JavaScript
files on a website are extracted by using n-grams, and Support Vector
Machines (SVM) is applied for the detection, achieving 94% accu-
racy in detecting drive-by download attacks. Curtsinger et al. [30]
propose ZOZZLE, utilizing hierarchical features of the JavaScript
abstract syntax tree and Bayesian detector to detect JavaScript
malware. They claim that ZOZZLE has a low false positive rate of
0.00003%. Canali et al. [27] implement Prophiler, detecting malicious
web pages by leveraging features derived from the HTML contents
of web pages, the associated JavaScript code, and corresponding
URLs. Laskov et al. [51] detect JavaScript-bearing malicious PDF
documents based on the lexical analysis. Xu et al. [71] propose

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Kunlun Ren, Weizhong Qiang, Yueming Wu, Yi Zhou, Deqing Zou, and Hai Jin

JStill to detect obfuscated malicious JavaScript based on the static
analysis of function invocation. Wang et al. [66] implement JDSC,
which use features of lexical analysis, program structures, and risky
function calls to detect JavaScript malware. Seshagiri et al. [63]
propose AMA to detect malicious code through static code analysis
of web pages. Stock et al. [65] present KIZZLE, leveraging anti-virus
signatures for exploit kits. Kar et al. [46] model SQL queries as a
graph of tokens and use the centrality measure of nodes as features
to detect SQL attack. Fass et al. [36] present JAST that uses n-grams
of sequential nodes produced from AST to identify patterns indica-
tive of malicious behavior. They evaluate different classifiers and
determine that random forest is the best, with a high detection
accuracy of 99.5%. Afterwards, Fass et al. propose JSTAP [35], a
modular static malicious JavaScript detector that leverages lexi-
cal, syntax, control-flow, and data-flow information. They extract
features either by constructing n-grams of nodes or by combining
the AST node type with its corresponding identifier/literal value,
and a random forest is used as classifier. By combining different
modules, the accuracy of JStap can reach 99.7%. Alazab et al. [24]
employ several features and machine-learning techniques to detect
obfuscation in JavaScript before classifying the code as benign or
malicious.

Some works leverage deep learning to conduct feature learning.
Wang et al. [68] propose a framework for malicious JavaScript de-
tection based on deep learning and logistic regression. They use
stacked denoising auto encoder to extract features and logistic re-
gression as a classifier. Ndichu et al. [54] utilizes AST of JavaScript
for representation and Doc2Vec to conduct feature learning to
detect JavaScript-based attacks. Fang et al. [32] use Bi-LSTM net-
work and syntactic unit sequences from AST to detect malicious
JavaScript. Huang et al. [42] present JSContana that uses context
analysis based on dynamic word embeddings and TextCNN [73]
as the classification module and achieve 99.0% in AUC-score. Rozi
et al. [61] detect malicious JavaScript based on the AST features
processed by a graph convolutional neural network (GCN) [48] and
apply an attention layer to improve the performance. Fang et al.
[33] propose a static detection model based on graph neural net-
work, JStrong, which utilizes data flow and control flow information
through PDG and learns the features through the graph neural net-
work. Hwang et al. [43] propose a deobfuscation processing and
a variant of Stacked denoising Autoencoder-Logistic Regression,
which extracting features from obfuscated samples, to detect obfus-
cated malicious JavaScript.

While some of these works [24, 32, 33, 35, 42, 43, 54, 71] mention
the detection ability on obfuscated scripts, no work discusses the
impact of changes in obfuscation on the detectors.

4 METHODOLOGY
4.1 Research Questions
In this work, we aim to answer the following research questions:

• RQ1: What impact does obfuscation have on static machine
learning malicious JavaScript detectors?

• RQ2: Are the commonly used measures to mitigate the im-
pact of obfuscation effective?

• RQ3: What is the root cause of obfuscation affecting static
machine learning malicious JavaScript detectors?

• RQ4: How does obfuscation affect real-world static malicious
JavaScript detectors?

4.2 Datasets
4.2.1 Original Dataset. The original dataset is the one that contains
samples that are directly from the wild and have not been manually
transformed. Our original dataset consists of samples from different
sources. The malicious samples in the original dataset consist of the
malware collection of Hynek Petrak [9], exploit kits from GeeksOn-
Security [15], and the additional samples from VirusTotal [22]. The
benign samples come from the 150k JavaScript Dataset published
by Raychev et al. [57], consisting of 150,000 JavaScript files, and the
scripts crawled from Alexa Top-10k websites, consisting of over
60,000 scripts. Although these data were collected in 2015-2017,
which are not the most up-to-date data, the oldness of the data
do not affect our research, as we explore the qualitative impact of
obfuscation on machine learning detectors and reobfuscate these
samples. The details of the original dataset are shown in Table 1.

4.2.2 Obfuscated Dataset. Even though previous studies have pro-
posed some approaches to detect obfuscation [53, 64], we cannot
be sure which of these scripts in the original dataset are obfuscated
and in what way the obfuscated scripts are obfuscated with these
approaches. But our subsequent experiments need to know which
scripts are obfuscated in which way with certainty. To achieve this,
we create our obfuscated dataset.

As mentioned in Section 3.1, we select six techniques based
on the transformation tools to transform the samples in original
dataset. We refer to these six techniques as obfuscators in the
following. Accordingly, these transformations are referred to as
obfuscations. We generate our obfuscated dataset by applying
these six obfuscators to obfuscate all samples in the original dataset.
None of these obfuscators are able to transform all samples. We
select a subset of 21,000 samples each from benign and malicious
samples that are successfully obfuscated for all six obfuscators.
That is, our obfuscated dataset contains a total of 294,000 samples,
where there are equal numbers of benign and malicious samples.
The benign and malicious class each contains seven subsets of
21,000 samples that are unobfuscated and obfuscated by the six
obfuscators, respectively.

Table 1: Original dataset

Class Source #JS

Malicious
Hynek Petrak 39,450

GeeksOnSecurity 1,370
VirusTotal 1778

Benign 150k JavaScript Dataset 150,000
Alexa Top-10k 65,203

4.3 Malicious JavaScript Detectors
The objects of our study are static machine learning-basedmalicious
JavaScript detectors. We select four detectors, which are state-of-
the-art and include a variety of static analysis techniques such
as lexical analysis, AST-based analysis, CFG-based analysis, and

An Empirical Study on the Effects of Obfuscation on Static Machine Learning-based Malicious JavaScript Detectors ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

Table 2: FNR and FPR (%) of four detectors on obfuscated samples

Detectors
Baseline

(Unobfuscated)
Control flow
flattening

Data
obfuscation

Dead code
injection

Debug
protection

Self
defending

Minification Average

FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR

CUJO 0.3 13.5 0 92.9 0 100 0 100 0 99.7 6.9 75.2 4.7 14.3 1.9 80.4
ZOZZLE 0.6 0.6 1.2 0.8 11.7 0.8 12.2 1.1 17.9 0.1 9.0 0.2 8.0 0.7 10.0 0.6
JAST 0.2 0.2 4.4 3.4 0.1 34.5 0 34.2 0 30.2 18.5 25.6 17.4 1.3 5.9 21.5
JSTAP 0.5 0 10.9 0.2 20.3 1.7 21.8 1.2 28.1 0 23.4 0.1 29.4 0 22.3 0.5

PDG-based analysis. Moreover, they are the most influential, with
relevant papers published in high quality conferences. In addition,
they are open source, while other tools are not and are difficult to
reproduce. Therefore, we choose these four detectors as the main
objects to be evaluated in our experiments, and we believe that
their performance is representative:

• CUJO [59] uses n-grams features from both static and dy-
namic analysis to detect malware. In this paper, we conduct
experiments only with CUJO’s static part. We use the re-
implementation of CUJO provided by Fass et al. [14] in our
experiments.

• ZOZZLE [30] detects malicious JavaScript based on the hi-
erarchical features of ASTs. In our experiments, we use the
ZOZZLE re-implemented by Fass et al. [21].

• JAST [36] extracts n-grams features from ASTs to detect
malicious JavaScript. We directly use the project available
on GitHub [8].

• JSTAP [35] extends the detection capability of lexical and
AST-based pipelines by also leveraging control and data
flow information. It extracts n-gram features or combines
them with the name information of variables. We consider
JSTAP’s PDG code abstraction with the n-grams feature in
our experiments. We use their implementation available on
GitHub [13].

The dataset used in CUJO consists of 220,083 URLs of Alexa-200k
and Surfing, and 609 samples obtained from Cova et al. [29]. The
samples in the dataset of ZOZZLE are obtained by scanning URLs
by NOZZLE [56] and extracting Alexa.com top 50 URLs, containing
919 malicious contents and 7,976 benign contents. The dataset in
JAST is provided by the German Federal Office for Information Se-
curity, containing JavaScript files extracted from emails, Microsoft
products, games, web frameworks, and the source code of Atom.
It comprises 20,246 benign and 85,059 malicious JavaScript sam-
ples. The dataset of JSTAP contains 131,448 malicious samples and
141,768 benign samples. Among them, malicious samples are from
German Federal Office for Information Security, Hynek Petrak [9],
Kafeine DNC [17], GeeksOnSecurity [15], and VirusTotal [22]. Be-
nign samples are from Tranco top 10,000 websites [55], Microsoft
products, open source games, web frameworks, and Atom. Com-
pared to these datasets, our dataset is comparable to the dataset
of JSTAP and superior to the datasets used in CUJO, ZOZZLE, and
JAST in terms of size and diversity. Overall, our dataset is large
enough and contains samples from diverse sources. It is sufficient
to support our experiments.

We conduct all our experiments on a server with Ubuntu 18.04.1,
an Intel Xeon Gold 6234 CPU @ 3.30GHz, NVIDIA Quadro RTX
5000 GPU, and 32 GB RAM. To reduce the statistical effects of
random factors, we use five-fold cross-validation when training the
models, and our experimental results are obtained by running each
experiment five times and then averaging the results.

5 EXPERIMENTS AND RESULTS
5.1 RQ1: What Impact Does Obfuscation Have

on Static Machine Learning Malicious
JavaScript Detectors?

Although it is natural to suspect that the obfuscation of source code
can affect machine learning detectors base on static features, solid
experimental confirmation is needed. We conduct the following
experiments to figure out how obfuscation affects the machine
learning detector. This is important because machine learning is
increasingly being used for malicious JavaScript detection, while
the impact of obfuscation is rarely discussed, which can have a
detrimental effect on its practical application.

5.1.1 Detectors Performance on Obfuscated Samples. First, we con-
sider what happens when a trained detector detects obfuscated
scripts in practice. We randomly select 10,000 samples each from
the malicious and benign samples in our original dataset as the
training set, and 5,000 as the validation set. Then, we train four
detectors with these samples based on the description in their pa-
pers and the steps provided in the open source projects. Next, the
performance of four trained detectors are evaluated on 5,000 un-
obfuscated samples from original dataset with equal numbers of
benign and malicious samples, and versions that are obfuscated by
each of the six obfuscators.

We focus on the metrics commonly used to evaluate malware
detectors: false negative rate (FNR) and false positive rate (FPR). A
good malware detector should have both a low FNR and a low FPR
under various scenarios. Intuitively, obfuscation can interfere with
the detector’s analysis and thus allow malicious scripts to escape
detection, which can lead to an increase in the FNR. There is also
the possibility that benign samples use the same obfuscation as
malicious samples, causing the detector to classify benign samples
as malicious, thus increasing the FPR.

Table 2 shows the FNR and FPR of four detectors evaluated on
the unobfuscated samples and the six obfuscated versions. The
results show that obfuscation affect different detectors in different
ways. For example, CUJO and JAST have a significantly higher FPR
on obfuscated samples, increasing by 66.9% and 21.3% on average

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Kunlun Ren, Weizhong Qiang, Yueming Wu, Yi Zhou, Deqing Zou, and Hai Jin

Table 3: FNR and FPR (%) of five machine learning models on obfuscated samples

Detectors
Baseline

(Unobfuscated)
Control flow
flattening

Data
obfuscation

Dead code
injection

Debug
protection

Self
defending

Minification Average

FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR

SVM 3.9 1.2 6.2 1.7 1.6 3.8 16.5 4.0 15.8 0.6 13.3 1.1 7.6 5.6 12.6 2.8
Logistic Regression 26.8 1.8 44.9 1.7 59.2 0.3 60.4 0.3 55.0 0.2 49.0 0.4 38.1 4.2 51.1 1.2

Bernoulli Naive Bayes 32.9 0.8 31.5 1.7 20.6 36.6 21.7 45.8 32.4 0.8 32.8 1.0 43.5 0.5 30.4 14.4
Decision Tree 1.1 1.6 8.8 2.2 10.3 2.8 9.2 2.3 40.6 1.7 42.0 1.7 1.5 1.9 18.7 2.1
Random Forest 0.6 0.6 1.2 0.8 11.7 0.8 12.2 1.1 17.9 0.1 9.0 0.2 8.0 0.7 10.0 0.6

compared to the baseline, while ZOZZLE and JSTAP achieve a
significantly higher FNR, increasing by 9.4% and 21.8% on average
compared to the baseline. Moreover, different obfuscators have
different effects on the same detector. Some obfuscators have a
large impact and some produce a less pronounced impact. However,
they affect the same detector with the same bias. For example, all six
obfuscators increase JSTAP’s FNR significantly, while having little
effect on its FPR. In general, obfuscation can seriously interfere
with the detection of the detector.

5.1.2 Different Machine Learning Algorithms. The feature extrac-
tion methods for these four detectors are different, but the machine
learning algorithms they used are all Random Forest. We wonder
if different machine learning algorithms will perform differently.
From Table 2 we can see that ZOZZLE performs best on obfus-
cated samples, so we use the method of ZOZZLE to extract features
and then apply different machine learning algorithms utilizing the
implementation in a Python library, scikit-learn [20], in the final
classification stage, including Support Vector Machine (SVM), Logis-
tic Regression, Bernoulli Naive Bayes, and Decision Tree.

Table 3 shows the FNR and FPR of different machine learning
algorithms based on the features extracted by ZOZZLE running on
the unobfuscated and obfuscated samples. The results illustrate that
the bias affected by obfuscation is the same for different machine
learning algorithms. Here all of themmainly are affected in terms of
the FNR mainly. Moreover, Random Forest performs the best. In the
following, we consider that different machine learning algorithms
perform with the same characteristics by default and do not discuss
a specific machine learning algorithm any more.

5.1.3 Biased Training Sets. In the practical application of machine
learning detectors, there will also be a bias in the training data. For
example, benign samples are mostly unobfuscated, while malicious
samples are mostly obfuscated, or both benign and malicious sam-
ples are obfuscated, but in different ways. This makes us wonder
whether the detector could be affected by the bias of the obfuscation
in the training set, causing the detector to actually detect obfusca-
tion instead of detecting malicious behaviors. Here we consider two
extreme scenarios, i.e., a training set with all unobfuscated benign
samples and all obfuscated malicious samples, and a training set
with all obfuscated benign samples and all unobfuscated malicious
samples. The detectors trained with such training sets are used to
detect unobfuscated benign samples, obfuscated benign samples,
unobfuscated malicious samples, and obfuscated malicious samples,
respectively. The size of the training set is still 20,000 samples with
an equal number of benign and malicious samples, and the number

Table 4: Average accuracy (%) of detectors trained on biased
datasets detecting unobfuscated and obfuscated samples

Detectors Bias
in training

set

Test samples
Unobfuscated

Benign
Obfuscated
Benign

Unobfuscated
Malicious

Obfuscated
Malicious

CUJO
Malicious
Obfuscated 88.2 14.3 82.6 100

Benign
Obfuscated 20.5 94.7 94.8 34.9

ZOZZLE
Malicious
Obfuscated 99.6 19.8 55.4 100

Benign
Obfuscated 32.8 99.9 100 53.7

JAST
Malicious
Obfuscated 100 16.7 23.6 100

Benign
Obfuscated 20.0 99.9 100 25.6

JSTAP
Malicious
Obfuscated 100 18.6 14.0 100

Benign
Obfuscated 22.4 100 100 14.3

of test samples in each category is 5,000. Since we are identifying a
single category of samples, here we choose the metric accuracy.

Table 4 shows the average accuracy of the detector trained with
the bias dataset detecting unobfuscated benign samples, obfuscated
benign samples, unobfuscated malicious samples, and obfuscated
malicious samples. Note that the samples for testing use the same
obfuscator as in the training set, and the accuracy is obtained by
averaging the accuracy of detecting the six kinds of obfuscated
samples. The results show a consistent performance of the four de-
tectors. When only malicious samples are obfuscated in the training
set, detectors classify unobfuscated benign samples and obfuscated
malicious samples with high accuracy, and classify obfuscated be-
nign samples and unobfuscated malicious samples with low accu-
racy. The opposite is true when only benign samples are obfuscated
in the training set. This confirms our conjecture that the detector
will use obfuscation as its basis for classification when obfuscation
appears significantly biased in the training set.

From the above experiments, we can conclude that obfuscation
can have a serious impact on malicious JavaScript detectors based
on static analysis and machine learning. These detectors show a sig-
nificant increase in FNR and FPR on obfuscated samples. Moreover,
the detectors will tend to detect obfuscation rather than malicious
behaviors when there is a clear bias about obfuscation between
benign and malicious samples in the dataset for training these
detectors.

An Empirical Study on the Effects of Obfuscation on Static Machine Learning-based Malicious JavaScript Detectors ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

Finding 1: The malicious JavaScript detectors based on static
analysis and machine learning perform poorly on obfuscated
samples, with a significant increase in FNR and FPR, and the bias
of obfuscation in the training set induces the detectors to detect
obfuscation rather than malicious behaviors.

5.2 RQ2: Are the Common Measures to Mitigate
the Impact of Obfuscation Effective?

From the above experiments we can see that obfuscation does in-
terfere with the detectors significantly. Mitigating the effect of
obfuscation on the detectors can be seen as improving the robust-
ness of the detectors. For machine learning-based detectors, it is
natural to think of two ways to improve their robustness: improving
the quality of the dataset and optimizing the method of extracting
features, which are common ideas. Correspondingly, we consider
two approaches: one is to add similar obfuscated samples to the
training set, and the other is to use the currently hot deep learning
methods to extract features.

5.2.1 Training and Testing Detectors on Samples with Same Types
of Obfuscation. Here we evaluate four detectors in an extreme
scenario, where the data from the training and test sets are all
obfuscated by the same obfuscator. The sizes of the training and
test sets are kept the same as in the previous experiments.

Table 5 shows the results of detecting the same kind of obfuscated
samples with a detector trained on the obfuscated samples. We
can see a significant improvement in the performance of all four
detectors compared to the detectors trained on all unobfuscated
samples, even comparable to baseline. The only exception is CUJO,
which has a 13.4% increase in FNR compared to baseline, but still
has a significant performance improvement compared to training
on unobfuscated samples. This indicates that adding the same type
of obfuscated data when training the detector helps to improve the
performance of the detector in detecting obfuscated data.

5.2.2 Training and Testing Detectors on Samples with Different
Types of Obfuscation. Our experimental setup above is a very ideal
scenario. It is natural to think that this may be a palliative, not a
cure for the problem, i.e., once the obfuscation type of the samples
to be analyzed is different from that in the training set, the detec-
tor may once again be ineffective. To verify this we evaluate the
performance of the four detectors in scenarios with different types
of obfuscation in the training and test sets.

Figure 1(c) shows the FNR and FPR of the four detectors when
the data in the training and test sets are of different obfuscation
types. The FNR and FPR are obtained by averaging the results of
various different obfuscation type combinations (30 combinations
per detector). The results are consistent with our guess. The detector
returns to the performance when trained on unobfuscated samples
and detecting obfuscated samples. From Figure 1(a) and Figure 1(c)
we can see that the FNR and FPR of each detector are very similar
in the two scenarios.

5.2.3 BERT Variants. In the following we evaluate the detectors
after introducing deep learning methods. Deep learning approaches
have made impressive progress in code representation, especially
BERT variants, which has been able to generate fairly robust rep-
resentations of the semantics of code. We select three state-of-art

influential BERT variants for programming language, which are
CodeBERT [37], GraphCodeBERT [40], and UniXcoder [39]. We
generate the code representation directly using the pre-trained
models Microsoft provides [5]. Then Random Forest model is used
as the classifier, which is in consistent with the above experiments.
From Table 6, we find that these three models exhibit very similar
characteristics on obfuscated samples, mainly an increase in the
FPR. They also exhibit similar characteristics on the same type of
obfuscated samples, with a close increase FPR. On average, there is
only a small increase in the FNR of the three models on the obfus-
cated samples compared to baseline, while a significant increase in
the FPR, which increases by 77.2%, 75,6%, and 69.0%, respectively.
This indicates that deep learning-based models like BERT variants
are also unable to address the impact of obfuscation and are even
more affected than the four detectors.

From the above experiments, we can conclude that among the
common measures to mitigate obfuscation impact, improving the
quality of the dataset, such as adding the same type of obfuscated
samples to the dataset used to train the detector, can improve the
performance of the detector on the obfuscated data. However, it is
a palliative, not a cure for the problem brought by obfuscation. The
detectors still does not work well with different types of obfuscation
in the training and test sets. As for deep learning related methods,
such as BERT variants, we do not see a trend that would solve this
problem and they can be even more severely affected.

Finding 2: The common measures to mitigate the impact of ob-
fuscation can not work well. Improving the quality of the dataset
is just a palliative for the problem. Deep learning models do not
appear to solve this problem effectively either, and are even more
affected by obfuscation.

5.3 RQ3: What Is the Root Cause of Obfuscation
Affecting Static Machine Learning Malicious
JavaScript Detectors?

In this RQ, we explore the root cause of obfuscation affecting ma-
licious JavaScript detectors that are based on static analysis and
machine learning.

First let us revisit these four detectors we choose. CUJO utilizes
lexical analysis. ZOZZLE and JAST analyse the code based on AST.
JSTAP leverages not only lexical analysis and AST, but also control
flow and data flow information. CUJO directly uses the features
after lexical analysis, and the other three filter the features based
on frequency. Although there are differences, we can consider them
as the same class of methods. We consider this way of extracting
features, both lexical analysis and pipelines based on AST, as well
as leveraging control flow and data flow information, can be easily
messed up by obfuscation.

5.3.1 Vectors Visualization. To show the interference of obfusca-
tion on the features extracted by the detector more intuitively, we
choose JSTAP trained on unobfuscated samples as a representative
to visualize the corresponding feature vectors of the test samples
in the classification phase. The visualization is performed by first
normalizing the high-dimensional vector features so that the sizes
are all in the same range. Then PCA is used to reduce the dimen-
sionality to low dimensions, and the t-SNE is used to reduce it to

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Kunlun Ren, Weizhong Qiang, Yueming Wu, Yi Zhou, Deqing Zou, and Hai Jin

Table 5: FNR and FPR (%) of four detectors trained and tested on same type of obfuscated samples

Detectors
Control flow
flattening

Data
obfuscation

Dead code
injection

Debug
protection

Self
defending

Minification Average

FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR

CUJO 5.3 7.2 20.9 7.3 20.5 9.7 21.9 14.1 12.7 10.5 0.6 9.8 13.7 9.8
ZOZZLE 0.8 0.4 0.9 0.2 0.4 0.2 0.6 0.1 0.4 0.2 0.4 0.9 0.6 0.3
JAST 0.5 0.3 0.3 1.5 0.3 1.7 0.2 0.5 0.2 0.3 0.3 0.4 0.3 0.8
JSTAP 0.9 0 0.7 0.7 0.5 0.5 0.2 3.9 0.4 1.1 0.4 0 0.5 1.0

FNR
FPR

Ra
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cujo Zozzle Jast JStap

(a) Trained on unobfuscated samples and tested
on obfuscated samples

FNR
FPR

Ra
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cujo Zozzle Jast JStap

(b) Trained and tested on same type of obfus-
cated samples

FNR
FPR

Ra
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cujo Zozzle Jast JStap

(c) Trained and tested on different types of ob-
fuscated samples

Figure 1: Average FNR and FPR (%) of four detectors trained on unobfuscated samples and tested on obfuscated samples, trained
and tested on same type of obfuscated samples, and trained and tested on different types of obfuscated samples

Table 6: FNR and FPR (%) of three BERT variants on obfuscated samples

Model
Baseline

(Unobfuscated)
Control flow
flattening

Data
obfuscation

Dead code
injection

Debug
protection

Self
defending

Minification Average

FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR

CodeBERT 0.3 0.3 1.4 81.6 0.1 98.2 0.1 98.4 0 97.6 0.1 85.4 11.8 3.7 2.3 77.5
GraphCodeBERT 0.1 0.3 1.0 81.5 0 99.2 0 99.2 0 97.8 0.9 68.5 8.6 9.4 1.8 75.9

UniXcoder 0.1 0.4 3.2 71.6 0.2 96.8 0.1 98.2 0.1 85.8 1.9 60.8 9.5 3.0 2.5 69.4

two dimensions to plot it out. The reason for applying both PCA
and t-SNE is that PCA is faster, while the visualization result after
t-SNE dimensionality reduction is more intuitive. Combining the
two for two-step dimensionality reduction balances the speed and
visualization effectiveness.

From Figure 2 we can clearly see that the obfuscation changes the
distribution of the vectors to a large extent. The vector distribution
of the samples obfuscated by control flow flattening andminification
changes less, while the vector distribution of the samples obfuscated
by debug protection and self defending changes greatly. This explains
to some extent the better performance of the detectors in control
flow flattening and minification and the poorer performance in
debug protection and self defending in the Table 2. Overall, it is
because of the obfuscation that the distribution of feature vectors
changes significantly, and the performance of the detector on these
samples naturally decreases.

5.3.2 Feature Analysis. Next we explore the scenario where ob-
fuscated samples as training data. In such a case the ability of the

detector to detect obfuscated samples is enhanced. We conjecture
that the obfuscated benign and malicious samples are also different
enough to be distinguished, and the detector is given a new feature
set to identify this difference.

To verify this, we extract the ten most important features from
JSTAP trained on unobfuscated samples and trained on obfuscated
samples (we choose Data obfuscation as a representative) based on
Random Forest model, respectively. As shown in Table 7, these two
sets of features are completely different. They exhibit very different
characteristics. For example, themost important feature obtained by
training on unobfuscated samples is [MemberExpression, Identifier,
Identifier, Identifier]. This often represents calling members of an
object. Whereas, the most important feature obtained by training
on obfuscated samples is [Literal, ObjectExpression, Property, Literal].
This usually indicates the definition of the object. These results
indicate that these features extracted by the detector are to find the
difference between the two types of samples rather than concerning
the nature of benign and malicious.

An Empirical Study on the Effects of Obfuscation on Static Machine Learning-based Malicious JavaScript Detectors ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

Benign
Malicious

(a) Unobfuscated

Benign
Malicious

(b) Control flow flattening

Benign
Malicious

(c) Data obfuscation

Benign
Malicious

(d) Dead code injection

Benign
Malicious

(e) Debug protection

Benign
Malicious

(f) Self defending

Benign
Malicious

(g) Minification

Figure 2: Vectors of benign and malicious samples obfuscated by different obfuscators
Table 7: The ten most important features of JSTAP trained on unobfuscated and obfuscated samples

Trained on unobfuscated samples Trained on obfuscated samples

[MemberExpression, Identifier, Identifier, Identifier] [Literal, ObjectExpression, Property, Literal]
[MemberExpression, Identifier, Identifier, ObjectExpression] [MemberExpression, MemberExpression, Identifier, CallExpression]
[MemberExpression, MemberExpression, Identifier, Identifier] [MemberExpression, Identifier, CallExpression, Identifier]
[Identifier, Identifier, MemberExpression, MemberExpression] [Literal, Property, Literal, CallExpression]
[CallExpression, MemberExpression, Identifier, Identifier] [SequenceExpression, CallExpression, FunctionExpression, Identifier]

[AssignmentExpression, MemberExpression, Identifier, Identifier] [Identifier, Literal, ObjectExpression, Property]
[Identifier, Identifier, ObjectExpression, Property] [BlockStatement, VariableDeclaration, ExpressionStatement, FunctionExpression]
[Identifier, ObjectExpression, Property, Identifier] [ExpressionStatement, FunctionExpression, BlockStatement, VariableDeclaration]

[CallExpression, MemberExpression, MemberExpression, Identifier] [CallExpression, Identifier, Literal, ObjectExpression]
[ExpressionStatement, CallExpression, MemberExpression, MemberExpression] [CallExpression, Identifier, Literal, Property]

Table 8: The number of malicious samples that eight an-
tivirus engines integrated with VirusTotal detect out of 1,500
samples after obfuscated by different obfuscators

Obfuscators AV1 AV2 AV3 AV4 AV5 AV6 AV7 AV8 Average
FNR (%)

Data
obfuscation

876 880 827 876 879 878 875 875 40.4

Control flow
flattening

920 901 620 744 721 717 721 717 48.2

Dead code
injection

875 879 834 878 879 877 877 877 40.4

Self
defending

957 937 1240 711 702 703 697 694 43.2

Debug
protection

941 908 541 682 682 680 677 675 50.5

Minification 1000 1002 852 986 964 963 965 963 34.2

Unobfuscated 1446 1455 1433 1446 1461 1457 1455 1454 0.8

5.3.3 Distances Between Vector Sets. In addition, we calculate the
distances between the vector sets to quantitatively show the differ-
ences between the samples of different categories. The equation is
as follows:

𝐶𝑒𝑛𝑡𝑒𝑟 (𝑉) =
∑𝑛
𝑖=1 𝑣𝑖

𝑛
, (1)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑉1,𝑉2) = 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑉1,𝑉2), (2)

where 𝑉 is a vector set, 𝑣𝑖 ∈ 𝑉 , and 𝑛 = |𝑉 |.
Note that we use the feature space of JSTAP. The distances be-

tween the obfuscated benign and malicious, unobfuscated benign
and malicious, unobfuscated and obfuscated, and different types
of obfuscated samples are obtained. The final distance is obtained
by averaging the distances over the samples of the six obfuscation
types.

As shown in Figure 3, the distance between the obfuscated benign
and malicious samples is significantly smaller than the distance
between the unobfuscated benign and malicious samples, and also
significantly smaller than the distance between the unobfuscated
and obfuscated samples, and the distance between different types
of obfuscated samples. This echoes the experimental results above
and further indicates that with such feature spaces, the difference
obfuscation brings to the samples misleads the detector to identify
obfuscation rather than benign and malicious.

To conclude, the root cause of obfuscation affecting malicious
JavaScript detectors that are based on static analysis and machine
learning is that detectors identify differences between different
classes of samples, and the differences introduced by obfuscation

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Kunlun Ren, Weizhong Qiang, Yueming Wu, Yi Zhou, Deqing Zou, and Hai Jin

D
is

ta
nc

e

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Unobfuscated
 benign

 and malicious

Obfuscated
 benign

 and malicious

Unobfuscated
 and obfuscated

Different
 types of

 obfuscation

Figure 3: Distance between different vectors sets

can override the differences between benign and malicious samples,
preventing detectors from working well on obfuscated samples.

Finding 3: The feature spaces of existing detectors can only
reflect shallow differences in code, not about the nature of benign
and malicious, which can be easily affected by the differences
brought by obfuscation.

5.4 RQ4: How Does Obfuscation Affect
Real-world Static Malicious JavaScript
Detectors?

Finally, we explore the impact of obfuscation on the real-world static
malicious JavaScript detectors. VirusTotal [22] is integrated with a
variety of anti-virus engines and is very often used in real-world ap-
plications, and many researchers use VirusTotal’s detection results
as labels for their data. We conduct the following experiment to see
the change of VirusTotal’s results before and after obfuscation.

We submit 1,500 benign samples, 1,500 malicious samples, and
the corresponding samples obfuscated by obfuscators to VirusTotal
for scanning. For benign samples, the detectors in VirusTotal are
correctly recognized. There are also almost no false positives after
obfuscation. The exception is self defending, where four detectors
show a large number of false positives on the samples obfuscated by
it, with false positive rates over 13%. Although only this obfuscator
appears in this situation, it indicates the existence of a specific
obfuscator by which benign samples are obfuscated can lead to
false positives in the detectors.

For malicious samples, 1,462 are successfully submitted, and no
detector can detect all of them. We select eight detectors with high
accuracy, which include detectors using machine learning tech-
niques and signature-based techniques. As VirusTotal discourages
comparisons between anti-virus tools [2], we choose the detectors
with similar performance, and we do not mention the names of
these detectors below.

Table 8 shows the number of malicious samples detected by each
detector. From the table, we can see a similar trend to the above
experiments. The performance of all eight detectors decreases to
varying degrees on the obfuscated samples. Different obfuscation

methods affect different detectors to different degrees. Overall, ob-
fuscation has a similar effect, increasing the detectors’ false negative
rates by 40%-50% on average. Minification’s effect is a little weaker,
causing the false negative rates to rise by about 30%.

To summarize, malicious samples can evade detection by anti-
virus engines after obfuscation. This indicates that obfuscation has
a similar impact on real-world detectors as our experiments above.
Moreover, it can cause some false positives, as VirusTotal performs
on benign samples obfuscated by self defending. The anti-virus
community needs to further enhance its ability to capture features
that are truly about maliciousness, whether they are obfuscated or
not.
Finding 4. Obfuscation has the similar effect on the anti-virus
engines in VirusTotal, which can lead to malicious JavaScript
evading detection by using obfuscation.

6 DISCUSSION AND LIMITATIONS
6.1 Discussion
We show that the staticmachine learning-basedmalicious JavaScript
detectors have high false negative rates on obfuscated samples. Ex-
periments demonstrate that obfuscation can greatly affect the detec-
tor, and it can even be said that the features brought by obfuscation
override the original features of the sample. Adding obfuscated
samples to the training of the detector can improve its detection
ability on the same obfuscation type, but it is not robust enough.
The performance varies greatly with the distribution of different
kinds of obfuscated data. We argue that the detector does not learn
the features of the sample that are really relevant to the nature of
the sample, and in some cases performs well on obfuscated data
because some features are obtained that are useful for classifying
these scripts but are not indicative of whether they are malicious.
The results of machine learning detectors are difficult to trust for
realistic situations with complex obfuscated data.

However, in the face of the volume of malicious JavaScript on
the Web, the application of machine learning can significantly re-
duce human costs. Moreover, due to the expensive overhead and
inapplicability of dynamic analysis in some cases, the application
of machine learning techniques based on static analysis in the field
of malicious JavaScript detection is necessary. For these problems
we observe, we suggest that they can be solved from the following
points.

Feature extraction. We can explore new feature extraction
methods to extract features that cannot be changed by obfusca-
tion and that are related to benign or malicious nature, such as
abstraction slicing of code to filter out key fragments. We suggest
that the code can be split and regrouped. The code is split into
fine-grained, atomized representations. Then the most important
parts of the code are obtained by regrouping these representations.
Such groups are used as features to classify benign and malicious
JavaScript files. We believe that such features are more reflective of
the essence of the code, which are less susceptible to obfuscation.
Using such features can naturally improve the robustness of the
detector against obfuscation.

Dataset quality. We can enhance the quality of the dataset by
collecting as many types of data as possible, and data cleaning and
pre-processing should be performed meticulously.

An Empirical Study on the Effects of Obfuscation on Static Machine Learning-based Malicious JavaScript Detectors ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

Combining dynamic analysis. Dynamic analysis can reveal
the behavior of the tested samplesmore clearly. Combining dynamic
analysis when conditions allow and the overhead is acceptable. In
practice, we suggest that filtering out suspicious samples with static
methods first, and then determining them accurately with dynamic
methods, which can greatly reduce the impact of obfuscation.

6.2 Limitations
We do not conduct a detailed analysis of all malicious JavaScript
detectors based on static analysis and machine learning. In fact, the
results will certainly vary for different machine learning methods
in the face of the situations set up in our experiments.

Moreover, we do not discuss the obfuscation of the up-to-date
website scripts with its impact on the machine learning detector,
whose obfuscation distribution may be different from the settings
in our experiments, and the resulting impact should be different as
well. Yet, our experiments are reliable and our findings are valuable.
We reveal the effects of obfuscation on static machine learning-
based malicious JavaScript detectors. Even though the distribution
of obfuscation in real-world websites is different from the dataset
we construct, it is only a quantitative difference, not a qualitative
one. Hence the construction method of our obfuscated dataset does
not affect the validity of our conclusions.

7 RELATEDWORK
7.1 Obfuscation Studies
Many studies of obfuscation have been proposed, and these studies
cover various programming languages.

Some works aim to evaluate the effectiveness of obfuscation.
Ceccato et al. [28] evaluate 44 obfuscations on the Java code. They
find that code obfuscation has effect on all code metrics they se-
lect. Hammad et al. [41] conduct a large-scale study to assess the
effects of obfuscation on Android apps and anti-malware products.
They discover that code obfuscation impacts Android anti-malware
products significantly. Wang et al. [67] explore the necessity of
applying obfuscation to iOS apps against malicious reverse engi-
neering for protectingmobile apps. Their results show that software
obfuscation can provide effective protection with modest cost.

There are also some works proposing new obfuscation tech-
niques for JavaScript. Fass et al. [34] introduce HideNoSeek, which
rewrites ASTs of malicious samples into benign ones to evade de-
tection. Romano et al. [60] propose Wobfuscator, which transforms
selected parts of behaviors implemented in JavaScript into We-
bAssembly to evade detection. These new techniques further in-
crease the impact of obfuscation.

7.2 Obfuscation Detection
Some existing works lay more emphasis on detecting obfuscation.
Kaplan et al. [45] present NoFus, which is a static obfuscation clas-
sifier based on the AST of JavaScript code. AL-Taharwa et al. [23]
propose JSOD, which is designed to detect readable versions of
obfuscation by using syntactic and contextual features. Sarker et
al. [62] leverage the differences in browser API features between
dynamic and static analysis to reveal the behavior of obfuscation.
These studies are characterized by targeted approaches designed for

obfuscation. Furthermore, their results indicate that the correlation
between obfuscation and maliciousness is weak.

Other works investigate the obfuscation applied on JavaScript
code in real-world. Likarish et al. [52] train classifiers to detect
malicious JavaScript and obfuscation. They find that some websites
choose to compress their JavaScript code, and this obfuscated code
is the most likely to generate a false positive. Xu et al. [70] measure
the usage of obfuscation in real-world malicious JavaScript samples
and explore the effectiveness of 20 anti-virus software against obfus-
cation. They find all popular anti-virus products can be effectively
evaded by various obfuscation techniques. Skolka et al. [64] study
the obfuscation in a large-scale scripts from 100,000 websites by
leveraging a neural network-based classifier. They show that obfus-
cation is very common and is used for a variety of purposes. Moog
et al. [53] conduct an in-depth study of obfuscation on both client-
side JavaScript and library code from npm in the wild. They define
two random forest-based classifiers to detect obfuscated samples,
benefiting from AST-based features. Their results demonstrate the
popularity of obfuscation and the differences between obfuscation
techniques in benign and malicious scripts.

8 CONCLUSION
In this paper, we investigate the impact of obfuscation on machine
learning malicious JavaScript detectors based on static analysis
features in depth. We conduct sufficient experiments and find that
obfuscation can indeed interfere with the detectors’ judgment to a
great extent, with a significant increase in FNR and FPR. Moreover,
when there is a clear bias about obfuscation between benign and
malicious samples in the training sets, detectors can be induced to
detect obfuscation rather than malicious behaviors. What’s worse,
the common measures to mitigate obfuscation impact, such as
improving the quality of dataset by adding the relevant type of
obfuscated samples and introducing state-of-the-art deep learning
models for programming language, are not effective. Through our
in depth analysis, we believe that the root cause of obfuscation
affecting those detectors is that detectors essentially identify dif-
ferences between different classes of samples, and the differences
introduced by obfuscation can override the differences between
benign and malicious samples, preventing detectors from working
well on obfuscated samples. Finally, we observe a similar effect of
obfuscated data on static detectors in VirusTotal, which indicates
that this problem is widespread. The anti-virus community needs
to pay attention to this issue, and it could have serious implications
for users of machine learning detectors based on static features,
which are being applied more and more.

9 DATA AVAILABILITY STATEMENT
We make the code and dataset publicly available at https://doi.org/
10.5281/zenodo.7977493 [58].

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their insight-
ful comments to improve the quality of the paper. This work is
supported in part by the National Natural Science Foundation of
China (Grant No. 62272181).

https://doi.org/10.5281/zenodo.7977493
https://doi.org/10.5281/zenodo.7977493

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Kunlun Ren, Weizhong Qiang, Yueming Wu, Yi Zhou, Deqing Zou, and Hai Jin

REFERENCES
[1] 2023. Atom: A Hackable Text Editor for the 21st Century. https://atom.io/
[2] 2023. AV Comparative Analyses. https://blog.virustotal.com/2012/08/av-

comparative-analyses-marketing-and.html
[3] 2023. Closure-compiler. https://github.com/google/closure-compiler
[4] 2023. Closure Compiler: Advanced Compilation. https://developers.google.com/

closure/compiler/docs/api-tutorial3
[5] 2023. CodeBERT. https://github.com/microsoft/CodeBERT
[6] 2023. German Federal Office for Information Security. https://www.bsi.bund.de/

EN
[7] 2023. Gnirts: Obfuscate String Literals in JavaScript Code. https://github.com/

anseki/gnirts
[8] 2023. JaSt - JS AST-Based Analysis. https://github.com/Aurore54F/JaSt
[9] 2023. JavaScript Malware Collection. https://github.com/HynekPetrak/

javascript-malware-collection
[10] 2023. JavaScript-obfuscator: A Powerful Obfuscator for JavaScript and Node.js.

https://github.com/javascript-obfuscator/javascript-obfuscator
[11] 2023. JavaScript Reference. https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference
[12] 2023. JSObfu: Obfuscate JavaScript (Beyond Repair) with Ruby. https://github.

com/rapid7/jsobfu
[13] 2023. JStap: A Static Pre-Filter for Malicious JavaScript Detection. https:

//github.com/Aurore54F/JStap
[14] 2023. Lexical-jsdetector. https://github.com/Aurore54F/lexical-jsdetector
[15] 2023. Malicious JavaScript Dataset. https://github.com/geeksonsecurity/js-

malicious-dataset
[16] 2023. Malware with Your Mocha: Obfuscation and Anti Emulation Tricks in

Malicious JavaScript. https://www.yumpu.com/s/0PX6x19R5gw0KWvt
[17] 2023. MDNC -Malware Don’t Need Coffee. https://malware.dontneedcoffee.com/
[18] 2023. Microsoft Digital Defense Report. https://query.prod.cms.rt.microsoft.

com/cms/api/am/binary/RWMFIi
[19] 2023. Online JavaScript Minifier Tool and Compressor, with Fast and Simple API

Access. https://www.toptal.com/developers/javascript-minifier
[20] 2023. Scikit-learn: Machine Learning in Python. https://scikit-learn.org/stable/
[21] 2023. Syntactic-jsdetector. https://github.com/Aurore54F/syntactic-jsdetector
[22] 2023. VirusTotal - Analyze Suspicious Files and URLs to Detect Types of Malware.

https://www.virustotal.com/
[23] Ismail Adel Al-Taharwa, Hahn-Ming Lee, Albert B. Jeng, Kuo-Ping Wu, Cheng-

Seen Ho, and Shyi-Ming Chen. 2015. JSOD: JavaScript Obfuscation Detector.
Secur. Commun. Networks 8, 6 (2015), 1092–1107. https://doi.org/10.1002/sec.1064

[24] Ammar Alazab, Ansam Khraisat, Moutaz Alazab, and Sarabjot Singh. 2022. De-
tection of Obfuscated Malicious JavaScript Code. Future Internet 14, 8 (2022), 217.
https://doi.org/10.3390/fi14080217

[25] Mohamed Alsharnouby, Furkan Alaca, and Sonia Chiasson. 2015. Why Phishing
Still Works: User Strategies for Combating Phishing Attacks. International Journal
of Human-Computer Studies 82 (2015), 69–82. https://doi.org/10.1016/j.ijhcs.2015.
05.005

[26] Fraser Brown, Shravan Narayan, Riad S. Wahby, Dawson Engler, Ranjit Jhala,
and Deian Stefan. 2017. Finding and Preventing Bugs in JavaScript Bindings. In
Proceedings of the 38th IEEE Symposium on Security and Privacy (SP’17). 559–578.
https://doi.org/10.1109/SP.2017.68

[27] Davide Canali, Marco Cova, Giovanni Vigna, and Christopher Kruegel. 2011.
Prophiler: A Fast Filter for the Large-scale Detection of Malicious Web Pages. In
Proceedings of the 20th International Conference on World Wide Web (WWW’11).
197–206. https://doi.org/10.1145/1963405.1963436

[28] Mariano Ceccato, Andrea Capiluppi, Paolo Falcarin, and Cornelia Boldyreff. 2015.
A Large Study on the Effect of Code Obfuscation on the Quality of Java Code.
Empirical Software Engineering 20 (2015), 1486–1524. https://doi.org/10.1007/
s10664-014-9321-0

[29] Marco Cova, Christopher Kruegel, and Giovanni Vigna. 2010. Detection and Anal-
ysis of Drive-by-download Attacks and Malicious JavaScript Code. In Proceedings
of the 19th International Conference on World Wide Web (WWW’10). 281–290.
https://doi.org/10.1145/1772690.1772720

[30] Charlie Curtsinger, Benjamin Livshits, Benjamin G. Zorn, and Christian Seifert.
2011. ZOZZLE: Fast and Precise In-Browser JavaScript Malware Detection. In
Proceedings of the 20th USENIX Security Symposium.

[31] Steven Englehardt andArvind Narayanan. 2016. Online Tracking: A 1-million-site
Measurement and Analysis. In Proceedings of the 23rd ACM SIGSAC Conference
on Computer and Communications Security (CCS’16). 1388–1401. https://doi.org/
10.1145/2976749.2978313

[32] Yong Fang, Cheng Huang, Yu Su, and Yaoyao Qiu. 2020. Detecting Malicious
JavaScript Code Based on Semantic Analysis. Computers & Security 93 (2020),
101764. https://doi.org/10.1016/j.cose.2020.101764

[33] Yong Fang, Chaoyi Huang, Minchuan Zeng, Zhiying Zhao, and Cheng Huang.
2022. JStrong: Malicious JavaScript Detection Based on Code Semantic Repre-
sentation and Graph Neural Network. Computers & Security 118 (2022), 102715.
https://doi.org/10.1016/j.cose.2022.102715

[34] Aurore Fass, Michael Backes, and Ben Stock. 2019. Hidenoseek: Camouflaging
Malicious JavaScript in Benign ASTs. In Proceedings of the 26th ACM SIGSAC
Conference on Computer and Communications Security (CCS’19). 1899–1913. https:
//doi.org/10.1145/3319535.3345656

[35] Aurore Fass, Michael Backes, and Ben Stock. 2019. JStap: A Static Pre-filter
for Malicious JavaScript Detection. In Proceedings of the 35th Annual Computer
Security Applications Conference, (ACSAC’19). 257–269. https://doi.org/10.1145/
3359789.3359813

[36] Aurore Fass, Robert P. Krawczyk, Michael Backes, and Ben Stock. 2018. JaSt: Fully
Syntactic Detection ofMalicious (Obfuscated) JavaScript. In Proceedings of the 15th
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA’18), Vol. 10885. 303–325. https://doi.org/10.1007/978-3-319-
93411-2_14

[37] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of
the Association for Computational Linguistics: EMNLP 2020. 1536–1547. https:
//doi.org/10.18653/v1/2020.findings-emnlp.139

[38] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit Baudry. 2018. Hiding in the
Crowd: An Analysis of the Effectiveness of Browser Fingerprinting at Large Scale.
In Proceedings of the 27th International Conference on World Wide Web (WWW’18).
309–318. https://doi.org/10.1145/3178876.3186097

[39] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.
UniXcoder: Unified Cross-Modal Pre-training for Code Representation. In Pro-
ceedings of the 60th AnnualMeeting of the Association for Computational Linguistics
(ACL’22). 7212–7225. https://doi.org/10.18653/v1/2022.acl-long.499

[40] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin B. Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang,
and Ming Zhou. 2021. GraphCodeBERT: Pre-training Code Representations
with Data Flow. In Proceedings of the 9th International Conference on Learning
Representations (ICLR’21).

[41] Mahmoud Hammad, Joshua Garcia, and Sam Malek. 2018. A Large-scale Empiri-
cal Study on the Effects of Code Obfuscations on Android Apps and Anti-malware
Products. In Proceedings of the 40th International Conference on Software Engi-
neering (ICSE’18). 421–431. https://doi.org/10.1145/3180155.3180228

[42] Yunhua Huang, Tao Li, Lijia Zhang, Beibei Li, and Xiaojie Liu. 2021. JSCon-
tana: Malicious JavaScript Detection Using Adaptable Context Analysis and
Key Feature Extraction. Computers & Security 104 (2021), 102218. https:
//doi.org/10.1016/j.cose.2021.102218

[43] Shin-Jia Hwang and Tzu-Ping Chen. 2023. A Detector Using Variant Stacked De-
noising Autoencoders with Logistic Regression for Malicious JavaScript with Ob-
fuscations. In Proceedings of the 25th International Computer Symposium (ICS’22).
374–386. https://doi.org/10.1007/978-981-19-9582-8_33

[44] Luca Invernizzi, Paolo Milani Comparetti, Stefano Benvenuti, Christopher
Kruegel, Marco Cova, and Giovanni Vigna. 2012. Evilseed: A Guided Approach
to Finding Malicious Web Pages. In Proceedings of the 33rd IEEE Symposium on
Security and Privacy (SP’12). 428–442. https://doi.org/10.1109/SP.2012.33

[45] Scott Kaplan, Benjamin Livshits, Benjamin Zorn, Christian Siefert, and Charlie
Curtsinger. 2011. " NOFUS: Automatically Detecting"+ String. fromCharCode
(32)+" ObFuSCateD". toLowerCase ()+" JavaScript Code. Technical report, Technical
Report MSR-TR 2011–57, Microsoft Research (2011).

[46] Debabrata Kar, Suvasini Panigrahi, and Srikanth Sundararajan. 2016. SQLiGoT:
Detecting SQL Injection Attacks Using Graph of Tokens and SVM. Computers &
Security 60 (2016), 206–225. https://doi.org/10.1016/j.cose.2016.04.005

[47] Kyungtae Kim, I Luk Kim, Chung Hwan Kim, Yonghwi Kwon, Yunhui Zheng,
Xiangyu Zhang, and Dongyan Xu. 2017. J-force: Forced Execution on JavaScript.
In Proceedings of the 26th International Conference on World Wide Web (WWW’17).
897–906. https://doi.org/10.1145/3038912.3052674

[48] Thomas N. Kipf and Max Welling. 2016. Semi-supervised Classification with
Graph Convolutional Networks. arXiv preprint arXiv:1609.02907 (2016). http:
//arxiv.org/abs/1609.02907

[49] Clemens Kolbitsch, Benjamin Livshits, Benjamin Zorn, and Christian Seifert. 2012.
Rozzle: De-cloaking Internet Malware. In Proceedings of the 33rd IEEE Symposium
on Security and Privacy (SP’12). 443–457. https://doi.org/10.1109/SP.2012.48

[50] Radhesh Krishnan Konoth, Emanuele Vineti, Veelasha Moonsamy, Martina
Lindorfer, Christopher Kruegel, Herbert Bos, and Giovanni Vigna. 2018.
Minesweeper: An In-depth Look into Drive-by CryptocurrencyMining and Its De-
fense. In Proceedings of the 25th ACM SIGSACConference on Computer and Commu-
nications Security (CCS’18). 1714–1730. https://doi.org/10.1145/3243734.3243858

[51] Pavel Laskov and Nedim Srndic. 2011. Static Detection of Malicious JavaScript-
bearing PDF Documents. In Proceedings of the 27th Annual Computer Security
Applications Conference (ACSAC’11). 373–382. https://doi.org/10.1145/2076732.
2076785

[52] Peter Likarish, Eunjin Jung, and Insoon Jo. 2009. Obfuscated Malicious JavaScript
Detection Using Classification Techniques. In Proceedings of the 4th International
Conference on Malicious and Unwanted Software (MALWARE’09). 47–54. https:
//doi.org/10.1109/MALWARE.2009.5403020

https://atom.io/
https://blog.virustotal.com/2012/08/av-comparative-analyses-marketing-and.html
https://blog.virustotal.com/2012/08/av-comparative-analyses-marketing-and.html
https://github.com/google/closure-compiler
https://developers.google.com/closure/compiler/docs/api-tutorial3
https://developers.google.com/closure/compiler/docs/api-tutorial3
https://github.com/microsoft/CodeBERT
https://www.bsi.bund.de/EN
https://www.bsi.bund.de/EN
https://github.com/anseki/gnirts
https://github.com/anseki/gnirts
https://github.com/Aurore54F/JaSt
https://github.com/HynekPetrak/javascript-malware-collection
https://github.com/HynekPetrak/javascript-malware-collection
https://github.com/javascript-obfuscator/javascript-obfuscator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://github.com/rapid7/jsobfu
https://github.com/rapid7/jsobfu
https://github.com/Aurore54F/JStap
https://github.com/Aurore54F/JStap
https://github.com/Aurore54F/lexical-jsdetector
https://github.com/geeksonsecurity/js-malicious-dataset
https://github.com/geeksonsecurity/js-malicious-dataset
https://www.yumpu.com/s/0PX6x19R5gw0KWvt
https://malware.dontneedcoffee.com/
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RWMFIi
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RWMFIi
https://www.toptal.com/developers/javascript-minifier
https://scikit-learn.org/stable/
https://github.com/Aurore54F/ syntactic-jsdetector
https://www.virustotal.com/
https://doi.org/10.1002/sec.1064
https://doi.org/10.3390/fi14080217
https://doi.org/10.1016/j.ijhcs.2015.05.005
https://doi.org/10.1016/j.ijhcs.2015.05.005
https://doi.org/10.1109/SP.2017.68
https://doi.org/10.1145/1963405.1963436
https://doi.org/10.1007/s10664-014-9321-0
https://doi.org/10.1007/s10664-014-9321-0
https://doi.org/10.1145/1772690.1772720
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1016/j.cose.2020.101764
https://doi.org/10.1016/j.cose.2022.102715
https://doi.org/10.1145/3319535.3345656
https://doi.org/10.1145/3319535.3345656
https://doi.org/10.1145/3359789.3359813
https://doi.org/10.1145/3359789.3359813
https://doi.org/10.1007/978-3-319-93411-2_14
https://doi.org/10.1007/978-3-319-93411-2_14
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1145/3178876.3186097
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.1145/3180155.3180228
https://doi.org/10.1016/j.cose.2021.102218
https://doi.org/10.1016/j.cose.2021.102218
https://doi.org/10.1007/978-981-19-9582-8_33
https://doi.org/10.1109/SP.2012.33
https://doi.org/10.1016/j.cose.2016.04.005
https://doi.org/10.1145/3038912.3052674
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://doi.org/10.1109/SP.2012.48
https://doi.org/10.1145/3243734.3243858
https://doi.org/10.1145/2076732.2076785
https://doi.org/10.1145/2076732.2076785
https://doi.org/10.1109/MALWARE.2009.5403020
https://doi.org/10.1109/MALWARE.2009.5403020

An Empirical Study on the Effects of Obfuscation on Static Machine Learning-based Malicious JavaScript Detectors ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

[53] Marvin Moog, Markus Demmel, Michael Backes, and Aurore Fass. 2021. Statically
Detecting JavaScript Obfuscation and Minification Techniques in the Wild. In
Proceedings of the 51st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’21). 569–580. https://doi.org/10.1109/DSN48987.2021.
00065

[54] Samuel Ndichu, Sangwook Kim, Seiichi Ozawa, Takeshi Misu, and Kazuo Mak-
ishima. 2019. A Machine Learning Approach to Detection of JavaScript-based
Attacks Using AST Features and Paragraph Vectors. Applied Soft Computing 84
(2019), 105721. https://doi.org/10.1016/j.asoc.2019.105721

[55] Victor Le Pochat, Tom van Goethem, Samaneh Tajalizadehkhoob, Maciej Korczyn-
ski, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites Ranking
Hardened Against Manipulation. In Proceedings of the 26th Annual Network and
Distributed System Security Symposium (NDSS’19).

[56] Paruj Ratanaworabhan, V. Benjamin Livshits, and Benjamin G. Zorn. 2009. NOZ-
ZLE: A Defense Against Heap-spraying Code Injection Attacks. In Proceedings of
the 18th USENIX Security Symposium. 169–186.

[57] Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause. 2016. Learning
Programs from Noisy Data. ACM Sigplan Notices 51, 1 (2016), 761–774. https:
//doi.org/10.1145/2837614.2837671

[58] Kunlun Ren. 2023. Artifacts for the ISSTA 2023 Paper: An Empirical Study on
the Effects of Obfuscation on Static Machine Learning-based Malicious JavaScript
Detectors. https://doi.org/10.5281/zenodo.7977493

[59] Konrad Rieck, Tammo Krueger, and Andreas Dewald. 2010. Cujo: Efficient
Detection and Prevention of Drive-by-download Attacks. In Proceedings of the
26th Annual Computer Security Applications Conference (ACSAC’10). 31–39. https:
//doi.org/10.1145/1920261.1920267

[60] Alan Romano, Daniel Lehmann, Michael Pradel, and Weihang Wang. 2022. Wob-
fuscator: Obfuscating JavaScript Malware via Opportunistic Translation to We-
bassembly. In Proceedings of the 43rd IEEE Symposium on Security and Privacy
(SP’22). 1574–1589. https://doi.org/10.1109/SP46214.2022.9833626

[61] Muhammad Fakhrur Rozi, Tao Ban, Seiichi Ozawa, Sangwook Kim, Takeshi
Takahashi, and Daisuke Inoue. 2021. JStrack: Enriching Malicious JavaScript
Detection Based onASTGraphAnalysis andAttentionMechanism. In Proceedings
of the 28th International Conference on Neural Information Processing (ICONIP’21),
Vol. 13109. 669–680. https://doi.org/10.1007/978-3-030-92270-2_57

[62] Shaown Sarker, Jordan Jueckstock, and Alexandros Kapravelos. 2020. Hiding in
Plain Site: Detecting JavaScript Obfuscation through Concealed Browser API
Usage. In Proceedings of the 20th ACM Internet Measurement Conference (IMC’20).
648–661. https://doi.org/10.1145/3419394.3423616

[63] Prabhu Seshagiri, Anu Vazhayil, and Padmamala Sriram. 2016. AMA: Static Code
Analysis of Web Page for the Detection of Malicious Scripts. Procedia Computer
Science 93 (2016), 768–773.

[64] Philippe Skolka, Cristian-Alexandru Staicu, and Michael Pradel. 2019. Anything
to Hide? Studying Minified and Obfuscated Code in the Web. In Proceedings
of the 28th International Conference on World Wide Web (WWW’19). 1735–1746.
https://doi.org/10.1145/3308558.3313752

[65] Ben Stock, Benjamin Livshits, and Benjamin Zorn. 2016. Kizzle: A Signature
Compiler for Detecting Exploit Kits. In Proceedings of the 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN’16). 455–466.
https://doi.org/10.1109/DSN.2016.48

[66] Junjie Wang, Yinxing Xue, Yang Liu, and Tian Huat Tan. 2015. JSDC: A Hybrid
Approach for JavaScript Malware Detection and Classification. In Proceedings of
the 10th ACM Symposium on Information, Computer and Communications Security
(AsiaCCS’15). 109–120. https://doi.org/10.1145/2714576.2714620

[67] Pei Wang, Dinghao Wu, Zhaofeng Chen, and Tao Wei. 2019. Field Experience
with Obfuscating Million-user iOS Apps in Large Enterprise Mobile Development.
Software: Practice and Experience 49, 2 (2019), 252–273. https://doi.org/10.1002/
spe.2648

[68] YaoWang,Wan-dong Cai, and Peng-chengWei. 2016. A Deep Learning Approach
for Detecting Malicious JavaScript Code. Security and Communication Networks
9, 11 (2016), 1520–1534. https://doi.org/10.1002/sec.1441

[69] Xinyu Xing, Wei Meng, Byoungyoung Lee, Udi Weinsberg, Anmol Sheth, Roberto
Perdisci, andWenke Lee. 2015. Understanding Malvertising through Ad-injecting
Browser Extensions. In Proceedings of the 24th International Conference on World
Wide Web (WWW’15). 1286–1295. https://doi.org/10.1145/2736277.2741630

[70] Wei Xu, Fangfang Zhang, and Sencun Zhu. 2012. The Power of Obfuscation Tech-
niques in Malicious JavaScript Code: A Measurement Study. In Proceedings of the
7th International Conference on Malicious and Unwanted Software (MALWARE’12).
9–16. https://doi.org/10.1109/MALWARE.2012.6461002

[71] Wei Xu, Fangfang Zhang, and Sencun Zhu. 2013. JStill: Mostly Static Detection of
Obfuscated Malicious JavaScript Code. In Proceedings of the third ACM Conference
on Data and Application Security and Privacy (CODASPY’13). 117–128. https:
//doi.org/10.1145/2435349.2435364

[72] Yinxing Xue, Junjie Wang, Yang Liu, Hao Xiao, Jun Sun, and Mahinthan Chan-
dramohan. 2015. Detection and Classification of Malicious JavaScript via Attack
Behavior Modelling. In Proceedings of the 24th International Symposium on Soft-
ware Testing and Analysis (ISSTA’15). 48–59. https://doi.org/10.1145/2771783.
2771814

[73] Ye Zhang and Byron C. Wallace. 2017. A Sensitivity Analysis of (and Practi-
tioners’ Guide to) Convolutional Neural Networks for Sentence Classification.
In Proceedings of the Eighth International Joint Conference on Natural Language
Processing, IJCNLP 2017. 253–263. https://aclanthology.org/I17-1026/

[74] Yuchen Zhou and David Evans. 2015. Understanding and Monitoring Embedded
Web Scripts. In Proceedings of the 36th IEEE Symposium on Security and Privacy
(SP’15). 850–865. https://doi.org/10.1109/SP.2015.57

Received 2023-02-16; accepted 2023-05-03

https://doi.org/10.1109/DSN48987.2021.00065
https://doi.org/10.1109/DSN48987.2021.00065
https://doi.org/10.1016/j.asoc.2019.105721
https://doi.org/10.1145/2837614.2837671
https://doi.org/10.1145/2837614.2837671
https://doi.org/10.5281/zenodo.7977493
https://doi.org/10.1145/1920261.1920267
https://doi.org/10.1145/1920261.1920267
https://doi.org/10.1109/SP46214.2022.9833626
https://doi.org/10.1007/978-3-030-92270-2_57
https://doi.org/10.1145/3419394.3423616
https://doi.org/10.1145/3308558.3313752
https://doi.org/10.1109/DSN.2016.48
https://doi.org/10.1145/2714576.2714620
https://doi.org/10.1002/spe.2648
https://doi.org/10.1002/spe.2648
https://doi.org/10.1002/sec.1441
https://doi.org/10.1145/2736277.2741630
https://doi.org/10.1109/MALWARE.2012.6461002
https://doi.org/10.1145/2435349.2435364
https://doi.org/10.1145/2435349.2435364
https://doi.org/10.1145/2771783.2771814
https://doi.org/10.1145/2771783.2771814
https://aclanthology.org/I17-1026/
https://doi.org/10.1109/SP.2015.57

	Abstract
	1 Introduction
	2 Motivation
	3 Background
	3.1 JavaScript Code Transformations
	3.2 Malicious JavaScript Detection based on Static Analysis and Machine Learning

	4 Methodology
	4.1 Research Questions
	4.2 Datasets
	4.3 Malicious JavaScript Detectors

	5 Experiments and Results
	5.1 RQ1: What Impact Does Obfuscation Have on Static Machine Learning Malicious JavaScript Detectors?
	5.2 RQ2: Are the Common Measures to Mitigate the Impact of Obfuscation Effective?
	5.3 RQ3: What Is the Root Cause of Obfuscation Affecting Static Machine Learning Malicious JavaScript Detectors?
	5.4 RQ4: How Does Obfuscation Affect Real-world Static Malicious JavaScript Detectors?

	6 Discussion and Limitations
	6.1 Discussion
	6.2 Limitations

	7 Related Work
	7.1 Obfuscation Studies
	7.2 Obfuscation Detection

	8 Conclusion
	9 Data Availability Statement
	Acknowledgments
	References

