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ABSTRACT

Code clone detection aims to find similar code fragments and gains
increasing importance in the field of software engineering. There
are several types of techniques for detecting code clones. Text-based
or token-based code clone detectors are scalable and efficient but
lack consideration of syntax, thus resulting in poor performance in
detecting syntactic code clones. Although some tree-based methods
have been proposed to detect syntactic or semantic code clones
with decent performance, they are mostly time-consuming and
lack scalability. In addition, these detection methods can not realize
fine-grained code clone detection. They are unable to distinguish
the concrete code blocks that are cloned. In this paper, we design
Tamer, a scalable and fine-grained tree-based syntactic code clone
detector. Specifically, we propose a novel method to transform the
complex abstract syntax tree into simple subtrees. It can accelerate
the process of detection and implement the fine-grained analysis
of clone pairs to locate the concrete clone parts of the code. To
examine the detection performance and scalability of Tamer, we
evaluate it on a widely used dataset BigCloneBench. Experimental
results show that Tamer outperforms ten state-of-the-art code clone
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detection tools (i.e., CCAligner, SourcererCC, Siamese, NIL, NiCad,
LVMapper, Deckard, Yang2018, CCFinder, and CloneWorks).
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1 INTRODUCTION

Cloning codes is a process of reusing code fragments via copying,
pasting, and revising[30, 37]. Since cloning code can save a lot of
time, developers tend to clone the code of others rather than write
code from scratch when implementing similar methods. However, if
programmers clone some vulnerable codes, it will lead to the prop-
agation of vulnerabilities. In other words, although code cloning
brings much convenience to software development, it also reduces
software security and increases maintenance costs. Due to the pres-
ence of these problems, clone detection becomes an active area of
software engineering and gradually occupies a pivotal position in
this field.

With the development of clone detection technology, many clone
detectors have been proposed. According to different code repre-
sentations, they can be roughly divided into two categories: token-
based and intermediate representations-based. They differ in detec-
tion capabilities and scalability. Token-based tools [18, 27, 28, 32, 38,
41, 44] directly convert code fragments into text or token sequences
and then perform similarity comparison. Although the speed is fast,
most of them can only detect clones in text. To solve this problem,
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researchers propose to apply intermediate representations of code
to maintain the syntax and semantics of code. For example, some
graph-based tools [16, 29, 31, 43, 53, 54] convert program details
into graphs and apply graph analysis to detect complex code clones.
However, graph analysis is typically time-consuming, which makes
it difficult to be used for large-scale code clone detection. Therefore,
to migrate the issue, other methods [14, 24-26, 33, 48] propose a
tree representation method to maintain the syntax characteristics
of code and conduct tree-matching to detect clones. Although tree
analysis of source code is faster than graph analysis, the structure
of tree is still complex, and clone detection still takes a long time.

Figure 2 shows the abstract syntax tree of the source code in
Figure 1. We can see that a simple method of only ten lines can
be transformed into a complex tree of 99 nodes. When a method
has more lines of code, the corresponding syntax tree will be more
complex, which results in a high overhead for tree analysis. In
addition, the existing clone detectors cannot locate similar parts of
the clone pair. If the cloned code with a large number of code lines
has some security problems in several lines of code, it is difficult
to locate and modify. As a result, we need to design a tree-based
clone detector that can effectively reduce the time cost and enable
fine-grained clone analysis.

In this paper, we implement Tamer, an effective and efficient
clone detector that can perform fine-grained code clone analysis.
Tamer is a tree-based clone detector that considers the syntax of
source code, thus it can effectively detect clones with high per-
formance. Specifically, we use carefully designed rules to split an
abstract syntax tree (AST) into a series of subtrees at block gran-
ularity and reorganize a relatively simple structure tree to retain
an overall feature of the AST. After splitting the original tree, we
compute the similarity of two codes at the subtree level instead
of the AST level, which can remarkably improve the efficiency of
Tamer. More importantly, each subtree represents a part of the
source code, respectively. Therefore, by calculating the similarity of
the corresponding subtrees between two codes, we can distinguish
the subtree pairs with high similarity, and then we can locate the
similar code blocks in the source code. In this way, we can perform
fine-grained analysis of code clones.

To examine the capability of Tamer, we conduct comprehensive
experiments on a widely used dataset big clone bench (BCB) [2].
As for detection performance, our experimental results show that
Tamer performs better than the other ten state-of-the-art clone
detectors which are CCAligner [44], SourcererCC [39], Siamese [36],
NIL [35], Nicad [38], LVMapper [49], Deckard [25], Yang2018 [51],
CCFinder [28], and CloneWorks [41]. As for scalability, Tamer only
requires about 11 minutes and 40 seconds to complete the clone
scanning of 10M lines of code, which is faster than most of our
comparative detectors. As for fine-grained analysis, the output of
Tamer can not only report whether two methods are clones, but
also give the similarity between different code blocks. In this way,
we can know which code blocks in clone pairs are more similar, so
as to assist researchers in subsequent security analysis.

In summary, the main contributions of this paper are as follows:

e We propose a method to split the complex AST into relatively
simple subtrees. Calculating the similarity of subtrees rather
than the original tree can greatly reduce the detection cost.
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public double[][] transpose(double[][] a) {
int am = a.length, an = a[0].length;
double[][]result = new double[an][am];

if (a.size() == 0)

Matrix X = new Matrix(n, m);
double[][] C = X.getArray();

for (inti=0;1 <m;i++) {

return 0;

for (int x = 0; x <am; x++) {

for (int j = 0; j <n; j++) { for (inty = 0; y <an; y++) {

ClI] = ALiljL:3 result[y][x] =a[x][y]:}}
X; result;
}//original }//MT3 clone

Figure 1: A complex code clone pair

e We implement Tamer [11], a scalable tree-based code clone
detector. It can not only carry out large-scale clone detection
with high performance but also realize fine-grained code
analysis to locate specific cloned parts in the source code.

e We evaluate Tamer on a widely used dataset namely Big-
CloneBench. Experimental results indicate that Tamer has
the best performance and ideal scalability compared with
the existing clone detectors. In addition, it can also give
fine-grained clone reports.

The remainder of this paper is organized as follows. Section 2
describes the motivation. Section 3 defines code clone types. Section
4 describes Tamer in detail. Section 5 gives an overview of our
evaluation and presents the results. Section 6 discusses future work.
Section 7 reviews related studies. Section 8 concludes this paper.

2 MOTIVATION

To illustrate why we design Tamer and how our detection method
is implemented, we use a simple but clear example. As shown in
Figure 1, we select a clone pair in BCB dataset [2], the original
method and the cloned method are a clone pair similar in syntactic
that implements the matrix assignment. The latter modifies the
variable name and adds some statements.

NIL [35] is a state-of-art token-based clone detector. When cal-
culating the similarity of two methods, NIL extracts the token se-
quence of source code and calculates the longest common sequence
(LCS) of two token sequences, and finally divides the LCS by the
minimum of the number of two methods to obtain the similarity.

For the two methods in Figure 2, we find the number of tokens
is 99 and 113, respectively. After calculating the LCS of two token
sequences, we find the length of their LCS is 30. We can get the
similarity between the two methods is 30/99=0.3. However, the
default similarity threshold of NIL is 0.7 which means only code
pairs with a similarity greater than 0.7 are considered clone pairs.
So NIL will treat this code pair as a non-clone pair.

To find an approach to determine the two methods as a clone
pair, we consider extracting their ASTs. Figure 2 shows brief ASTs
of them and they are very similar in structure even though the
variable names and the number of statements in the source code
are different. Furthermore, if we only use the type name to represent
the node, two ASTs will become very similar. Additionally, we can
see from Figure 2 that the For statement part of two ASTs is the
same. So it is natural to think that if we calculate the similarity of
the AST parts of the code blocks, we can get a high similarity.

To illustrate how we divide the different parts of AST, we specifi-
cally use different colors in Figure 2. The AST has five parts labeled
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Figure 2: The source code and ASTs of original and clone code

with five colors. We integrate the three parts of function declara-
tion, variable declaration, and return value into one block, if and for
parts into one block, so that we get three blocks from one method,
which are if block, for block, and rest block. We first acquire the
node-type sequences through depth-first traverse (DFS), and then
calculate the LCS of the two sequences to get the similarity like
NIL. Table 1 shows the similarity of each block. We can see that the
similarity of For block is 100%, If block is 59%, and the rest block is
53%. They all exceed the similarity calculated by NIL. Even if we
take the average similarity of three blocks as the final similarity,
we can find it is 71% which is higher than the threshold of 70%.

Table 1: The similarity of three blocks

For block Ifblock The restblock Ave
100% 59% 53% 71%

NIL
30%

Similarity

In practice, we also compute the similarity by directly analyzing
the original ASTs, and the code pair in Figure 1 can also be reported
as a clone pair. However, clone detection technology needs to both
guarantee accuracy and optimize detection efficiency. When we
use the original complex AST to perform similar calculations, we
find that its calculation time is much higher than the token-based
calculation method. For this reason, if a single comparison between
two code blocks is time-consuming, the whole comparison time
will be hard to estimate.

Since the existing LCS algorithms are mostly O(N?) complexity
algorithms, the time required to calculate LCS between subtrees
is far less than the time required to calculate LCS between two
large ASTs. To make it more convincing, we conduct an experiment
on the three blocks of the original code. The number of nodes
of the If block, For block, and the rest block are 12, 48, and 56,
respectively. The node number of the entire AST is 116. So the
number of computations required to calculate the LCS of the AST
is 116 * 116 = 13456 times. However, the number of computations

required to calculate the LCS of the three blocks is 12 % 12+48 %48 +
56 %56 = 5584 times. The number of computations is reduced nearly
twice. With the increase in the code size, the improvement will
become more significant, which will be an amazing improvement
for the tool’s scalability.

Based on the above research, we propose a method that can
greatly improve the performance of clone detection and scalability.

3 DEFINITION

A code fragment is a continuous segment of source code. A code
block refers to a code fragment within braces. Since a method can
implement a specific functionality, we select it as our detection
granularity. Generally, clones can be divided into the following four
categories according to their similarity [39, 44]:

e Type-1 Clone (Textual Similarity): The code clone in this
category is the same copy, except for some spaces, blank
lines, and comments.

e Type-2 Clone (Lexical Similarity): The code clone in this
category is a copy different only in variable names, variable
types, or some function identifiers.

e Type-3 Clone (Syntactic Similarity): The code clone in
this category is a copy with more modifications, and some
statements have been modified, deleted, or added.

e Type-4 Clone (Semantic Similarity): The code clone in
this category is a copy that has a dissimilar syntactical struc-
ture but implements the same functionality.

As for Type-4 clones, they are semantic clones and are hard to
be detected. Therefore, similar to previous works [35, 39, 44], we
mainly focus on detecting the first three types of clones.

4 SYSTEM

In this section, we will introduce Tamer (i.e., a tree-based code clone
detector by using N-gram and LCS) in detail.
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Figure 3: Overview of Tamer

4.1 System Overview

The overall framework of Tamer is shown in Figure 3, which can be
divided into three phases: Processing, Locate & Filter, and Verify.

o Processing: The purpose of this phase is to extract the ASTs
of methods. We use DFS to traverse the AST and record type
name of each node to obtain the node sequence. Then we
create the inverted index according to the N-grams generated
by the node sequence.

e Locate & Filter: The purpose of this phase is to use the
inverted index to perform a preliminary screening and filter-
ing on all pairs of methods to obtain candidate clone pairs,
so as to prepare for the subsequent verify phase.

o Verify: The purpose of this phase is to get the true clone
pairs. According to the candidate clone pairs obtained in the
Locate & Filter phase, we use LCS for similarity calculation
to determine whether a candidate clone pair is a true clone.

4.2 Processing

Because Tamer’s goal is to get a good performance in detecting
Type-3 clones, we need to use AST, an intermediate representation
that retains the syntax of the original code. Therefore, the first
step of code processing is to obtain AST by static syntax analysis.
Because the programming language of the dataset is Java, we use
JavaParser [7] to implement the static analysis.

In addition, AST is more complex than the source code, so if
we retain the complete AST, it will undoubtedly result in a huge
overhead on the space of the detector. So we think about using a
single string to store the AST information. We use DFS to traverse
the entire AST and record the type name of nodes. Specifically, we
perform statistical analysis on the whole BCB dataset and we find
that there are only 70 types of nodes, so we can convert the name

of each node type to a char byte which greatly reduces the memory
space to store AST information.

After getting the node sequence of each method, we can get its
corresponding N-grams on this basis. An N-gram is a chunk of
continuous nodes whose number is N. Figure 4 shows the process
of obtaining 3-grams from a node sequence. We traverse the AST
node sequences generated by all methods in the dataset, and each
method will generate a series of N-grams.

‘ an=0 ‘
Generate AST Node

Sequence

‘ ExpressionStmt‘ AssignExpr ‘ NameExpr ‘ SimpleName ‘ IntegerExpr
l Generate 3-grams
‘ ExpressionStmt ‘ AssignExpr ‘ NameExpr ‘
‘ AssignExpr ‘ NameExpr ‘ SimpleName ‘

‘ NameExpr ‘ SimpleName ‘ IntegerExpr

Figure 4: Example of generating N-grams

Next, Tamer creates an inverted index based on the obtained
N-grams. The inverted index is a fast information retrieval tool that
can quickly retrieve documents containing query words. This idea
originates from the situation that we need to find some records
according to given values. In Tamer, we use the HashMap structure
whose key is the hash value of an N-gram, and then we use the
ID of methods that also contain the same N-gram as the HashMap
value. Therefore, the code blocks containing the same N-gram can
be quickly found through the inverted index.

When all N-grams are stored in the HashMap, an inverted index
of the dataset is built, which can quickly calculate the number of
common N-grams between any two methods.
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4.3 Locate & Filter Algorithm 1: Clone Detection
4.3.1 Locate. After the Processing phase, Tamer uses the inverted Data: C is a list of node sequence of code blocks
index obtained from the Processing phase to perform Locate op- {c1,¢2,...,cn}, Inverted index I of C, N for size of
eration. The locating operation mainly obtains candidate clones N-grams, 6 for filter threshold, § for verify threshold
of the target code block through the inverted index. Its algorithm Result: All clone pairs CP
corresponds to lines 6-11 in Algorithm 1. 1 CP « ¢;

Firstly, we get the N-grams generated by the AST node sequence. 2i=0,j=0;
A node sequence with a length of M can generate M-N+1 N-grams. s whilei <= N do
Next, we calculate the hash value of each N-gram and use the hash . i+ 4
value as the query object to query all methods corresponding to 5 CC — p;
the hash value in the inverted index. These methods all have the . / /Location phase, and CC represents clone candidates
same N-gram, indicating that their AST node sequences have a part hile i <= ¢ ] ' h-N+1d
of the same subsequence. Therefore, we add these methods to the ware cr-teng ©

: 7 j++
candidate clones of the target methods. . n_gram = streat(cilj],cilj + 1] el + N-1]):
4.3.2  Filter. In the Filtering operation, we mainly remove the can- 9 key = hash(n_gram);
didate clone obtained by the Locating operation which cannot be 10 /+acquire is a function that returns values in the
a clone. The algorithm corresponds to lines 12-21 in Algorithm 1. hashmap?/
It is necessary to reduce the number of clone candidates because CC = CC U acquire(key);
it takes a lot of time to calculate the similarity of node sequences - end
between the two methods in the verification phase. Therefore, for .
. - 12 //Filter phase

scalable and rapid clone detection, we do not need to detect the S
code block pairs with few common N-grams. J B 0; . .

In this phase, we think about a small trick to reduce the time 3 while j <= CC.size() d,O .
cost of calculating the number of common N-grams between two " [xcommon_ngrams is a function that returns t.he
methods. We use an array to store the common N-grams number number of c*ommon N-grams between two given
of the target method with the other method. In this way, we only c.ode blocks/
need to traverse the N-grams of the target method once and we I
can achieve the number of common N-grams between the target b comngram = common_ngrams(ci, cc;);
method and the other all methods. 16 maxlen = max(c;.len, ccj.len);

To quantitatively describe the similarity of N-grams between the 17 filter_score = comngram/(maxlen - N + 1);
two methods, we use the filter-score defined below. 18 if filter_score < 6 then

. common_ngrams(m1, m2) v ‘ CC =CC —{ecj};
filter_score = (1) 20 end
max(ngrams(m1), ngrams(mz2))
21 end

common_ngrams(ml, m2) = |ngrams(m1) N ngrams(m2)| (2) » / [Verify phase

where m1 and m2 are two methods whose node sequence’s lengths

i=0

are |m1| and |m2|, respectively. N-grams (m1) and N-grams (m2) . .
are ‘the |numb|ers|0f NI-)grams }I])rodiced by m1 and m§ Since the = Whl/lzL] Cz_isi?srlliii((zndt(;lat returns the leneth of LCS of
difference of two node sequences’ lengths may be very big, we . the given tl\lvo sequences.*;l €
use max in the discriminator to avoid Tamer mistakenly regarding s
them as clone pairs. In many previous studies, min is often used ’
to improve the recall of detection, but this calculation method will » sub_1, subf2 = getsubtree(c;), getsubtree(cc;);
greatly reduce the precision of detection at the same time. Since 26 k = 1,verify_score =0;
Tamer is a tree-based clone detector, its performance will be better 7 while k <=9 do
than token based detector, so we use max in discriminator to ensure 28 total_length = sub_1[k].len + sub_2[k].len;
the precision of detection. 29 les_length = LCS(sub_1[k] + sub_2[k]);

Finally, we remove those clone candidate pairs whose value of 30 verify_score+=lcs_length/(total_length —
filter_score is less than threshold 6. les_length);

31 k++;

4.4 Verify 22 end
In this phase, we verify whether each code block pair in the can- 33 if verify score >= § then
didate clone pair is a true clone. The main idea of the algorithm 34 ‘ CP=CP U {ccj};
corresponds to lines 22-30 in Algorithm 1. 35 end

Firstly, we need to acquire the subtree node sequence of each 36 end

code block. Because in the processing phase, we have already gotten
the AST of each code block, thus we can generate subtrees from

37 end




ISSTA °23, July 17-21, 2023, Seattle, WA, USA

| int am = a.length, an = a[0].length

|
| double[][] result = new double[an][am]

| .

: for (int x = 0; x <m; i++) { I : Root Method
: for (inty = 0; y <n; j++) {
I resultly][x] = a[x][yl]:}} |

Source code
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Figure 5: Subtrees of the original method in Figure 1

it directly through a carefully designed rule. Based on the thought
introduced in Section 2, we mainly split the AST according to the
different types of statements it has. We perform statistics on all
methods in the BCB dataset, and we make a sort of the complexity
of different types of statements (i.e., Expressionstmt, Ifstmt) in the
source code. The complexity of each type statement is calculated by
the average number of the corresponding node in the AST. We select
the eight most complex statements which are Forstmt, Whilestmt,
Trystmt, Dostmt, ForEachstmt, Switchstmt, Synchronizedstmt, and
Ifstmt. Additionally, if we only consider the statement subtrees, we
may lose the whole structure information of the method. Therefore,
it is necessary to generate a structure subtree of the method. In
conclusion, our splitting rule is: for relatively simple statements
such as variable declaration and assignment, we retain them on the
original AST. For more complex statements such as if statements
and for statements, we separate them from the original AST tree
to form a subtree. Only the root node types of these subtrees are
retained on the original AST tree. Finally, the original AST will form
a structure subtree, and the separated statement blocks will form
a statement tree. In this way, we split the original complex AST
into nine simpler subtrees supposing it has all types of statements
mentioned above.

The subtrees of the AST in Figure 2 are shown in Figure 5. We
can see that a simple method has four blocks distinguished by dif-
ferent colors, and these blocks correspond to a part of the structure
tree. These blocks can be represented by a subtree, respectively. As
shown in Figure 5, the relationship among source code, blocks, and
subtrees is demonstrated. Finally, according to the rule we men-
tioned above, the complex AST is split into three simpler subtrees.
The Ifstmt subtree represents the if block in the source code, the
Forstmt subtree represents the for block in the source code, and the
Structure subtree records the structure information of AST.

After that, we use DFS to traverse subtrees and get the corre-
sponding node sequences. We calculate the LCS of two node se-
quences as the index of their similarity. To quantitatively describe
the degree of similarity, we use the verify-score, defined below,
where sl.1 and si2 are two subtree node sequences whose node lengths
are \sil| and |si2|, respectively. lcs(sil, 512) is the LCS length between
two node sequences. We use |si1| + |sl.2| - Ics(sil, siz) as the denomi-
nator, which can avoid the calculation imbalance of subtree_score

when the lengths of two node sequences are very different, and
can effectively reduce the case that Tamer mistakenly judges a non-
clone pair as a clone pair. We plus the nine subtree_score together
to get verify_score.

lcs(sil, siz)

|sl.1| + |sl.2| - lcs(sl.l,sl.z)

®)

subtree_score; =

9
verify_score = E . lsubtree_scorei 4)
i=

Finally, we consider the code block pair whose verify_score
exceeds threshold § as a true clone pair.

5 EXPERIMENT

In this section, we focus on answering the following five research
questions (RQs):
e RQ1: What is the detection performance of Tamer with differ-
ent parameters?
e RQ2: Can Tamer outperform other state-of-the-art clone de-
tectors?
e RQ3: Can Tamer scale to big code?
o RQ4: How does Tamer perform fine-grained analysis and locate
the specific location of code cloning?
o RQ5: What is the advantage of splitting the AST?

5.1 Experimental Settings

5.1.1 Dataset. We evaluate Tamer on a widely used dataset, BCB
[2]. The clone type of each pair of methods in BCB is manually as-
signed by experts. The BCB dataset consists of more than 8,000,000
labeled clone pairs. Due to the unclear boundary between Type-
3 and Type-4, these two clone types are further divided into four
subcategories by a similarity score measured by line-level and token-
level code normalizations, as follows: 1) very strongly type-3 (VST3),
where the similarity is between 90-100%, 2) strongly type-3 (ST3),
where the similarity is between 70-90%, 3) moderately type-3 (MT3),
where the similarity is between 50-70%, and 4) weakly type-3/type-4
(WT3/T4), where the similarity is between 0-50%. As aforemen-
tioned, since T4 code clones are semantic clones and are difficult
to be distinguished, we ignore them and pay more attention to the
other types.
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5.1.2  Implementation. We run all experiments on a standard server
with 128GB RAM and 16 cores of CPU. For the implementations of
Tamer, we mainly use Javaparser [7] to complete the static analysis
including tree extraction, analysis, and splitting.

5.1.3  Comparison. We compare Tamer with ten existing state-of-
the-art code clone detectors:

e CCAligner [44]: A popular code clone detector by analyzing
the code windows and e edit distance between methods.

e SourcererCC [39]: A popular code clone detector by calcu-
lating the number of overlapping tokens between methods.

e Siamese [36]: A popular code clone detector by transforming
the token sequence into a different presentation.

e NIL [35]: A popular code clone detector by calculating the
LCS of token sequence of methods.

e NiCad [38]: A popular code clone detector by using TXL
parser to compute the similarity of methods.

e LVMapper [49]: A popular code clone detector by calculat-
ing the number of common tokens and dynamic threshold.

e Deckard [25]: A tree-based code clone detection with an
algorithm based on numerical vectors in the Euclidean space.

e Yang2018 [51]: A tree-based code clone detection with a
hybrid incremental clone detection and live scatterplots tech-
nique.

e CCFinder [28]: A multilinguistic token-based code clone
detection system for large-scale source code.

o CloneWorks [41]: a fast and flexible large-scale near-miss
clone detection tool using modified Jaccard similarity metric.

5.1.4  Metrics. Since code cloning detection is a binary classifica-
tion task, we take widely used metrics to measure Tamer’s perfor-
mance. Our measurement metrics are defined as follows:

e True Positive (TP): It means that one or some clone pairs
are predicted to be clone code.

e True Negative (TN): It means that one or some non-clone
pairs are predicted to be non-clone code.

e False Positive (FP): It means that one or some non-clone
pairs are predicted to be clone code.

o False Negative (FN): It means that one or some clone pairs
are predicted to be non-clone codes.

e Precision=TP/(TP+FP): The correct rate of detection.

o Recall=TP/(TP+FN): The percentage of clone pairs that are
successfully detected.

5.2 RQ1: Parameter Setting

Tamer requires three parameters: the value of N, filtration threshold
0, and verification threshold §. After many experiments, we find
that the impact of 6 on Tamer is not great. Specifically, we perform
a lot of experiments and observe that those candidates which can
not reach 0 are always not real clones. Therefore, the value of 6 only
has a slight impact on scalability. In detail, we consider previous
research (e.g., NIL [35] and LVMapper [49]) and our experimental
results together to set 6 to 0.15.

However, the value of N needs to be carefully selected, because
it has a great impact on detection performance. If the N value is set
to a small value, the recall will be high while the system execution
time will increase dramatically. If the N value is set to a large
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value, although the system execution time will decrease, the recall
will be low. Therefore, to select the most appropriate N value, we
conduct an experiment with N ranging from 10-18 and measure the
recall and execution time when 6=0.7. Figure 6 shows the results of
each N value. It can be seen that when N<15, the execution time
increases significantly with the drop of the N value, while when
N>15, execution time tends to be flat. In addition, when N>15, the
recall decreases significantly. Therefore, considering the balance of
these two factors, we finally choose N=15 as the optimal parameter.

Next, we experiment to select the optimal value of the verifica-
tion threshold §. We calculate recall and precision of § from 0.6
to 0.8 and the step is 0.05. The experimental results are shown in
Figure 7. It can be seen that when §>0.65, recall starts to decrease
significantly, but precision does not improve significantly with only
minor changes. Considering that precision is not so good when
8=0.60, we finally choose §=0.65 as the best parameter.

5.3 RQ2: Comparative Performance

We measure the recall of different types of clones on the BCB dataset
under the parameters selected in RQ1, and we calculate precision
which is the same as the previous studies[39, 44, 49].

Table 2 shows the recall and precision results of each tool tested
on the BCB dataset. We can see that Tamer has the highest recall in
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Table 2: Detection performance of Tamer, CCAligner, SourcererCC, Siamese, NIL, NiCad, LVMapper, Deckard, Yang2018,
CCFinder, and CloneWorks on BCB

Tools Tamer CCA Sou Sia NIL NiCad LVM Dec Yang2018 CCF Clon
Type-1 100 100 94 100 99 98 99 60 100 100 100
Type-2 100 100 78 96 97 84 99 52 100 93 98
Recall VST3 100 99 54 85 88 97 98 62 99 62 88
ST3 99 65 12 59 66 52 81 31 73 15 64
MT3 53 14 1 14 19 2 19 12 25 1 15
Precision 96 61 100 98 86 99 59 35 95 72 96

Table 3: Runtime overhead of Tamer, CCAligner, SourcererCC, Siamese, NIL, NiCad, LVMapper, Deckard, Yang2018, CCFinder,
and CloneWorks when addressing different sizes of code

Tools Tamer CCA Sou Sia NIL NiCad LVM Dec  Yang2018 CCF Clon
1K 1s 1s 3s 4s 1s 1s 1s 1s 5s 2s 1s
10K 1s 2s 5s 14s 1s 3s 1s 4s 16s 5s 2s

100K 3s 6s 7s 45s 3s 36s 4s 32s 2m7s 10s 6s
1M 13s 11m52s 37s 45mls 11s 6m13s 34s 27m12s 1h45m3s 39s 43s
10M 11m40s 29m48s 12m21s 14h1lm 1m3s 2h10m 22mi10s error error 6m30s 10m37s

all types of clones. Among them, the recall of the ST3 clone exceeds
the LVMapper which has the highest recall in the remaining ten
tools by 17%, and the recall of the MT3 clone exceeds Yang2018
which has the highest recall in the remaining ten tools by 26%. The
experimental results indicate that Tamer has a significant improve-
ment in clone detection.

After analyzing the reason behind this phenomenon, we find
that it is difficult for the eight token-based clone detectors to detect
Type-3 clones. The reason is that the Type-3 clone has different
lexical structures but similar syntactic structures. However, tree
representation of source code can retain its syntax information,
so the tree-based detector can detect Type-3 clones, which is why
Tamer has such a high recall value compared with other clone
detectors. Besides, even though Deckard and Yang2018 use the tree-
presentation of source code to perform clone detection and they
indeed defeat the other token-based methods, their recall is still
lower than Tamer. This is because although these two methods
use the tree representation of the source code, they only perform
a shallow analysis of the AST, and finally use the entire AST to
calculate the similarity, and the algorithm is not significantly im-
proved. However, Tamer does not just use AST, it also proposes a
new algorithm to cut the tree for more fine-grained code cloning
analysis, and therefore more sensitive to Type-3 cloning, so it has a
higher recall.

The precision of Tamer exceeds that of CCAligner, NIL, LVMap-
per, Deckard, Yang2018, and CCFinder, and is slightly lower than
that of SourcererCC, Siamese, and NiCad. This is because they sac-
rifice detection performance to improve their precision. It can be
seen that their recall is very low. Therefore, compared with existing
tools, Tamer has far better detection performance and equivalent
precision. The experimental results prove our detection method is
very effective.

5.4 RQ3: Scalability Evaluation

We use different sizes of the codebases to evaluate Tamer’s scala-
bility and compare the execution time with existing tools. We use

IFaDataset [1], a large inter-project Java dataset, as done in the
prior studies [39, 44, 49]. We use CLOC [4] to measure the number
of rows in the data set, thereby dividing the 1K, 10K, 100K, 1M, and
10M LOC data sets. Our experiments are run on a quad-core CPU
and 12GB of memory, as done in previous studies [39, 44].

In the second section, we have illustrated how Tamer performs
subtree splitting and code fine-grained analysis. In this section, we
will use experimental data to further explain. Table 3 shows the
execution time of each tool for different-size datasets. It can be seen
that Tamer has surpassed almost all detection tools under various
sizes of datasets. NiCad, CCAligner, and Siamese use complex calcu-
lation formulas and intermediate code expressions to calculate the
similarity of the two methods. Deckard and Yang2018 are tree-based
clone detection tool. They use tree presentation to calculate the
similarity without optimization means which is undoubtedly com-
plex and time-consuming, so their scalability performance is poor.
LVMapper and SourcererCC both calculate the number of common
tokens between two code blocks, so the algorithm complexity is
low and the time consumption is relatively small. However, the
complexity of calculating the public common token is O (N?), so
when comparing code blocks with a large number of two tokens, it
will lead to a large increase in detection time.

In consideration of this problem, Tamer innovatively proposes
to split the original complex AST into different types of subtrees,
so that the subtree node-type sequence will also be shortened, sig-
nificantly reducing the detection time. The experimental data also
shows that our scalability is better than LVMapper and Sourcer-
erCC. However, we find that our detection time is slower than NIL,
CCFinder, and CloneWorks when detecting 10M datasets. To take
NIL as an example to illustrate the reason, we analyze its source
code and find that NIL reduces the time-consuming steps such
as code standardization in the pre-processing step. Although its
detecting execution time is short, the detection performance de-
creases a lot. Besides, it can hardly detect Type-3 clones. In the
real-world scenario, there are many Type-3 clones, so NIL is diffi-
cult to be applied to practical large-scale clone detection. CCFinder
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. public static boolean isPalindrome(String string){

public Matrix transpose(int n, int m) {

public double[][]transpose(double[][] a) {

if (string.length() == 0)
return 0;

return 0;

if(m==0]|n==0)

int am = a.length, an = a[0].length;
| if (a.size() == 0)

int limit = string.length() / 2;
for (int ahead = 0, back = string.length() - 1;

Matrix X = new Matrix(n, m);
double[][] C = X.getArray();

— 59%— — —
return 0;
double[][] result = new 6.double[an][am];

if(string.charAt(ahead) != string.charAt(back))
return false;

for (inti=0;1i<m;it++) {
for (int j = 0; j <n; j++) { [~ — 100%— —
Clillil = AL[i1: 4

for (inti=0; 1 <am;it+) {
for (int j = 0; j <an; j++) {

result[j][i] = afi][j]:}}

true; l return X;

1

2

3

4

5.

6. ahead < limit; ahead ++, back --)
7

8

9.

10. }// non-clone cl

We will give a report for all pairs.

For non-clone pair, we will not report.

——————— 13%— — — = L
}// original c2

For clone pair, we will give the subtree similarity and the corresponding lines order in detail.

Report:  (c2, c3): (For, 6-8, 6-8, 100%), (If, 2-3, 3-4, 59%), (Structure, 53%)

return result;
}// MT3 clone c3

Figure 8: Fine-grain analysis report

Table 4: The ablation experiment of Tamer and Tamer with-
out splitting (Tamer-ws)

Recall Tamer Tamer-ws ‘ Runtime Tamer Tamer-ws
Type-1 100 100 1K 1s 1s
Type-2 100 100 10K 1s 1s
VST3 100 99 100K 3s 4s
ST3 929 96 1M 13s 18s
MT3 53 35 10M 11m40s 21m31s

and CloneWorks both have this problem. Tamer has overcome the
problem of low detection rate of Type-3 type cloning, and also has
a very good performance in execution time, so we say Tamer has
excellent scalability.

5.5 ROQ4: Fine-Grained Clone Analysis

To better answer this question, we draw a part of the report pro-
duced by Tamer, as shown in Figure 8. For non-clone pairs, we do
not report. For clone pairs, we not only give the results but also
form the fine-grained analysis report. Take the source codes in
Figure 8 as an example. We can see that (c1, c2) is regarded as a
non-clone pair because the similarity of their subtrees is low. (c2, c3)
is regarded as a clone pair because the similarity of their subtrees is
high. In the report, we give a fine-grained analysis of the clone pair.
We can see that the similarity of For block in c2 and c3 is 100%, and
the corresponding code lines are 6-8 and 6-8 respectively. Because
we abstract the source code and use node type to represent the node,
the node sequence of For block is completely the same. The similar-
ity of the If block in c2 and c3 is 59%, and the corresponding code
lines are 2-3 and 3-4 respectively. After we analyze the source code,
we find the judge condition of two If blocks are different, so their
similarity is only 59%. As for the Structure subtree similarity, we
can find it is only 53%. This is because the parameters of interface
methods are different, and the way of local variables declaration
is different. Besides, the position of the If block is different. As a
result, the similarity of their structure subtree is only 53%.

It can be seen that our method of similarity analysis between
subtrees can fully and accurately reflect the similarity relationship
of corresponding parts of the source code. Therefore, we can use
this method to locate the cloning parts of clone pairs and perform

fine-grained analysis of clone pairs through the report produced
by Tamer. The report above is only a simple example to illustrate
this functionality of Tamer. Our real reports are more detailed.

5.6 RQ5: Impact of Splitting the AST

We attribute Tamer’s advantage to the breakdown of the AST, and
we further research the impact of splitting the AST. We perform
an ablation experiment in this part. Specifically, we design another
tool namely Tamer-ws (without splitting) by directly processing
the entire AST.

Table 4 shows the recall and execution time of two tools on
the BCB dataset. As for scalability, it takes about 13 seconds for
Tamer to detect clones from 1M lines of code, while Tamer-ws
consumes about 18 seconds to complete the procedure. In addition,
Tamer-ws’ runtime overhead of the 10M dataset is nearly twice as
much as Tamer’s. As for effectiveness, Tamer-ws has an MT3 recall
of 35% which is 18% lower than Tamer. Such results suggest that
decomposing the AST can indeed accelerate the speed of detection
and improve the effectiveness of detection. Therefore, we can find
that splitting the AST can not only greatly improve the inspection
speed of the system as mentioned in Section 2, but also improve
the effectiveness of Tamer.

As for why splitting can enhance the effectiveness, we observe
that each subtree obtained after decomposing the AST can represent
a sub-behavior of the method. Some clone methods only have some
sub-behaviors that are similar, while the other sub-behaviors are
not similar which may result in the difference of their entire AST.
Therefore, if we analyze the entire AST directly, other dissimilar
sub-behaviors may become noise to interfere with clone detection.
When we adopt more fine-grained sub-behaviors (subtree) match-
ing, these similar sub-behaviors are easier to detect, allowing us to
detect more clones.

6 DISCUSSION
6.1 Threats to Validity

There are three main threats. Firstly, it is known that the perfor-
mance and execution time of a clone detector is greatly influenced
by its parameter settings and it is difficult to find the most suitable
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ones. To mitigate it, we conduct a series of exhaustive experiments
to select the most suitable parameters. In detail, we select N-value
from 10 to 18, and verification score & from 0.55 to 0.80, and we
finally choose 15 for N-value and 0.65 for §. Secondly, because the
physical state of the computer is different and the CPU runs at
different times, the measurement of Tamer’s execution time will
be biased. To mitigate the threat, we repeat Tamer five times and
then average it as a measurement to guarantee the validity and
accuracy of the results. Thirdly, there is no clear standard for deter-
mining whether a pair of methods is a clone currently. So different
researchers will have different results for manual verification and
calculation of precision. To minimize errors, we scramble the clone
pairs during the verification and it is not known in advance which
tool detected these clones, so there is no bias in the evaluation.

6.2 Why Tamer Performs Better?

Tamer performs better than the other clone detectors on BCB
datasets. The main reason is that the AST node sequence extracted
by Tamer can retain the complete syntactic information of the
source code to a great extent. For scalability, Tamer is also better
than most current efficient methods (i.e., LVMapper), even if they
are token-based detection tools. There are two main reasons for
this. First, we do not directly use the complex AST to calculate the
similarity. Instead, we traverse the entire AST and use the node
type name to record the traversed nodes to get the node sequence.
In this way, LCS can be used to calculate the similarity between
sequences and we do not need to use the high time-cost tree similar-
ity algorithm. In addition, we use a reasonable method to split AST
into multiple types of statement subtree and a structure subtree,
and then we use subtrees to calculate code block similarity.

6.3 Comparative Tools

In our experiments, we mainly choose token-based clone detec-
tors to compare rather than intermediate representation-based
clone detectors. The main reason is that most of the intermedi-
ate representation-based clone detectors use machine learning or
deep learning methods to detect clones, but such detection methods
have poor scalability. Because machine learning or deep learning
tools require training sets, the larger the training set, the better the
training model. However, the labeled datasets of BCB are unrepre-
sentative and not large enough, resulting in poor generalization of
these models. So they can only perform well on the same dataset.
For example, those models trained on BCB can only perform well
on BCB, but the performance is poor when they are used to detect
other datasets, such as GC7 [6]. Therefore, it is unnecessary to
compare with these detectors.

6.4 Application of Tamer

Tamer, like most of the tools we compare, is primarily suitable for
clone detection of general types. In fact, in addition to CCAligner,
LVMapper, and NIL, the remaining seven tools are only suitable
for general-type clone detection and not for large variance clone
detection. This is because if a method with just a dozen lines of
code is similar to a small part of a method with hundreds of lines
of code, they are still considered a large variance clone. However,
Tamer uses the intersection of the lengths of the two methods as
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the denominator, rather than NIL using the smallest of the two
methods as the denominator, so it is hard for Tamer to detect the
large variance clone.

Tamer determines whether a pair of methods is a clone based
on the similarity between the blocks of the AST, and the relative
position relationship between the blocks does not affect the detec-
tion results. Therefore, the effect of Tamer’s detection of clones has
nothing to do with the order in which the cloned code is written
in the code, and the large order within the code is a feature of the
large variance clone. So we can speculate if we use the minimum
length of two methods as the denominator, Tamer may also achieve
good performance in large variance clone detection. However, it
will harm the precision of Tamer in general type clone detection,
and how to make Tamer suitable for the detection of large variance
is also our future work.

6.5 Limitation and Future Work

The main limitation of Tamer is that it can not implement the clone
detection of the 100MLOC standard dataset on the 12GB memory
limit. This is because Tamer needs to build an inverted index for
fast searching of all files during the preprocessing phase, and the
inverted index is extremely memory-consuming. Through our test,
using the parameters mentioned in the paper to perform the clone
detection of the 100MLOC dataset requires nearly 40GB of mem-
ory space. If the N value is set below 8, the clone detection of the
100MLOC dataset with the limit of 12GB memory can be realized,
but this will greatly prolong the detection time. In addition, the
configuration environment of the tool will also affect the detec-
tion performance [45]. We follow the environment configuration
method previously studied, which seems to be standard [39].

In our paper, we mainly use AST as the code representation.
Because we get the node sequence through the DFS of AST, the
node sequence loses code information to some extent, and it is
difficult to detect Type-4 clones. In the future, we will continue
to research more reasonable methods of computing the similarity
between trees, and consider conducting N-gram experiments based
on graphs to detect clones of WT3 and even Type-4 clones, and
further improve Tamer’s detection performance.

In addition, at present, Tamer only supports clone detection of
Java files, but in fact, Tamer has high scalability. We only need to
replace the Java source code parsing tool we currently use, Java-
parser, with the parser tool of other programming languages to
implement clone detection of other programming languages (i.e.,
we can use pycparser [9] to parse C language and implement clone
detection of C language code).

7 RELATED WORK
7.1 Scalable Clone Detection

With the development of software engineering, the code size has
become larger and larger. Many studies [12, 17, 23, 34, 41] have also
confirmed that we need large-scale clone detection.

At present, most scalable detection tools are text-based or token-
based. Their main idea is to calculate the similarity between code
blocks in text or token sequences. The text-based [18, 27, 28, 32,
38, 44] methods directly converted the source code to a string
for similarity calculation, while the token-based [19, 22, 35, 39, 49]
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methods used a lexical analyzer to analyze the source code to obtain
the token sequence for similarity calculation.

CCFinder [28] converted source code into token sequences and
standardized variables, then used the suffix tree algorithm to calcu-
late the similarity between token sequences. Ishihara et al. proposed
a method-level clone detection technology [23]. This tool calculated
the hash value of each function after the function was standardized.
Those with the same hash value were considered clones. Their
method could detect the 360MLOC super large dataset within 3.5
hours.

In addition, some detection methods using GPU were proposed.
Solutions for GPGPU programming include Nvidia’s CUDA [38]
and AMD’s CTM [20]. SAGA [42] proposed an efficient detection
method based on subsequent arrays. [40] used GPU to accelerate
the dynamic programming algorithm. It improved the speed of
clone detection. Using GPU was a good idea to improve detector
scalability, and the algorithm of Tamer to calculate LCS between
subtrees was also implemented by using the algorithm of dynamic
programming. Therefore, we believe that using GPU to accelerate
Tamer is also a part of our future work.

Some commercial tools and methods for clone detection of code
repositories have also been proposed. Commercial tools such as
FOSSID [5], BlackDuck [3], and Scantist [10] could handle clone
code scanning for more than 10 million lines of code, but semantic
clone detection was not yet supported.

In general, although the detection time of the tools mentioned
above is very short, most of them perform poorly in Type-3 clone de-
tection. Compared with these tools, Tamer is an excellent tool with
both high detection performance and good scalability in detecting
general code clones.

7.2 Complex Code Clone Detection

These years, with the popularity of learning algorithms in various
computer research fields, some researchers start using learning
algorithms in the software engineering field. Many tools combine
tree or graph representations of code and learning algorithms have
been proposed.

For tree-based detection methods, most of them are based on
deep learning or machine learning. ASTNN [52] converted a com-
plex AST into a small statement tree and sent it to the deep learning
model to overcome the long-term dependency problem caused by
complex AST. CDLH [48] first normalized AST, then encoded the
tree and converted it into a vector, and finally used the tree-based
LSTM method for clone detection. HELoC [47] designed a compara-
tive learning network, which could learn more specific information
in the AST hierarchy to optimize detection performance. Infer-
Code [13] deconstructed AST into the form of a subtree, and then
extracted features from each node according to a tree-based convo-
lutional neural network and coded them for similarity detection.

For graph-based detection methods [29, 31, 43, 50, 53, 54], most
of them were also based on deep learning or machine learning.
They were generally divided into control flow graph (CFG) and
program dependency graph (PDG) according to the different graph
types. Most detection methods used graph matching algorithms
to detect the similarity of code blocks [29, 31]. Krinke was the
first to propose using PDG to detect clones. He mainly analyzed
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whether there were isomorphic parts between different PDGs to
determine whether the two code blocks were clones. He reported
PDG-based clone detection method had high recall and precision.
FA-AST [46] proposed a method to build a new AST by adding
edges to control flow and data flow graphs. FCDetector detector
[15] used a comprehensive intermediate to train the deep learning
model. These graph-based algorithms had a large time cost, so
CCSharp proposed two methods to reduce the time cost, namely, by
modifying the structure of the graph and extracting feature vectors
to reduce the complexity of the graph. DeepSim [53] extracted data
flow and control flow of code to train a DNN-based detection model.
FCCA [21] implemented an advanced graph-based clone detection
tool by using hybrid code representations. SCDetector [50] regarded
CFG as a social network and extracted the centrality of each code
block for similarity detection.

However, these graph or tree-based detection methods require
a long execution time and learning algorithms have the problems
mentioned in Section 6.3. So they have poor scalability. On the one
hand, the current graph-based extraction tools need to compile the
source code first, and then get the graph. However, most of the
code in the dataset can not be compiled at present, the compilation
process is inconvenient and difficult to implement. On the other
hand, both tree-based and graph-based methods are limited to
complex source code representations, which naturally leads to a
huge time overhead. To address the challenges, we propose to split
the original tree into subtrees and design a scalable, effective, and
fine-grained code clone detector namely Tamer.

8 CONCLUSION

In this paper, we propose Tamer, a scalable tree-based code clone
detector with ideal performance. We first extract the AST of the
source code, and then get the node sequence through depth-first
traversal. On this basis, we use N-grams and inverted index ideas
to perform locate and filter operations to obtain candidate clone
pairs. Then we split the AST into different types of subtrees and
calculate LCS between subtrees. Finally, we obtain the similarity
between two code blocks, which is the basis for judging whether
candidate clone pairs are true clones. The experimental results
show that Tamer is far superior to the other ten clone detectors
(i.e., CCAligner [44], SourcererCC [39], Siamese [36], NIL [35], Nicad
[38], LVMapper [49], Deckard [25], Yang2018 [51], CCFinder [28],
and CloneWorks [41]) in detection performance, and also superior
to most token-based detection tools in scalability.
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