
Interpreters for GNN-Based Vulnerability Detection:
Are We There Yet?

Yutao Hu∗†
Huazhong University of Science and

Technology
China

yutaohu@hust.edu.cn

Suyuan Wang∗†
Huazhong University of Science and

Technology
China

stevewong@hust.edu.cn

Wenke Li∗
Huazhong University of Science and

Technology
China

winkli@hust.edu.cn

Junru Peng
Wuhan University, China

China
pengjunru@whu.edu.cn

Yueming Wu‡
Nanyang Technological University

Singapore
wuyueming21@gmail.com

Deqing Zou∗†
Huazhong University of Science and

Technology
China

deqingzou@hust.edu.cn

Hai Jin†§
Huazhong University of Science and

Technology
China

hjin@hust.edu.cn

ABSTRACT
Traditional vulnerability detection methods have limitations due to
their need for extensive manual labor. Using automated means for
vulnerability detection has attracted research interest, especially
deep learning, which has achieved remarkable results. Since graphs
can better convey the structural feature of code than text, graph
neural network (GNN) based vulnerability detection is significantly
better than text-based approaches. Therefore, GNN-based vulnera-
bility detection approaches are becoming popular. However, GNN
models are close to black boxes for security analysts, so the models
cannot provide clear evidence to explain why a code sample is
detected as vulnerable or secure. At this stage, many GNN inter-
preters have been proposed. However, the explanations provided by
these interpretations for vulnerability detection models are highly
inconsistent and unconvincing to security experts. To address the
above issues, we propose principled guidelines to assess the quality
of the interpretation approaches for GNN-based vulnerability detec-
tors based on concerns in vulnerability detection, namely, stability,
∗Hubei Engineering Research Center on Big Data Security, School of Cyber Science
and Engineering, HUST, Wuhan, 430074, China
†National Engineering Research Center for Big Data Technology and System, Services
Computing Technology and System Lab, HUST, Wuhan, 430074, China
‡Yueming Wu is the corresponding author
§Cluster and Grid Computing Lab, School of Computer Science and Technology, HUST,
Wuhan, 430074, China

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’23, July 17–21, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07. . . $15.00
https://doi.org/10.1145/3597926.3598145

robustness, and effectiveness. We conduct extensive experiments to
evaluate the interpretation performance of six famous interpreters
(i.e., GNN-LRP, DeepLIFT, GradCAM, GNNExplainer, PGExplainer,
and SubGraphX ) on four vulnerability detectors (i.e., DeepWukong,
Devign, IVDetect, and Reveal). The experimental results show that
the target interpreters achieve poor performance in terms of effec-
tiveness, stability, and robustness. For effectiveness, we find that
the instance-independent methods outperform others due to their
deep insight into the detection model. In terms of stability, the
perturbation-based interpretation methods are more resilient to
slight changes in model parameters as they are model-agnostic.
For robustness, the instance-independent approaches provide more
consistent interpretation results for similar vulnerabilities.

CCS Concepts
• Security and privacy→ Vulnerability scanners.

Keywords
Vulnerability Detection, Interpretation, GNN Interpreters

ACM Reference Format:
Yutao Hu, Suyuan Wang, Wenke Li, Junru Peng, Yueming Wu, Deqing
Zou, and Hai Jin. 2023. Interpreters for GNN-Based Vulnerability Detection:
Are We There Yet?. In Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’23), July 17–21, 2023,
Seattle, WA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3597926.3598145

1 INTRODUCTION
With the rapid development of Internet technology, the number of
source code vulnerabilities in software grows, posing a significant
threat to enterprise and individual users’ software security [45].
Although it is difficult to avoid source code vulnerabilities during
the software development process, it is also a reasonable solution
to identify vulnerabilities as early as possible and fix them as soon

https://doi.org/10.1145/3597926.3598145
https://doi.org/10.1145/3597926.3598145
https://doi.org/10.1145/3597926.3598145


ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yutao Hu, Suyuan Wang, Wenke Li, Junru Peng, Yueming Wu, Deqing Zou, and Hai Jin

as possible. At the moment, static code vulnerability detection
methods can be divided into two categories: code similarity-based
methods and pattern-based methods. The code similarity method
is primarily used to discover vulnerabilities caused by code cloning
and has a significant false negative rate for vulnerabilities produced
by other factors. Traditional pattern-based methods require experts
to manually define vulnerability characteristics, which wastes time
and effort. Furthermore, because identifying characteristics is a
subjective activity. Expert judgment will influence the detection
results. As a result, there is an urgent need for a mechanism that
can detect vulnerabilities without relying on experts.

Deep learning is a new field of machine learning research that
has received extensive attention in recent years. Since it can auto-
matically extract features from code without human intervention,
it is widely used in source code vulnerability detection. For exam-
ple, VulDeePecker [25] treats the code as text and applies a long
short-termmemory (LSTM) network to train a vulnerability detector.
ASTGRU [13] extracts the abstract syntax tree (AST) to represent
the code and leverages a gated recurrent units (GRU) network to
analyze the tree sequence obtained by preorder traversal searching.
Devign [59] collects the code property graph (CPG) of the code to
maintain the program details and feeds it into a GNN model for
vulnerability detection. In reality, a recent study [6] that performed
a detailed comparison of different deep learning-based vulnerability
detectors discovered that graph-based methods outperform other
representation-based techniques (e.g., text-based and tree-based). It
makes sense because transforming the code into a graph represen-
tation can preserve program semantics such as control flow and
data flow between lines of code.

Meanwhile, because of the GNN’s superior ability to process
graph structures, it has been adopted by an increasing number of
researchers for vulnerability detection. However, since the GNN
model is essentially a black box for security analysts, it cannot
provide clear evidence to explain why a code sample is classified
as vulnerable or safe. In practice, some GNN work related to in-
terpretability has been proposed at this point, but whether the
explanations provided by them can be convinced by security ex-
perts remains to be studied. Additionally, we also observe that the
explanations provided by different GNN interpreters on the vulner-
ability detection task are inconsistent (see Section 4.2). This brings
us to a question: Which interpreters can we trust more?

To answer the question, we present the first empirical study to
research the ability of GNN interpreters on vulnerability detection
in this paper. We select six famous GNN interpreters from multiple
categories for our survey: GNN-LRP [35], DeepLIFT [38], GradCAM
[30], GNNExplainer [51], PGExplainer [28], and SubGraphX [55].
Specifically, we evaluate them from three different perspectives,
which are effectiveness, stability, and robustness. As for effective-
ness, we analyze the performance of GNN interpreters on the vul-
nerability detection task, including Intersection over Union (IoU) and
accuracy evaluation. Based on our results, we see that the effective-
ness of all target interpreters is not ideal. Limited by the inaccuracy
of the vulnerability detection model, the instance-independent in-
terpretation methods (gradient-based and decomposition-based)
outperform the instance-dependent ones (perturbation-based). As
for stability, we explore whether the interpretations given by
GNN interpreters are consistent when interpreting vulnerability

detection models under subtle parameter differences. Through the
results, we find that the stability of different interpreters varies
enormously. Among them, the perturbation-based methods achieve
better stability than decomposition- and gradient-based ones be-
cause they are model-agnostic. As for robustness, we investigate
whether GNN interpreters can give similar interpretations when
interpreting similar vulnerabilities. According to the results, we
observe that all interpreters achieve poor robustness. To be specific,
they cannot even provide consistent interpretations for a pair of
similar vulnerabilities with different variable names.

Contributions. In summary, our paper makes the following
contributions:

• We propose principled guidelines to assess the quality of
the interpretation approaches for GNN-based vulnerability
detectors based on concerns in the vulnerability detection
domain, namely, stability, robustness, and effectiveness.

• We conduct extensive experiments on six popular inter-
preters applied to four state-of-the-art GNN-based vulnera-
bility detection models.

• We open source our dataset and experimental results so that
other researchers can replicate our findings. The website is
https://github.com/CGCL-codes/vdgraph.

Paper Outline. Section 2 presents the background and the vul-
nerability detection models and GNN interpreters we investigated.
Section 3 describes our study design, including effectiveness, stabil-
ity, and robustness. Section 4 reports the study results. Section 5
discusses the threat to validity, future work, and actionable insights.
Section 6 presents the related work. Section 7 concludes the paper.

2 BACKGROUND
In this section, we introduce the general pipeline of deep learning-
based detection and interpretation. Then we describe the detection
and interpretation methods used in our survey.

2.1 Overview

Source Code

Vulnerability 
Detection Model

Interpreters

Detection 
Results

Interpretations

Explanation
Approach

Figure 1: The general pipeline of deep learning-based vulner-
ability detection and interpretation

The pipeline of the interpretable detection method includes the
detection and interpretation phase, as shown in Fig. 1. First, they
preprocess the source code, embed it as vectors, and then use them



Interpreters for GNN-Based Vulnerability Detection:
Are We There Yet? ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

for training a vulnerability detection model. Then the interpreter
generates vulnerability features (i.e., vulnerable statements) so that
security analysts can easily understand the basis of the detection
and the vulnerability’s principle to fix it. For interpreter training,
the trained detection model and the detected vulnerability are fed
into the interpretation model. Finally, the interpreter provides an
interpretation for the vulnerability.

2.2 GNN-Based Vulnerability Detection
Methods

Graphs represent the structural and semantic features of codes. In
this part, we introduce the GNN-based vulnerability detectors used
in our survey, which are the most representative GNN detectors.
They have all been published in top conferences and journals and
are not only the most used but are also all open source.

Devign [59] is a vulnerability detection model for multiple code
representation graphs. Specifically, it embeds AST, control flow
graph (CFG), data flow graph (DFG), and natural code sequence (NCS)
into a joint graph for feature learning. Devign’s model consists of a
gated graph recurrent layer and a convolutional layer. The former
layer uses the GRU model to aggregate and pass node information
to generate node features. The goal of the convolutional layer is to
output prediction results, which perform two convolutions with
pooling and then usemultilayer perceptron (MLP) for classifications.

IVDETECT [21] is an interpretable vulnerability detectionmodel
using program dependence graph (PDG). For each node in the PDG,
Glove+GRU is used to generate vector representations of sub-token
sequences, variables and types, and surrounding contexts, respectively.
Then attention-based Bi-GRU transforms the above vectors into the
final vector. To obtain the vector representation of the target node,
the vector of all the adjacent nodes are computed and weighted to
sum.

REVEAL [6] is a vulnerability detection model using code prop-
erty graph (CPG). It mainly uses the gated graph neural network
(GGNN) for graph feature extraction. The model assigns a GRU
to each node in the CPG, which updates the vertex’s embedding
by assimilating all its neighbors. Then, it sums the vectors of each
node to obtain a vector representation of the CPG. The final result
is obtained by using MLP with softmax for classification prediction.
Same as Devign [59], to pre-train GGNN, it adds a classification
layer on top of GGNN for feature extraction.

DeepWukong [8] relies on PDG for detection. It uses program
slicing to generate XFG (i.e., a program slice) for model training. Its
GNN model mainly consists of graph convolutional/pooling layers,
graph readout layer, and MLP, where the graph readout layer is
to integrate the graphs’ features with different sizes. Note that
DeepWukong is slice-level method, while the others are function-
level (with the entire function as the detection target). To fairly
compare interpretation, we adjust the input to DeepWukong to
match others, i.e., we use PDG of the function as input.

2.3 GNN Interpretation Methods
As mentioned, the interpreter’s input is the pre-trained detection
model and the detected vulnerability. The output is the features that
contribute significantly to detection, such as critical nodes, edges, or
subgraphs. This part introduces six GNN interpreters employed in

our survey, which cover perturbation-based, decomposition-based,
and gradient-based methods.
2.3.1 Perturbation-Based Methods. It is an instance-dependent in-
terpretation method whose key motivation is to investigate the
instance’s detection variation under different perturbations. Specif-
ically, when the prediction differs from the original, the instance’s
perturbed information is an essential feature, i.e., the vulnerability
feature. The main difference between them is that they interpret dif-
ferent target features, such as essential nodes, edges, or subgraphs.

GNNExplainer [51] aims to explore the most relevant subgraph
for explanation, using edge and feature masks to select structures
and features, respectively. Specifically, its key idea lies in accom-
plishing a maximum mutual information optimization task. First, it
performs an update training on the masks generated by perturbing
the edge to generate a new graph. Then, the new graph are fed
into the trained detector. A new graph with changed detection
results (i.e., from vulnerable to non-vulnerable) indicates that these
perturbed features are essential for the instance to be detected as
vulnerable. Finally, GNNExplainer extracts key subgraphs based on
these features and outputs them as an interpretation.

PGExplainer [28] enables simultaneous interpretation of mul-
tiple instances, whereas GNNExplainer is developed for single-
instance interpretation. It trains a parameterized mask predictor
to predict edge masks. Specifically, it generates the edge’s embed-
ding by connecting the node embeddings. Then, the predictor uses
edge embeddings to predict the probability that each edge will be
selected, which can be used as an importance score. As a result,
the mask predictor is trained by maximizing the mutual informa-
tion between the original and new predictions. Its interpretation
includes a subgraph and a set of node features.

SubgraphX [55] provides significant subgraphs as interpreta-
tions. However, GNNExplainer and PGExplainer interpret the graph
with essential nodes and edges, which are not guaranteed to be
connected. They ignore the interactions between nodes and edges,
which may contain important information. SubgraphX uses the
Monte Carlo Tree Search (MCTS) algorithm to efficiently explore
different subgraphs by node pruning. It selects the most crucial
subgraph from the tree’s leaves as its output. Although SubgraphX
does not learn masks directly, the MCTS can be considered a mask-
generation algorithm.
2.3.2 Decomposition-Based Methods.This method calculates the
importance of input features by decomposing the detector’s pre-
dictions into several terms. They examine the detection model’s
parameters to reveal the relationship between the input space fea-
tures and the output predictions. Therefore, they interpret from
the model’s perspective and are viewed as instance-independent
approaches. Specifically, they distribute the prediction scores layer
by layer in a back-propagation way to the input layer. The scores
are then decomposed and assigned to neurons in each layer ac-
cording to decomposition rules. By repeating this process until
the input space, the importance scores of node features can be
obtained, aggregated to represent the importance of edges, nodes,
and walks. The main differences between these approaches are the
score decomposition rules and the interpreted objects.

GNN-LRP [35] follows a higher-order Taylor decomposition
of model prediction, decomposing the scores into the importance



ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yutao Hu, Suyuan Wang, Wenke Li, Junru Peng, Yueming Wu, Deqing Zou, and Hai Jin

of different walks. When performing neighborhood information
aggregation, the walks correspond to the message flow, making
it more consistent with GNN. The Taylor decomposition (at root
zero) contains only T -order terms, where 𝑇 is the number of layers
of the trained GNN. Then each term corresponds to a T -order walk,
considered an importance score. The walk records the paths of the
message distribution process from one layer to another. These paths
are considered different and scored from their corresponding nodes.
The final output is the set of walks associated with the prediction.

DeepLIFT [38] is a novel algorithm for assigning importance
scores to inputs with a given output. Specifically, it uses the differ-
ences in some “reference” inputs to explain the inconsistencies in
some “reference” outputs. The “reference” inputs represent some
default or “neutral” inputs selected based on their suitability for
the problem. Using reference differences allow information to be
propagated even when the gradient is zero, thus avoiding placing
potentially misleading importance on bias terms.
2.3.3 Gradients-Based Methods.Using gradients to interpret deep
models is the most straightforward solution and is widely used for
image, text, graph, and node classification tasks. The key insight is
to employ the gradient mapping values as an approximation of the
input importance. They calculate the gradient by back-propagation.
Note that the gradients are highly correlated with the model pa-
rameters, so the interpretations reflect the hidden information in
the model. Therefore, the gradients-based approaches are instance-
independent. The difference between these methods lies in the
process of gradient back-propagation.

GradCam [37] is a deep network visualization method based on
gradient localization. Specifically, it back-propagates the predicted
values to obtain the gradient information, whose each element
represents the contribution of the output of the last convolutional
layer to the predicted values. The more significant the contribution,
the more critical the neural network considers it to be. Note that
GradCam is an interpretation method designed for convolutional
neural network (CNN). To make it applicable to GNN, we map the
scores of image classification to the nodes and edges of the graph as
in previous work [54], i.e., we use gradients as weights to combine
different graph features.

3 STUDY DESIGN
This section presents the intuition of our three proposed quantita-
tive metrics and their detailed calculation formulas.

3.1 Effectiveness
3.1.1 IoU Evaluation Approach.For any interpretation task, effec-
tiveness is one of the most important goals. The first effectiveness
evaluation method is inspired by manual vulnerability detection
[46]. For human experts, a sample is considered vulnerable if it cov-
ers comprehensive vulnerability features. Specifically, vulnerability
features are a set of code lines with a data dependent and a control
dependent from the root cause of the vulnerability (i.e., the location
where the vulnerability was introduced) to the vulnerability trigger.
Likewise, interpreters for deep learning-based detection methods
are expected to provide vulnerability features to convince security
analysts of the detection results and to help provide the cause of
the vulnerability for quick patching. Therefore, an interpretation
that covers the vulnerability features can be considered accurate.

Based on the above observations, we define the first method of
effectiveness calculation. As mentioned before, the calculation of
this metric relies on ground truth, that is, the vulnerability features.
To obtain vulnerability features, we refer to previous work [48]
and perform forward slicing from the modified statements of the
vulnerability patch (i.e., the root cause of the vulnerability). The
generated slices cover complete vulnerability features and are used
as the ground truth for interpretation. On that basis, we measure
the effectiveness of the interpretation by comparing the overlap
(IoU ) between the interpretations and the ground truth. In the case
that interpreter 𝑒 outputs the top 𝑘% most significant nodes for
all samples in dataset 𝐷 , the specific formula for the effectiveness
evaluation is as follow.

𝐼𝑜𝑈 (𝑒, 𝐷, 𝑘) = 1
|𝐷 |

∑︁
𝑥𝑖 ∈𝐷

𝐼𝑜𝑈 (𝑒, 𝑥𝑖 , 𝑘) (1)

𝐼𝑜𝑈 (𝑒, 𝑥𝑖 , 𝑘) denotes the overlap of the interpretation 𝑝𝑖 of sam-
ple 𝑥𝑖 with its ground truth 𝑔𝑖 . Its calculation is as follows, where 𝑒
represents the interpreter, and 𝑣 denotes the vulnerability detector.

𝐼𝑜𝑈 (𝑒, 𝑥𝑖 , 𝑘) =
|𝑝𝑖 ∩ 𝑔𝑖 |
|𝑝𝑖 ∪ 𝑔𝑖 |

(2)

𝑝𝑖 = 𝑒 (𝑥𝑖 , 𝑘, 𝑣) (3)
3.1.2 Accuracy Evaluation Approach.Apart from this, previous
work [21] proposed amore straightforward but less accuratemethod
of assessing the effectiveness of the interpretation. It only depends
on themodifications in the vulnerability patch instead of the ground
truth. This evaluation method considers the explanation result cor-
rect if it overlaps with the modification in the vulnerability patch.
The insight behind it is that the modified statement in the patch
must be related to the vulnerability, which matches the intuition
of our 𝐼𝑜𝑈 metrics. In this way, if the interpreter points out the
vulnerability-related statements, the interpretation is valid. As for
an interpreter 𝑒 , it outputs the top 𝑘% for each sample. The inter-
pretation effectiveness 𝐴𝑐𝑐 (𝑒, 𝐷, 𝑘) is calculated by summing and
averaging 𝐴𝑐𝑐 (𝑒, 𝑥𝑖 , 𝑘) of each sample 𝑥𝑖 in the dataset 𝐷 . The for-
mula is as follows, where 𝑟𝑖 denotes the modified statements in the
vulnerability patch and 𝑝𝑖 is the interpretation results as Eq.3.

𝐴𝑐𝑐 (𝑒, 𝐷, 𝑘) = 1
|𝐷 |

∑︁
𝑥𝑖 ∈𝐷

𝐴𝑐𝑐 (𝑒, 𝑥𝑖 , 𝑘) (4)

𝐴𝑐𝑐 (𝑒, 𝑥𝑖 , 𝑘) =
{
1, 𝑟𝑖 ∩ 𝑝𝑖 ≠ ∅
0, 𝑟𝑖 ∩ 𝑝𝑖 = ∅ (5)

3.2 Stability
The interpretation results generated for critical security systems
should be stable. The interpreters we investigate are all instance-
level, providing an interpretation for each input. Thus, the inter-
preters are expected to be consistent for multiple interpretations
provided for a vulnerability sample. In this way, it can be shown
whether the interpreter is learned the actual cause of the detected
vulnerability, i.e., the vulnerability signature. However, the parame-
ters and structure of deep learning-based vulnerability detection
models can be affected by several factors. In practice, influenced
by different server configurations, including memory size, GPU
performance, and hard drive capacity, people may run the model
with targeted fine-tuning. For example, the batch size or the sample



Interpreters for GNN-Based Vulnerability Detection:
Are We There Yet? ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

embedding dimensionality may be adjusted due to the poor perfor-
mance of the GPU, or the number of GGNN layers may be modified
due to memory limitations. In this case, it is difficult to gain users’
trust if the interpreters provide significantly varying explanations
for similar models. In other words, the interpretations of a supe-
rior interpreter should remain constant on a similar pre-trained
vulnerability detection model. Based on this intuition, stability is
an essential property for evaluating interpreters.

We define the stability metric as the similarity of explanations
of the same vulnerability on similar detection models. Therefore,
we first define the formula for calculating the similarity of the two
interpretations 𝑃1 and 𝑃2, following the Dice coefficient [2]. The
interpretation 𝑃 of sample 𝑥𝑖 on model 𝑣 using the interpreter 𝑒 is
as follows:

𝑃 = 𝑝 (𝑒, 𝑥𝑖 , 𝑘, 𝑣) (6)

𝑆𝑖𝑚(𝑃1, 𝑃2) = 2 × |𝑃1 ∩ 𝑃2 |
|𝑃1 | + |𝑃2 |

(7)

Then, the stability calculation formulas that an explanation
method 𝑒 outputs the first 𝑘% nodes on dataset 𝐷 are as follows.

𝑆𝑡𝑏 (𝑒, 𝐷, 𝑘, 𝑣) = 1
|𝐷 |

∑︁
𝑥𝑖 ∈𝐷

𝑆𝑡𝑏 (𝑒, 𝑥𝑖 , 𝑘, 𝑣) (8)

𝑆𝑡𝑏 (𝑒, 𝑥𝑖 , 𝑘, 𝑣) = 𝑆𝑖𝑚(𝑝 (𝑒, 𝑥𝑖 , 𝑘, 𝑣), 𝑝 (𝑒, 𝑥𝑖 , 𝑘, 𝑣 ′)) (9)

3.3 Robustness
Previous work [16, 17] has demonstrated that tiny changes in the
input samples can confuse the interpretation results. In fact, such
small changes in the samples do not change the prediction results of
the detection model. Such problems can be fatal for the interpreta-
tion task of vulnerability detection. It is well known that in addition
to some newly disclosed 0-day vulnerabilities, numerous cloned
vulnerabilities exist in the wild. Therefore, the detection of cloned
vulnerabilities is also an important research area for vulnerability
detection [20, 23, 41, 48]. Security analysts expect the interpreter
to provide consistent explanations for similar vulnerabilities. In
particular, semantic clones of vulnerabilities should be interpreted
with the same vulnerability characteristics, although they are textu-
ally very different for users to analyze. In this way, the interpreter
can provide experts with practical help to quickly locate the vul-
nerable statements to fix the vulnerabilities. On the contrary, if the
interpreter’s interpretation of similar vulnerabilities varies signif-
icantly, not only will it not convince the experts, but it will lead
them to doubt the vulnerability detection results and increase their
workload. Therefore, we consider robustness another important
evaluation metric of the interpretation approach by measuring the
similarity of explanations of similar vulnerabilities.

Based on the above description, we give the following calcula-
tion formula for robustness metric, where 𝑋𝑖 is the set of similar
vulnerabilities of 𝑥𝑖 .

𝑅𝑜𝑏 (𝑒, 𝐷, 𝑘, 𝑣) = 1
|𝐷 |

∑︁
𝑥𝑖 ∈𝐷

𝑅𝑜𝑏 (𝑒, 𝑥𝑖 , 𝑘, 𝑣) (10)

𝑅𝑜𝑏 (𝑒, 𝑥𝑖 , 𝑘, 𝑣) =
1

|𝑋𝑖 |
∑︁

𝑥
′
𝑖
∈𝑋𝑖

𝑆𝑖𝑚(𝑝 (𝑒, 𝑥𝑖 , 𝑘, 𝑣), 𝑝 (𝑒, 𝑥
′
𝑖 , 𝑘, 𝑣)) (11)

4 STUDY RESULTS
In this section, our experiments are centered on answering the
following Research Questions (RQs):

• RQ1: To what extent is the inconsistency of interpretations
with different interpreters for a detection model?

• RQ2: Can the interpreters provide effective interpretation
results for different detection models?

• RQ3: Can the interpreters provide stable interpretation re-
sults for similar detection models?

• RQ4: Can the interpreters provide robust interpretation re-
sults for cloned vulnerabilities?

4.1 Experiment Settings
4.1.1 Dataset and Implementations.We run all experiments on a
widely-used vulnerability dataset, Big-Vul [12], covers vulnerabili-
ties in 348 open-source projects from 2002 to 2019, with 11,834 vul-
nerable functions and 253,096 non-vulnerable functions. In addition,
it is necessary to have vulnerability patches and the corresponding
functions before and after being patched, since the computation of
the 𝐼𝑜𝑈 requires to generate ground truth from the modifications
of the patches. The calculation of 𝐴𝑐𝑐 also requires the modified
lines in the patch to obtain whether the interpretation is correct.
We choose Big-Vul because it satisfies the above requirements. For
implementations, we run all experiments on a standard server with
128GB RAM, 16 cores of CPU, and a GTX 5000 GPU.
4.1.2 Vulnerability Detection. In this part, we present the detec-
tion effectiveness of the four vulnerability detection models in
our research. The interpreters directly interpret these pre-trained
detectors with the pipeline, as in Fig. 1.

We use all vulnerable functions from the Big-Vul dataset and
their corresponding non-vulnerable functions for detection model
training. The specific training parameters are shown in Table 1.
The evaluation metrics for the detection effectiveness of the vulner-
ability detection models follow existing work [8, 22, 24, 25]. The
detection results are also shown in Table 1, and it can be seen that
all four detectors achieve more than 60% F1-Score. Moreover, their
results are similar overall, with high Recall and low Precision. Note
that the goal of the interpreters is to provide vulnerability charac-
teristics as the basis for vulnerability detection. So it is meaningless
to interpret the non-vulnerable samples and unfair to interpret the
samples that are incorrectly detected as vulnerable. Therefore, in all
subsequent interpreter evaluation experiments, we consider only
those vulnerable samples that are detected correctly.
4.1.3 Effectiveness Setup.There are two ways to evaluate the ef-
fectiveness (i.e., IoU and Accuracy), as mentioned in Section 3.1.
Therefore, we need to prepare the ground truth for IoU evaluation
and the modified statements of the patch for Accuracy evaluation
in advance.

For the preparation of ground truth, we resort to an open-source
code analysis tool, Joern [1, 49], to extract the PDG of the vulner-
ability. Then we identify the critical variables of the modification
in the patch following previous work [48] and perform forward
slicing based on these variables. The final slice is the ground truth of
the vulnerability, i.e., the set of all vulnerability-related statements.
For the modified statements in the vulnerability patch, we directly
parse the vulnerability patch and record the line numbers of the



ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yutao Hu, Suyuan Wang, Wenke Li, Junru Peng, Yueming Wu, Deqing Zou, and Hai Jin

Table 1: The summary of the vulnerability detection models
Vulnerability

Detection Model
Parameters Setting Detection Performance

Loss Function Activation Optimizer Batch Size Learning Rate Epoch Num F1-Score (%) Precision (%) Recall (%)
DeepWukong CrossEntropyLoss Relu Adam 64 0.002 50 63.39 53.32 78.15

Devign BCELoss Relu Adam 16 0.0001 100 62.37 53.72 74.33
IVDetect CrossEntropyLoss Relu Adam 8 0.0001 100 65.26 52.51 86.18
Reveal NLLloss Relu Adam 16 0.001 100 63.98 52.42 82.08

Table 2: The summary of the similar vulnerability detection models for stability evaluation
Vulnerability

Detection Model
Adjusted Parameters Detection Performance

Batch Size Embedding Dimensions Hidden Size Dropout GGNN Layers Classifier F1-Score (%) Precision(%) Recall(%)
DeepWukong 64 → 32 200→ 256 400 → 256 0.3→ 0.5 - softmax → sigmoid 62.18 52.94 75.34

Devign 16 → 32 200→ 256 - - 6 → 4 softmax → sigmoid 60.04 53.28 68.76
IVDetect 8 → 32 200 → 256 - 0.3→ 0.5 - softmax → sigmoid 65.58 52.25 88.03
Reveal 16 → 32 200→ 256 - 0.5→ 0.2 6→ 4 - 59.54 53.67 66.85

additions and deletions (statements starting with “+” or “-” in the
patch). In this way, the calculation of 𝐴𝑐𝑐 is done by directly check-
ing whether the modified statements’ line numbers are included
in the interpretations’ line number set. Note that we only consider
the interpretations of vulnerabilities correctly detected by the four
vulnerability detectors to ensure that the interpretation is valid.
4.1.4 Stability Setup.Stability is estimated by the fact that given
a sample, the explanations delivered on similar models should be
consistent, then the interpretation method is considered stable.
Therefore, we need to construct similar models for the four vulner-
ability detectors and train these similar ones. Specifically, We tune
the parameters of the models to construct similar models. These
parameters are selected to emulate the situations that may occur in
reality, which may be adjusted by users when the model running is
limited by physical reasons, as described in Section 3.2.

The specific parameter adjustments are shown in Table 2, which
can be divided into two categories. The first is the batch size and em-
bedding dimension. They are generic hyperparameters applicable
to any model tuning, and the user generally adjusts them to adapt
the model training to the server configuration. The other four pa-
rameters are oriented for specific model structures and are adjusted
to improve the detection effectiveness. They are the parameters
often tuned in deep learning model training by users, and such
tuning does not cause significant changes in the model structure.
Therefore, we choose to change them to construct a similar model
of the vulnerability detection model.

The detection results of constructed similar models are shown
in Table 2. The discrepancy between the similar model’s and the
original model’s detection effectiveness is not remarkable, with the
difference in F1-Score being within 5%. These results confirm that
tuning these parameters has little effect on the model, so the models
can be regarded as a pair of similar models before and after the
parameters adjustment. Note that when we evaluate the stability
of the interpreters, we only interpret the vulnerabilities detected
correctly in both the original and similar models.
4.1.5 Robustness Setup.The robustness evaluation is oriented to
the interpreter’s ability to resist interference from similar samples,
which is evaluated by the similarity of the interpretations for similar
samples. An ideal interpreter should output consistent vulnerability
features for similar vulnerabilities. Therefore, generating similar
vulnerabilities is a significant challenge for this research question.

Table 3: Description of code transformation for robustness
evaluation

Code Transformations Description
1 changeRename Rename all variables
2 changeCompoundForAndWhile Swap for and while loops
3 changeCompoundWhile Change while basic block
4 changeCompoundDoWhile Change Do-while basic block
5 changeCompoundIf (if-else) Convert if-else to if-else-if
6 changeCompoundIf (if-else-if) Convert if-else-if to if-else
7 changeCompoundSwitch Convert switch to if-else-if structure
8 changeCompoundLogicalOperator Change logical expressions
9 changeSelfOperator Change SelfOperator (e.g., i++)
10 changeCompoundIncrement Change increment operation (e.g., +=)
11 changeConstant Change Constant
12 changeVariableDefinitions Change Variable and Function Definitions
13 changeAddJunkCode Insert Junk Code

14 changeExchangeCodeOrder Exchange the order of statements without
dependencies (e.g., declaration statements)

15 changeDeleteCode Delete code without semantics (e.g., printf())

To address this problem, we consider using code transformation
techniques to perform code transformation on vulnerabilities. It
is semantic-preserving, meaning that the label of an instance (vul-
nerable or non-vulnerable) will not be changed. Specifically, we
employ CloneGen [3, 56] for code transformation, which generates
similar code for vulnerabilities in the Big-Vul dataset, i.e., cloned
vulnerabilities. CloneGen is an open-source code transformation
tool that provides 15 different ways to change code, with detailed
descriptions in Table 3. For a vulnerability, we overlay different
transformation methods to generate various cloned vulnerabili-
ties. Specifically, we generate four cloned vulnerabilities for each
vulnerability 𝑥𝑖 , namely 𝑥𝑖1 (using Transformation 1 only, i.e., chan-
geRename), 𝑥𝑖5 (overlaying Transformations 1-5), 𝑥𝑖10 (overlaying
Transformations 1-10), and 𝑥𝑖15 (overlaying Transformations 1-15).
The number of transformations from 𝑥𝑖1 to 𝑥𝑖15 increases in order,
that is, the lower the similarity to the original vulnerability.

For the generated cloned vulnerabilities, we first detect them
with the four pre-trained vulnerability detectors. Finally, for each
vulnerability detection model, we retain only the original vulner-
ability and its four cloned vulnerabilities that can all be detected
correctly, which share the exact reason, as mentioned earlier.

4.2 RQ1: Interpretation Consistency Evaluation
To answer RQ1, we interpret each vulnerability with an interpreter
and then observe the consistency of its interpretations by different
interpreters. Specifically, we apply each of the six interpreters to
the four pre-trained vulnerability detectors to obtain the interpre-
tations, with the overall pipeline shown in Fig. 1.



Interpreters for GNN-Based Vulnerability Detection:
Are We There Yet? ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Table 4: The interpretation of running example for Devign
GNN-LRP DeepLIFT GradCAM GNNExplainer PGExplainer SubgraphX

RQ2 1, 4, 5, 6, 10, 11, 13, 15, 19, 21 1, 2, 4, 5, 6, 10, 11, 13, 14, 15, 19 1, 4, 5, 6, 10, 11, 14, 15, 19 1, 2, 4, 10, 11, 15, 21 1, 4, 5, 10, 11, 14, 15, 19 1, 4, 5, 10, 11, 14, 15, 19
RQ3 1, 4, 5, 10, 11, 13, 15, 19, 21 2, 4, 5, 6, 10, 11, 13, 14, 15, 19, 21 1, 4, 5, 10, 11, 13, 14, 15, 19 4, 5, 6, 11, 13, 14, 15, 19 1, 4, 5, 11, 15, 19 1, 4, 5, 10, 11, 14, 15, 19
RQ4 2, 4, 5, 6, 10, 11, 13, 15, 19 1, 4, 5, 6, 10, 11, 13, 15, 19, 21 1, 2, 5, 6, 10, 11, 13, 15, 19 4,5,10, 11, 13, 15, 21 1, 2, 4, 10, 11, 14, 15, 19 4, 5, 10, 11, 13, 14, 19

Figure 2: Consistency of the interpretation results for different vulnerability detectors with 𝑘 from 1 to 20

For an interpreter’s interpretation of each sample, we calculate
its similarity to the interpretations of the other five interpreters
separately and take the average to obtain its consistency on this
interpreter. The final consistency of interpreter 𝑒 on model 𝑣 is
calculated as follows. For example, sample 𝑥𝑖 is interpreted in six
interpreters as 𝑝1, 𝑝2, ... ,𝑝6. To obtain the consistency of sample 𝑥𝑖
on interpreter 1, calculate the similarity between 𝑝1 and 𝑝2 to 𝑝6,
respectively, and then average them to obtain 𝐶𝑜𝑛(𝑒, 𝑥𝑖 , 𝑘, 𝑣).

𝐶𝑜𝑛(𝑒, 𝐷, 𝑘, 𝑣) = 1
|𝐷 |

∑︁
𝑥𝑖 ∈𝐷

𝐶𝑜𝑛(𝑒, 𝑥𝑖 , 𝑘, 𝑣) (12)

𝐶𝑜𝑛(𝑒, 𝑥𝑖 , 𝑘, 𝑣) =
1

|𝐸 − 1|
∑︁

𝑒′∈{𝐸−𝑒 }
𝑆𝑖𝑚(𝑝 (𝑒, 𝑥𝑖 , 𝑘, 𝑣), 𝑝 (𝑒′, 𝑥𝑖 , 𝑘, 𝑣))

(13)
The consistency of the interpretations under each vulnerability

detection model using different interpreters is shown in Fig. 2. It
can be seen that the overall consistency increases slowly with in-
creasing 𝑘 . It is reasonable since the larger 𝑘 is, the more nodes
the interpreter outputs, and the more likely the interpretation of
different interpreters will overlap. Unfortunately, the consistency of
all interpreters for all vulnerability detectors is below 35%. Among
them, the highest consistency of all interpreters for Reveal is less
than 25%, indicating that the interpretations of different interpreters
vary greatly and fail to meet the requirement of trustworthiness.
The above results show that the existing interpreters suffer from
significant variability in the interpretation of the same detection
model and the same vulnerability. This indicates that the inter-
preters are not credible. Therefore, there is an urgent need for
principled guidelines for interpreter evaluation to help select the
optimal vulnerability interpreter.

Summary: The consistency of different interpreters against vul-
nerability detection models is less than 35%, making it difficult
for security analysts to select proper vulnerability interpretations.
Therefore, the systematic evaluation methods for GNN interpreta-
tion proposed in our work have considerable practical value.

1 jbig2_page_add_result(Jbig2Ctx *ctx, Jbig2Page *page, Jbig2Image 
*image, int x, int y, Jbig2ComposeOp op)

2 {
3   /* ensure image exists first */
4   if (page->image == NULL) {
5       jbig2_error(ctx, JBIG2_SEVERITY_WARNING, -1, "page info possibly 

missing, no image defined");
6       return 0;
7   }
8 
9   /* grow the page to accomodate a new stripe if necessary */
10  if (page->striped) {
11   -  int new_height = y + image->height + page->end_row;
     +  uint32_t new_height = y + image->height + page->end_row;
12
13    if (page->image->height < new_height) {
14     jbig2_error(ctx, JBIG2_SEVERITY_DEBUG, -1, "growing page  

     buffer to %d rows " "to accomodate new stripe", new_height);
15     jbig2_image_resize(ctx, page->image, page->image->width, new_height);
16     }
17  }
18
19  jbig2_image_compose(ctx, page->image, image, x, y + page->end_row, op);
20
21  return 0;
22 }

Figure 3: A running example (the diff file of CVE-2017-9995)

4.3 RQ2: Effectiveness Evaluation
Effectiveness is an essential property of the usability of an inter-
pretation method. As described in Section 4.1.3, we employ six
interpretation methods for the trained vulnerability detection mod-
els to obtain interpretations. To answer RQ2, we use two metrics,
where 𝐼𝑜𝑈 is calculated by comparing interpretation with ground
truth and 𝐴𝑐𝑐 is measured based on patch modifications.

A running example is provided to illustrate the interpreter’s in-
terpretation, as shown in Fig. 3. We pick a vulnerability in CWE-119
(CVE-1016-9601), which is patched by modifying the variable type
of new_height at line 11. According to the analysis, this function
triggers a buffer overflow vulnerability at line 19 due to a possi-
ble negative value for new_height with type int at line 11, which
makes the if-condition at line 13 not satisfied. Therefore, the
characteristics of this vulnerability (ground truth) are as follows:
the definition of new_height at line 11 is used as the root cause,
and then the new_height is sliced forward until the vulnerability



ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yutao Hu, Suyuan Wang, Wenke Li, Junru Peng, Yueming Wu, Deqing Zou, and Hai Jin

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 00
1 0
2 0
3 0
4 0
5 0
6 0

IoU
(%

)

k
( a )  D e e p W u k o n g

 G N N - L R P     D e e p L I F T     G r a d C A M     G N N E x p l a i n e r     P G E x p l a i n e r     S u b G r a p h X

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 00
1 0
2 0
3 0
4 0
5 0
6 0

k
( b )  D e v i g n

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 00
1 0
2 0
3 0
4 0
5 0
6 0

k
( c )  I V D e t e c t

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 00
1 0
2 0
3 0
4 0
5 0
6 0

k
( d )  R e v e a l

Figure 4: Effectiveness (𝐼𝑜𝑈 ) of the interpretation results for different vulnerability detectors with 𝑘 from 1 to 20

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0

Ac
cur

acy
 (%

)

k
( a )  D e e p W u k o n g

 G N N - L R P      D e e p L I F T     G r a d C a m     G N N E x p l a i n e r     P G E x p l a i n e r     S u b G r a p h X

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0

k
( b )  D e v i g n

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0

k
( c )  I V D e t e c t

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0

k
( d )  R e v e a l

Figure 5: Effectiveness (𝐴𝑐𝑐) of the interpretation results for different vulnerability detectors with 𝑘 from 1 to 20

is triggered at line 19. In summary, the ground truth for this vul-
nerability contains lines 11, 13, 14, 15, and 19, and a modification
of the vulnerability patch is line 11.

Due to space limitations, we provide the output of the six inter-
preters (i.e., a set of the line numbers) for Devign under different
research questions, as shown in Table 4. Devign was chosen as an
example because it is the first proposed and most cited GNN-based
vulnerability detector. Note that for presentation purposes, the
data in Table 4 is the raw output for interpreters without specified
𝑘 . Row RQ2 represents the interpretation of the six interpreters
for Devign for the running example detection. It can be seen that
the output of all interpreters contains line 11 (modification of the
patch), so all interpreters achieve an 𝐴𝑐𝑐 of 1.0 for this example.
For the 𝐼𝑜𝑈 , we use the GNNExplainer example, where ground
truth is list [11, 13, 14, 15, 19] and the output of GNNExplainer is
list [1, 2, 4, 10, 11, 15, 21]. Thus, its 𝐼𝑜𝑈 can be calculated as 0.2 ac-
cording to Eq. 2.

The 𝐼𝑜𝑈 and 𝐴𝑐𝑐 results of the interpreters are shown in Fig. 4
and Fig. 5, where we can observe that: (1) Instance-independent
methods (decomposition- and gradient-based) are more effective
than instance-dependent methods (perturbation-based). Specifi-
cally, GradCAM (gradient-based) and DeepLIFT (decomposition-
based) are the most effective, while the perturbation-based meth-
ods PGExplainer and SubgraphX have the worst effects. (2) The
effectiveness of all six interpretation methods improves as the value
of k increases. It can also be observed that at 𝑘 = 18, the growth
of 𝐼𝑜𝑈 tends to flatten out, and the growth of 𝐴𝑐𝑐 likewise slows
down around 𝑘 = 10. (3) The detection model’s performance af-
fects the interpretation methods’ effectiveness. For example, Table

1 shows that the detection performance of IVDetect is better than
that of Devign. In general, all interpreters are better for IVDetect
than for Devign. Especially for GradCAM, it can be seen that its
interpretation of IVDetect is significantly better than that of Devign.

Perturbation-based methods focus on the instances rather
than the detection model’s features, so they are viewed as instance-
dependent. They perturb the nodes or edges of the input and then
determine the critical feature by the changed detection results. For
example, after a node is removed from a vulnerable PDG, the new
instance is detected from vulnerable to non-vulnerable, indicating
that this node is a crucial vulnerability feature (i.e., interpretation).
However, Table 1 shows that none of the vulnerability detectors
is satisfactory, whose precisions are below 55%. Therefore, the
detection result for the post-perturbation sample may be incorrectly
detected by the inaccurate detectors. This is the reason for the poor
effectiveness of the perturbation-based interpretation methods.

The effectiveness of the perturbation-based methods are highly
variable, with GNNExplainer being significantly better than PG-
Explainer and SubgraphX. The reason is that GNNExplainer trains
for each instance individually to obtain the interpretation. In con-
trast, PGExplainer pre-trains the interpreter for the entire training
set, i.e., it provides explanations for the instances with a global
view. However, since the causes of vulnerabilities are complex and
the vulnerability characteristics vary greatly between vulnerabil-
ity types, the global features of all vulnerabilities are difficult to
generalize. SubGraphX expects to obtain a key subgraph as the ex-
planation, thus paying more attention to the connectivity between
nodes and edges. However, connectivity is not a critical concern



Interpreters for GNN-Based Vulnerability Detection:
Are We There Yet? ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Sta
bil

ity
 (%

)

k
( a )  D e e p W u k o n g

 G N N - L R P      D e e p L I F T     G r a d C a m     G N N E x p l a i n e r     P G E x p l a i n e r     S u b G r a p h X

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

k
( b )  D e v i g n

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

k
( c )  I V D e t e c t

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

k
( d )  R e v e a l

Figure 6: Stability of the interpretation results for different vulnerability detectors with 𝑘 from 1 to 20

for the vulnerability detection task, so SubGraphX is inappropriate
for the vulnerability detection interpretation.

Decomposition-based and gradient-based methods mainly
generate the interpretation based on the parameters and structure
of the detection model. Therefore, the interpretation results can
reveal the vulnerability’s critical nodes from the model’s deeper
perspective, thus achieving better interpretation performance. In
addition, there is no particularly significant difference in the effec-
tiveness of these methods.

Summary: The effectiveness of all interpreters for the vulnerabil-
ity detection model is unsatisfactory, and all of their effective-
ness is below 70%. Meanwhile, the experiments show that the
instance-independent interpretation methods (decomposition-based
and gradient-based) are more effective than the instance-dependent
(perturbation-based) methods.

4.4 RQ3: Stability Evaluation
In order to answer RQ3, we apply the six GNN interpreters on sim-
ilar pre-trained vulnerability detection models. The similar models
are constructed as described in Section 4.1.4.

Row RQ3 in Table 4 represents the interpretation of Devign’s
similar model. From the definition of stability, we can learn that
we compare the similarity of the interpretation of the original de-
tector and that of the similar detector to assess the stability of the
interpreter. Since Row RQ2 is the interpretation of Devign’s origi-
nal model, we can combine Row RQ3 and Row RQ2 to obtain the
stability results. Using the PGExplainer as an example, the original
interpretation is [1, 4, 5, 10, 11, 14, 15, 19], while the interpretation of
the similar model is [1, 4, 5, 11, 15, 19]. Therefore, we can calculate
its stability as 0.86 according to Eq. 9.

As shown in Fig. 6, the average stability is calculated accord-
ing Eq. 8. From the figure, we can observe that: (1) SubgraphX
shows the best stability among the six interpretation methods. It
achieves around 80% stability in three detection models. (2) GNN-
LRP, DeepLIFT, and GNNExplainer have poor performance in terms
of stability, staying below 40% on average. However, they have bet-
ter explanation results for individual vulnerability detection models.
For example, GNNExplainer performs best in interpreting IVDetect
with a score of 100%.

Perturbation-based methods have better stability in general,
which directly infer the critical features that explain the detection
results by modifying the nodes and edges in the graph. SubGraphX
obtains the critical subgraphs for interpretation. It is because it
pursues node and edge connectivity and uses a key subgraph to
explain vulnerabilities, which is less disturbed by changes in the
model when generating explanations. PGExplainer and GNNEx-
plainer consider only critical nodes and edges and are more suscep-
tible to model changes. PGExplainer trains the mask for all training
data and interprets the test set based on this pre-trained mask. In
contrast, GNNExplainer has poor stability as it lacks a global view
of the dataset, resulting in an exaggeration of the sample’s noise.
Specifically, it trains a new mask for each instance individually to
provide an interpretation of that instance. As a result, PGExplainer
is more resistant to changes in the model than GNNExplainer.

Decomposition-based and gradients-based methods both
have poor stability. Among them, the decomposition-basedmethods
analyze the relationship between the input features and prediction
results according to the model’s structure and parameters. Similarly,
the gradients-based approaches calculate the gradient of the input
features by backpropagating between the model’s hidden layers to
obtain the input features’ importance score. Note that the gradient
is highly correlated with the model parameters, so its interpretation
results can capture the hidden information in the model. Therefore,
both methods are susceptible to model variations. In other words,
tiny modifications in the model can lead to dramatic changes in the
explanation results, especially for the two complex vulnerability
detection models, Reveal and IVDetect.

Summary: Perturbation-based methods have better stability than
decomposition-based and gradients-based methods. The former fo-
cus on the input features, while the latter is more sensitive to the
GNNmodels, indicating that model-agnostic interpretation methods
achieve good performance in term of stability.

4.5 RQ4: Robustness Evaluation
In order to answer RQ4, we evaluate the robustness by calculating
the overlap of the interpreter’s interpretation results in cloned vul-
nerabilities. We generate cloned vulnerabilities by code transforma-
tions one time, five times, ten times, and 15 times for experiments,
as described in Section 4.1.5.



ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yutao Hu, Suyuan Wang, Wenke Li, Junru Peng, Yueming Wu, Deqing Zou, and Hai Jin

Figure 7: Robustness of the interpretation results for different vulnerability detectors with the time of code transformations 𝑁
from 1 to 15

Row RQ4 in Table 4 represents the interpretation of the cloned
vulnerability (with once code transformation) of CVE-2017-9995.
From the definition, we can learn that we compare the similarity of
the interpretations of the vulnerability and the cloned vulnerability
to evaluate the robustness. Row RQ2 is the interpretation CVE-2017-
9995, so we can combine Row RQ4 and RQ2 to obtain the robustness
results. Using the PGExplainer as an example, the original inter-
pretation is [1, 4, 5, 10, 11, 14, 15, 19], while the interpretation of the
cloned vulnerability is [1, 2, 4, 10, 11, 14, 15, 19]. Therefore, we can
calculate its robustness as 0.875 according to Eq. 11.

Then the robustness of these six interpretation methods is cal-
culated separately according to Eq. 10, and the calculation results
are shown in Fig. 7. Due to space limitation, Fig. 7 only shows the
experimental results with 𝑘 = 20 because the best interpretation is
achieved at 𝑘 = 20 according to effectiveness evaluation. The rest of
the data are published in our GitHub repository. From the figure, we
can notice that: (1) The robustness of all the interpretation methods
is unsatisfactory, and all fail to reach 61%. It indicates that these
interpreters are easily disturbed by small changes in the sample.
(2) The robustness shows a decreasing trend with the increase of
the times of code transformations. Among them, the effect of the
first 10 code transformations on the robustness is relatively weak,
and the robustness decreases significantly after 15 transformations.
(3) PGExplainer shows high robustness on all detection models,
and the robustness can reach more than 60% for one code trans-
formation and more than 35% even for 15 times. On the contrary,
GNNExplainer achieves poor robustness on all detection models,
less than 25% on single code transformation, and less than 10% on
15 times. (4) The detection model impacts the robustness of the
interpretation method. For example, DeepLIFT is significantly more
robust than the other three models in explaining the IVDetct. Its
robustness to IVDetect is 60%, which is about 10% better than its
robustness of the other three detection models.

Perturbation-based methods differ significantly in their ro-
bustness performance. Among them, PGExplainer has the best ro-
bustness while GNNExplainer is the worst, with similar reasons
described in the stability evaluation. PGExplainer provides a global
view for all samples, so its interpretation results depend mainly on
the interpreter’s training. Therefore, PGExplainer can effectively
extract its important nodes and edges for similar codes after code
transformation, so it has good robustness. On the contrary, GNNEx-
plainer retrains the interpretation model for each instance, which

lacks a global perspective and cannot effectively distinguish the
noise introduced after transformation, thus having poor robustness.
The robustness of the decomposition-based and gradient-based
methods are not significantly different. As introduced before, both
methods are model-sensitive. Since small changes in the input do
not affect the parameters and gradients of the model, their robust-
ness performance is acceptable, with slight variations.

The figure shows that even for one code transformation, i.e.,
renaming variables in the code, the robustness of all interpreters
is only 60%, indicating that the robustness of all interpreters is
very poor. In other words, these interpreters can hardly deliver the
same interpretation, even for two vulnerabilities that differ only
in variable names. In addition, we analyze the PDGs after code
transformation and find that the first ten transformations have a
small impact on robustness due to the minor effect of the graph
structure. However, after the eleventh to fifteenth transformations,
there are significant changes in the graph structure, such as adding
nodes and edges. Therefore, it can be observed that the robustness
after 15 transformations is significantly reduced compared to the
previous ones.
Summary: The robustness of all interpreters is not ideal and cannot
provide consistent interpretations for a pair of similar vulnerabilities
with different variable names. Additionally, the robustness of the
perturbation-based methods varies widely, while the decomposition-
based and gradient-based ones achieve relatively similar robustness.

5 DISCUSSION
5.1 Threats to Validity
First, the effect of parameter 𝑘 on interpretation is very signifi-
cant. To mitigate this threat, we conduct extensive experiments
on choosing 𝑘 values from 2-20 to demonstrate more clearly the
interpretation results at different 𝑘 . Second, the effect of different
interpreters varies when applied to different detectors. To mitigate
the threat, we choose four state-of-the-art detectors and employ
each interpreter on them separately to ensure the integrity of the
experiments. Third, for the interpreters, we select six representa-
tive interpreters from multiple categories. In this way, the threat of
evaluating the applicability of the metrics to all GNN interpreters
is mitigated. Fourth, the interpretations are only meaningful for
correctly detected vulnerable inputs. For this reason, all explained
samples are correctly detected in all our experiments to ensure the
fairness of the experiments.



Interpreters for GNN-Based Vulnerability Detection:
Are We There Yet? ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

5.2 Lessons
Based on our study results, we provide top-5 actionable insights
for GNN-based vulnerability interpreters.

Firstly, the detection effect of the vulnerability detector has a
fatal impact on the interpreter. For instance-dependent interpreters,
it provides interpretation by perturbing the nodes and edges of the
instance. Therefore, it takes a superior vulnerability detector to con-
firm whether a perturbed instance is vulnerable and thus influences
the interpreter’s judgment. For model-related interpreters, there is
a greater reliance on the detector, as it interprets the vulnerability
in terms of the model’s perspective. Unfortunately, current vulner-
ability detectors only achieve an F1-Score of around 65%, which
is far from ideal. Therefore, we suggest that the main goal at this
stage is to improve detection effectiveness of the detectors.

Secondly, instance-related interpreters explain from the perspec-
tive of vulnerabilities more in line with the logic of the human.
Their core insight is that it becomes non-vulnerable when vulnera-
bility’s features (the important nodes and edges) are removed from
a vulnerable instance. It is possible that the current instance-related
interpreters are not as effective as they could be due to the poor
performance of the detectors, i.e., they cannot provide the correct
detection results for the perturbed instances. Therefore, we rec-
ommend trying the instance-related interpreters again after the
detectors has been improved, and they may perform well.

Third, the current instance-related interpreters are proposed
based on graph theory and do not take into account the features
of vulnerabilities that are different from other graphs. We suggest
that some perturbation algorithms related to the vulnerability fea-
tures could be designed for the vulnerability representation graphs,
thus making the perturbation more effective and consistent with
the vulnerability principles. Also, this makes the interpreter more
focused on vulnerability-related features, which can improve the
robustness of the instance-related interpreters.

Fourth, model-related interpreters currently achieve better ef-
fectiveness and have an inherent advantage for robustness. For
their stability, decomposition-based interpreters focus more on
graph-related input features, thus reducing the impact of unim-
portant model parameters. We suggest that the gradient-based
approach be able to take into account some a prior experience by
pre-setting some important nodes and edges that may be relevant
to the vulnerability, thus mapping the back-propagation results of
the predictions to more reliable nodes and edges and reducing the
interference of irrelevant information in the graph.

Fifth, there is an urgent need for a GNN interpreter designed
for vulnerability detectors. The current general GNN interpreters
are not effective enough for vulnerability detection. We suggest
that any interpreter combined with consideration of vulnerability
features would effectively improve interpreters’ performance (i.e.,
effectiveness, robustness, and stability).

6 RELATEDWORK
Many deep learning-based vulnerability detectors have been pro-
posed. The text-based approaches treat the source code as plain
text and then embed it as a vector. Then they employ traditional
deep neural networks for training and detection [11, 13, 24–27, 31–
33, 47, 61]. Since code has more structure and semantics than text,
text-based methods do not perform well. Graphs are ideal code

representations that convey the code’s structural and semantic fea-
tures [50]. Therefore, recent works [5, 6, 8, 9, 18, 43, 59] employ
GNN models for detection and achieve good results.

Deep learning-based vulnerability detection methods lack ex-
plainability, resulting in unreliable detection results. To this end,
interpretable detection methods are proposed. Some studies use the
detection model to interpret the detection results. Linevul [14] pro-
vides the statement-level interpretation of vulnerabilities with the
help of a self-attentive mechanism of Transformer. LineVD [18] uses
graph attention networks (GAT) for detection and interpretation.
mVulPreter [60] incorporates two granularity models to detect and
explain vulnerabilities. However, these approaches using detection
models are not generic. Therefore, some work design or apply a
specialized interpretation model to interpret the results of vulner-
ability detection. Zou et al. [62] design an explainable framework
that identifies combinations of tokens contributing significantly
to prediction by perturbing samples near the decision boundary.
IVDetect [21] interprets with GNNExplainer [51].

Current interpretable methods provide different perspectives
for interpretation. There are two main categories of GNN interpre-
tation methods depending :instance-level methods and model-level
methods. Instance-level approaches interpret by identifying the pre-
dicted important input features. By different ways of obtaining
importance scores,the instance-level methods can be divided into
four branches. The first isGradient/Feature-based [4, 30], which uses
the gradient [39, 40] or hidden feature [37, 58] mapping values as
an approximation of the input importance. The Perturbation-based
methods [15, 28, 34, 44, 51] is to study the output variation under
input perturbations [7, 10, 52]. The Surrogate Methods [19, 42, 57]
use interpretable surrogate models to approximate the predictions
of complex models for adjacent input regions. The Decomposition
Methods [4, 35, 36] decompose the prediction of the original model
into several terms to measure the importance of the input features.
Model-level methods are designed to deliver general insights to inter-
pret the GNN model [29], whose representative work is XGNN [53].
It trains the graph generator so that the generated graph maximizes
the target graph prediction. However, the model-level interpreter
explains the model rather than interpretations for the instances,
so it is not chosen as our investigated tool. As can be seen, the six
interpreters we selected cover most of the interpreter classes.

7 CONCLUSION
This paper proposes principled guidelines to assess the interpre-
tation methods for GNN-based vulnerability detectors based on
concerns in vulnerability detection, stability, robustness, and effec-
tiveness.We conduct experiments using six widely used interpreters
and four state-of-the-art detectors. The experimental results show
that the interpretation results provided by different interpreters
for vulnerability detection vary significantly, and the performance
could be more satisfactory in all the above three metrics.

ACKNOWLEDGEMENTS
We would thank the anonymous reviewers for their insightful com-
ments to improve the quality of the paper. This work is supported
by the the National Science Foundation of China under grant No.
62172168 and Hubei Province Key R&D Technology Special Inno-
vation Project under Grant No. 2021BAA032.



ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yutao Hu, Suyuan Wang, Wenke Li, Junru Peng, Yueming Wu, Deqing Zou, and Hai Jin

REFERENCES
[1] 2021. Open-source code analysis platform for C/C++ based on code property

graphs. https://joern.io/.
[2] 2022. Dice similarity coefficient. https://radiopaedia.org/articles/dice-similarity-

coefficient.
[3] 2023. CloneGen. https://github.com/CloneGen/CLONEGEN.
[4] Federico Baldassarre and Hossein Azizpour. 2019. Explainability techniques for

graph convolutional networks. arXiv preprint arXiv:1905.13686 abs/1905.13686
(2019). https://doi.org/10.48550/arXiv.1905.13686

[5] Sicong Cao, Xiaobing Sun, Lili Bo, YingWei, and Bin Li. 2021. Bgnn4vd: Construct-
ing bidirectional graph neural-network for vulnerability detection. Information
and Software Technology 136 (2021), 106576. https://doi.org/10.1016/j.infsof.2021.
106576

[6] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. 2022.
Deep Learning based Vulnerability Detection: Are We There Yet? IEEE Transac-
tions on Software Engineering 48, 9 (2022), 3280–3296. https://doi.org/10.1109/
TSE.2021.3087402

[7] Jianbo Chen, Le Song, Martin Wainwright, and Michael Jordan. 2018. Learning
to explain: An information-theoretic perspective on model interpretation. In
Proceedings of the 35th International Conference on Machine Learning (ICML’18).
883–892. https://doi.org/10.48550/arXiv.1802.07814

[8] Xiao Cheng, HaoyuWang, Jiayi Hua, Guoai Xu, and Yulei Sui. 2021. Deepwukong:
Statically detecting software vulnerabilities using deep graph neural network.
ACM Transactions on Software Engineering and Methodology (TOSEM) 30, 3 (2021),
1–33. https://doi.org/10.1145/3436877

[9] Lei Cui, Zhiyu Hao, Yang Jiao, Haiqiang Fei, and Xiaochun Yun. 2020. Vuldetec-
tor: detecting vulnerabilities using weighted feature graph comparison. IEEE
Transactions on Information Forensics and Security 16 (2020), 2004–2017. https:
//doi.org/10.1109/TIFS.2020.3047756

[10] Piotr Dabkowski and Yarin Gal. 2017. Real time image saliency for black box
classifiers. Advances in Neural Information Processing Systems 30 (2017), 6967–
6976. https://doi.org/10.48550/arXiv.1705.07857

[11] Xu Duan, Jingzheng Wu, Shouling Ji, Zhiqing Rui, Tianyue Luo, Mutian Yang,
and Yanjun Wu. 2019. VulSniper: Focus your attention to shoot fine-grained vul-
nerabilities. In Proceedings of the 2019 International Joint Conference on Artificial
Intelligence (IJCAI’19). 4665–4671. https://doi.org/10.24963/ijcai.2019/648

[12] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. A C/C++ Code
Vulnerability Dataset with Code Changes and CVE Summaries. In Proceedings
of the 17th International Conference on Mining Software Repositories (MSR’2020).
508–512. https://doi.org/10.1145/3379597.3387501

[13] Hantao Feng, Xiaotong Fu, Hongyu Sun, He Wang, and Yuqing Zhang. 2020.
Efficient Vulnerability Detection based on abstract syntax tree and Deep Learning.
In Proceedings of the 2020 IEEE INFOCOM Conference on Computer Communi-
cations Workshops (INFOCOM’20 WKSHPS). 722–727. https://doi.org/10.1109/
INFOCOMWKSHPS50562.2020.9163061

[14] Michael Fu and Chakkrit Tantithamthavorn. 2022. LineVul: a transformer-
based line-level vulnerability prediction. In Proceedings of the 19th Interna-
tional Conference on Mining Software Repositories (MSR’22). 608–620. https:
//doi.org/10.1145/3524842.3528452

[15] Thorben Funke, Megha Khosla, and Avishek Anand. 2021. Hard masking for
explaining graph neural networks. In Proceedings of the 2021 International Con-
ference on Learning Representations (ICLR’21).

[16] Amirata Ghorbani, Abubakar Abid, and James Zou. 2019. Interpretation of neural
networks is fragile. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI’19). 3681–3688.

[17] Juyeon Heo, Sunghwan Joo, and Taesup Moon. 2019. Fooling neural network
interpretations via adversarial model manipulation. In Proceedings of the Advances
in Neural Information Processing Systems (NeurIPS’19). https://doi.org/10.1609/
aaai.v33i01.33013681

[18] David Hin, Andrey Kan, Huaming Chen, and M. Ali Babar. 2022. LineVD:
statement-level vulnerability detection using graph neural networks. In Pro-
ceedings of the 19th International Conference on Mining Software Repositories
(MSR’22). 596–607. https://doi.org/10.1145/3524842.3527949

[19] Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, and Yi Chang. 2022.
Graphlime: Local interpretable model explanations for graph neural networks.
IEEE Transactions on Knowledge and Data Engineering abs/2001.06216 (2022).
https://doi.org/10.48550/arXiv.1909.10911

[20] Seulbae Kim, SeunghoonWoo, Heejo Lee, and Hakjoo Oh. 2017. Vuddy: A scalable
approach for vulnerable code clone discovery. In Proceedings of the 2017 IEEE
Symposium on Security and Privacy (S&P’17). 595–614. https://doi.org/10.1109/
SP.2017.62

[21] Yi Li, ShaohuaWang, and Tien N. Nguyen. 2021. Vulnerability detection with fine-
grained interpretations. In Proceedings of the 29th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE’21). 292–303. https://doi.org/10.1145/3468264.3468597

[22] Zhen Li, Deqing Zou, Shouhuai Xu, Zhaoxuan Chen, Yawei Zhu, and Hai Jin. 2022.
VulDeeLocator: A Deep Learning-Based Fine-Grained Vulnerability Detector.

IEEE Transactions on Dependable and Secure Computing 19, 04 (2022), 2821–2837.
https://doi.org/10.1109/TDSC.2021.3076142

[23] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie Hu. 2016.
Vulpecker: an automated vulnerability detection system based on code similarity
analysis. In Proceedings of the 32nd Annual Conference on Computer Security
Applications (ACSAC’16). 201–213. https://doi.org/10.1145/2991079.2991102

[24] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan Chen. 2021.
Sysevr: A framework for using deep learning to detect software vulnerabilities.
IEEE Transactions on Dependable and Secure Computing 19, 4 (2021), 2244–2258.
https://doi.org/10.1109/TDSC.2021.3051525

[25] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. 2018. VulDeePecker: A Deep Learning-Based System for
Vulnerability Detection. In Proceedings of the 25th Annual Network and Distributed
System Security Symposium (NDSS’18). https://doi.org/10.14722/ndss.2018.23158

[26] Guanjun Lin, Wei Xiao, Jun Zhang, and Yang Xiang. 2020. Deep learning-based
vulnerable function detection: A benchmark. In Proceedings of the 21st Interna-
tional Conference on Information and Communications Security (ICICS’19). 219–232.
https://doi.org/10.1007/978-3-030-41579-2_13

[27] Guanjun Lin, Jun Zhang, Wei Luo, Lei Pan, and Yang Xiang. 2017. POSTER:
Vulnerability discovery with function representation learning from unlabeled
projects. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (CCS’17). 2539–2541. https://doi.org/10.1145/3133956.
3138840

[28] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng
Chen, and Xiang Zhang. 2020. Parameterized explainer for graph neural network.
Advances in Neural Information Processing Systems 33 (2020), 19620–19631. https:
//doi.org/10.48550/arXiv.2011.04573

[29] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. 2017. Feature visual-
ization. Distill 2, 11 (2017), e7. https://doi.org/10.23915/distill.00007

[30] Phillip E. Pope, Soheil Kolouri, Mohammad Rostami, Charles E. Martin, and Heiko
Hoffmann. 2019. Explainability methods for graph convolutional neural networks.
In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR’19). 10772–10781. https://doi.org/10.1109/CVPR.2019.01103

[31] Gao Qiang. 2022. Research on Software Vulnerability Detection Method Based
on Improved CNN Model. Scientific Programming 2022 (2022). https://doi.org/
10.1155/2022/4442374

[32] Rebecca Russell, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur
Ozdemir, Paul Ellingwood, and Marc McConley. 2018. Automated vulnerability
detection in source code using deep representation learning. In Proceedings of
the 17th IEEE International Conference on Machine Learning and Applications
(ICMLA’18). 757–762. https://doi.org/10.1109/ICMLA.2018.00120

[33] Canan Batur Şahin. 2021. DCW-RNN: Improving Class Level Metrics for Soft-
ware Vulnerability Detection Using Artificial Immune System with Clock-Work
Recurrent Neural Network. In Proceedings of the 15th International Confer-
ence on INnovations in Intelligent SysTems and Applications (INISTA’21). 1–8.
https://doi.org/10.1109/INISTA52262.2021.9548609

[34] Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. 2020. Interpreting
graph neural networks for NLP with differentiable edge masking. arXiv preprint
arXiv:2010.00577 (2020). https://doi.org/10.48550/arXiv.2010.00577

[35] Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, Kristof T.
Schütt, Klaus-Robert Müller, and Grégoire Montavon. 2022. Higher-order ex-
planations of graph neural networks via relevant walks. IEEE Transactions
on Pattern Analysis and Machine Intelligence 44, 11 (2022), 7581–7596. https:
//doi.org/10.1109/TPAMI.2021.3115452

[36] Robert Schwarzenberg, Marc Hübner, David Harbecke, Christoph Alt, and Leon-
hard Hennig. 2019. Layerwise relevance visualization in convolutional text graph
classifiers. arXiv preprint arXiv:1909.10911 (2019), 58–62.

[37] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2017. Grad-cam: Visual explanations from
deep networks via gradient-based localization. In Proceedings of the IEEE Inter-
national Conference on Computer Vision (ICCV’17). 618–626. https://doi.org/10.
1007/s11263-019-01228-7

[38] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. 2017. Learning im-
portant features through propagating activation differences. In Proceedings of
the 34th International Conference on Machine Learning (PMLR’17). 3145–3153.
https://doi.org/10.48550/arXiv.1704.02685

[39] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2013. Deep inside
convolutional networks: Visualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034 (2013). https://doi.org/10.48550/arXiv.1312.
6034

[40] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wat-
tenberg. 2017. Smoothgrad: removing noise by adding noise. arXiv preprint
arXiv:1706.03825 abs/1706.03825 (2017). https://doi.org/10.48550/arXiv.1706.
03825

[41] Hao Sun, Lei Cui, Lun Li, Zhenquan Ding, Zhiyu Hao, Jiancong Cui, and
Peng Liu. 2021. VDSimilar: Vulnerability detection based on code similar-
ity of vulnerabilities and patches. Computers & Security 110 (2021), 102417.
https://doi.org/10.1016/j.cose.2021.102417

https://joern.io/
https://radiopaedia.org/articles/dice-similarity-coefficient
https://radiopaedia.org/articles/dice-similarity-coefficient
https://github.com/CloneGen/CLONEGEN
https://doi.org/10.48550/arXiv.1905.13686
https://doi.org/10.1016/j.infsof.2021.106576
https://doi.org/10.1016/j.infsof.2021.106576
https://doi.org/10.1109/TSE.2021.3087402
https://doi.org/10.1109/TSE.2021.3087402
https://doi.org/10.48550/arXiv.1802.07814
https://doi.org/10.1145/3436877
https://doi.org/10.1109/TIFS.2020.3047756
https://doi.org/10.1109/TIFS.2020.3047756
https://doi.org/10.48550/arXiv.1705.07857
https://doi.org/10.24963/ijcai.2019/648
https://doi.org/10.1145/3379597.3387501
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9163061
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9163061
https://doi.org/10.1145/3524842.3528452
https://doi.org/10.1145/3524842.3528452
https://doi.org/10.1609/aaai.v33i01.33013681
https://doi.org/10.1609/aaai.v33i01.33013681
https://doi.org/10.1145/3524842.3527949
https://doi.org/10.48550/arXiv.1909.10911
https://doi.org/10.1109/SP.2017.62
https://doi.org/10.1109/SP.2017.62
https://doi.org/10.1145/3468264.3468597
https://doi.org/10.1109/TDSC.2021.3076142
https://doi.org/10.1145/2991079.2991102
https://doi.org/10.1109/TDSC.2021.3051525
https://doi.org/10.14722/ndss.2018.23158
https://doi.org/10.1007/978-3-030-41579-2_13
https://doi.org/10.1145/3133956.3138840
https://doi.org/10.1145/3133956.3138840
https://doi.org/10.48550/arXiv.2011.04573
https://doi.org/10.48550/arXiv.2011.04573
https://doi.org/10.23915/distill.00007
https://doi.org/10.1109/CVPR.2019.01103
https://doi.org/10.1155/2022/4442374
https://doi.org/10.1155/2022/4442374
https://doi.org/10.1109/ICMLA.2018.00120
https://doi.org/10.1109/INISTA52262.2021.9548609
https://doi.org/10.48550/arXiv.2010.00577
https://doi.org/10.1109/TPAMI.2021.3115452
https://doi.org/10.1109/TPAMI.2021.3115452
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.48550/arXiv.1704.02685
https://doi.org/10.48550/arXiv.1312.6034
https://doi.org/10.48550/arXiv.1312.6034
https://doi.org/10.48550/arXiv.1706.03825
https://doi.org/10.48550/arXiv.1706.03825
https://doi.org/10.1016/j.cose.2021.102417


Interpreters for GNN-Based Vulnerability Detection:
Are We There Yet? ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

[42] Minh Vu and My T. Thai. 2020. Pgm-explainer: Probabilistic graphical model ex-
planations for graph neural networks. Advances in Neural Information Processing
Systems 33 (2020), 12225–12235. https://doi.org/10.48550/arXiv.2010.05788

[43] Huanting Wang, Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang,
Dingyi Fang, Yansong Feng, Lizhong Bian, and Zheng Wang. 2020. Combining
graph-based learning with automated data collection for code vulnerability detec-
tion. IEEE Transactions on Information Forensics and Security 16 (2020), 1943–1958.
https://doi.org/10.1109/TIFS.2020.3044773

[44] Xiang Wang, Yingxin Wu, An Zhang, Xiangnan He, and Tat-seng Chua. 2021.
Causal screening to interpret graph neural networks. In Proceedings of the 2021
International Conference on Learning Representations (ICLR’21).

[45] Chensi Wu, Tao Wen, and Yuqing Zhang. 2019. A revised CVSS-based system to
improve the dispersion of vulnerability risk scores. Science China Information
Sciences 62, 3 (2019), 1–3. https://doi.org/10.1007/s11432-017-9445-4

[46] Qiushi Wu, Yang He, Stephen McCamant, and Kangjie Lu. 2020. Precisely char-
acterizing security impact in a flood of patches via symbolic rule comparison. In
Proceedings of the 2020 Annual Network and Distributed System Security Sympo-
sium (NDSS’20).

[47] Yueming Wu, Deqing Zou, Shihan Dou, Wei Yang, Duo Xu, and Hai Jin. 2022.
VulCNN: An Image-inspired Scalable Vulnerability Detection System. In Pro-
ceedings of the 44th International Conference on Software Engineering (ICSE’22).
2365–2376. https://doi.org/10.1145/3510003.3510229

[48] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu, Zimu Yuan, Feng Li,
Binghong Liu, Yang Liu, Wei Huo, and Wei Zou. 2020. MVP: Detecting Vul-
nerabilities using Patch-Enhanced Vulnerability Signatures.. In Proceedings of
the 2020 USENIX Security Symposium (USENIX Security’20). 1165–1182.

[49] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling
and discovering vulnerabilities with code property graphs. In Proceddings of
the 2014 IEEE Symposium on Security and Privacy (S&P’14). 590–604. https:
//doi.org/10.1109/SP.2014.44

[50] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling
and Discovering Vulnerabilities with Code Property Graphs. In Proceedings of
the 35th IEEE Symposium on Security and Privacy (S&P’14). 590–604. https:
//doi.org/10.1109/SP.2014.44

[51] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.
2019. GNNExplainer: Generating Explanations for Graph Neural Networks.
In Proceedings of the 32nd Annual Conference on Neural Information Processing
Systems (NeurIP’19). 9240–9251. https://doi.org/10.48550/arXiv.1903.03894

[52] Hao Yuan, Lei Cai, Xia Hu, Jie Wang, and Shuiwang Ji. 2020. Interpreting image
classifiers by generating discrete masks. IEEE Transactions on Pattern Analysis
and Machine Intelligence 44, 4 (2020), 2019–2030. https://doi.org/10.1109/TPAMI.
2020.3028783

[53] Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. 2020. Xgnn: Towards
model-level explanations of graph neural networks. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(KDD’20). 430–438. https://doi.org/10.1145/3394486.3403085

[54] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. 2022. Explainability in graph
neural networks: A taxonomic survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence (2022). https://doi.org/10.1109/TPAMI.2022.3204236

[55] Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. 2021. On explain-
ability of graph neural networks via subgraph explorations. In Proceedings of
the 38th International Conference on Machine Learning (PMLR’21). 12241–12252.
https://doi.org/10.48550/arXiv.2102.05152

[56] Weiwei Zhang, Shengjian Guo, Hongyu Zhang, Yulei Sui, Yinxing Xue, and Yun
Xu. 2023. Challenging machine learning-based clone detectors via semantic-
preserving code transformations. IEEE Transactions on Software Engineering
abs/2111.10793 (2023). https://doi.org/10.1109/TSE.2023.3240118

[57] Yue Zhang, David Defazio, and Arti Ramesh. 2021. Relex: A model-agnostic
relational model explainer. In Proceedings of the 2021 AAAI/ACM Conference on AI,
Ethics, and Society (AIES’21). 1042–1049. https://doi.org/10.1145/3461702.3462562

[58] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
2016. Learning deep features for discriminative localization. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16). 2921–2929.
https://doi.org/10.1109/CVPR.2016.319

[59] Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang Liu. 2019.
Devign: Effective Vulnerability Identification by Learning Comprehensive Pro-
gram Semantics via Graph Neural Networks. In Proceedings of the 32nd Annual
Conference on Neural Information Processing Systems (NeurIPS’19). 10197–10207.
https://doi.org/10.48550/arXiv.1909.03496

[60] Deqing Zou, Yutao Hu, Wenke Li, Yueming Wu, Haojun Zhao, and Hai Jin.
2022. mVulPreter: A Multi-Granularity Vulnerability Detection System With
Interpretations. IEEE Transactions on Dependable and Secure Computing (2022).
https://doi.org/10.1109/TDSC.2022.3199769

[61] Deqing Zou, Sujuan Wang, Shouhuai Xu, Zhen Li, and Hai Jin. 2021.
𝜇VulDeePecker: A Deep Learning-Based System for Multiclass Vulnerability
Detection. IEEE Transactions on Dependable and Secure Computing 18, 5 (2021),
2224–2236. https://doi.org/10.1109/TDSC.2019.2942930

[62] Deqing Zou, Yawei Zhu, Shouhuai Xu, Zhen Li, Hai Jin, and Hengkai Ye. 2021.
Interpreting Deep Learning-based Vulnerability Detector Predictions Based on
Heuristic Searching. ACM Transactions on Software Engineering and Methodology
(TOSEM) 30, 2 (2021), 23:1–23:31. https://doi.org/10.1145/3429444

Received 2023-02-16

https://doi.org/10.48550/arXiv.2010.05788
https://doi.org/10.1109/TIFS.2020.3044773
https://doi.org/10.1007/s11432-017-9445-4
https://doi.org/10.1145/3510003.3510229
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.48550/arXiv.1903.03894
https://doi.org/10.1109/TPAMI.2020.3028783
https://doi.org/10.1109/TPAMI.2020.3028783
https://doi.org/10.1145/3394486.3403085
https://doi.org/10.1109/TPAMI.2022.3204236
https://doi.org/10.48550/arXiv.2102.05152
https://doi.org/10.1109/TSE.2023.3240118
https://doi.org/10.1145/3461702.3462562
https://doi.org/10.1109/CVPR.2016.319
https://doi.org/10.48550/arXiv.1909.03496
https://doi.org/10.1109/TDSC.2022.3199769
https://doi.org/10.1109/TDSC.2019.2942930
https://doi.org/10.1145/3429444

	ABSTRACT
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Overview
	2.2 GNN-Based Vulnerability Detection Methods
	2.3 GNN Interpretation Methods

	3 STUDY DESIGN
	3.1 Effectiveness
	3.2 Stability
	3.3 Robustness

	4 STUDY RESULTS
	4.1 Experiment Settings
	4.2 RQ1: Interpretation Consistency Evaluation
	4.3 RQ2: Effectiveness Evaluation
	4.4 RQ3: Stability Evaluation
	4.5 RQ4: Robustness Evaluation

	5 DISCUSSION
	5.1 Threats to Validity
	5.2 Lessons

	6 RELATED WORK
	7 CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

