
Uncovering and Mitigating the Impact of Code Obfuscation on
Dataset Annotation with Antivirus Engines

Cuiying Gao∗
Huazhong University of
Science and Technology

Wuhan, China
JD.com

Beijing, China
gaocy@hust.edu.cn

Yueming Wu∗
Nanyang Technological

University
Singapore, Singapore

yueming.wu@ntu.edu.sg

Heng Li
Huazhong University of
Science and Technology

Wuhan, China
liheng@hust.edu.cn

Wei Yuan†
Huazhong University of
Science and Technology

Wuhan, China
yuanwei@mail.hust.edu.cn

Haoyu Jiang
Huazhong University of
Science and Technology

Wuhan, China
jhy123456@hust.edu.cn

Qidan He
JD.com

Beijing, China
i@flanker017.me

Yang Liu
Nanyang Technological

University
Singapore, Singapore
yangliu@ntu.edu.sg

Abstract
With the widespread application of machine learning-based An-

droid malware detection methods, building a high-quality dataset
has become increasingly important. Existing large-scale datasets
are mostly annotated with VirusTotal by aggregating the decisions
of antivirus engines, and most of them indiscriminately accept the
decisions of all engines. In reality, however, these engines have
different capabilities in detecting malware, especially those that
have been obfuscated. Previous research has revealed that code
obfuscation degrades the detection performance of these engines
to varying degrees. This makes us believe that using all engines
indiscriminately is unreasonable for dataset annotation. Therefore,
in this paper, we first conduct a data-driven evaluation to confirm
the negative effects of code obfuscation on engine-based dataset an-
notation. To gain a deeper understanding of the reasons behind this
phenomenon, we evaluate the availability, effectiveness and robust-
ness of every engine under various code obfuscation techniques.
Then we categorize the engines and select a set of obfuscation-
robust engines. Finally, we conduct comprehensive experiments
to verify the effectiveness of the selected engines for dataset anno-
tation. Our experiments show that when 50% obfuscated samples
are mixed into the training set, on the classic malware detectors
Drebin and Malscan, using our selected engines can effectively im-
prove detection performance by 15.21% and 19.23%, respectively,
compared to using all the engines.

∗Equal contribution
†Corresponding authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680302

CCS Concepts
• Security and privacy→Malware and its mitigation.

Keywords
Code obfuscation, Malware detection, Antivirus engines

1 Introduction
In recent years, machine learning [29] has been extensively uti-

lized to design Android malware detectors [12] [27] [13] [44], which
spurs an urgent demand for high-quality annotated datasets. As
an online antivirus scanning service platform, VirusTotal [7] in-
tegrates over 70 antivirus engines and has become the preferred
choice for dataset annotation [40] [43] [11]. To annotate a dataset,
a user uploads APKs to VirusTotal to obtain their final labels by
aggregating the detection decisions predicted by various engines.
Label aggregation is usually based on a predetermined threshold
[46][42]. If the number of engines detecting the sample to be mali-
cious, i.e., VirusTotal Positives (VTP), is greater than or equal to the
threshold, the sample is labeled as malicious. Currently, VTP has
become an important consideration in determining sample labels
[24] [31]. For example, when we download samples from AndroZoo
[9], the largest collection of Android apps, the VTP of each sample
will also be provided as a reference for annotation. Under this situ-
ation, the discriminability of VTP between benign and malicious
samples is of great importance to dataset annotation.

Despite being used for several years, some skepticism remains
regarding the dataset annotation method with antivirus engines
[36] [37]. A major concern is that the performance of each engine
varies [14], especially in terms of their sensitivity to code obfuscation
[20] [34] [16]. Code obfuscation aims at increasing the difficulty of
reverse engineering, while preserving the original functionality of
Android software [15]. At present, code obfuscation has beenwidely
used by both developers and attackers [17] [28] [32]. Developers
employ code obfuscation to safeguard their intellectual property
[17], whereas attackers leverage code obfuscation to shield their
malicious code and evade detection [10].

At present, some researchers have proposed using only the high-
reputation engines [46] for dataset annotation, hoping to achieve

https://orcid.org/0000-0003-0709-3361
https://orcid.org/0000-0002-1515-3558
https://orcid.org/0000-0001-8045-8983
https://orcid.org/0000-0002-5867-5364
https://orcid.org/0009-0005-4276-517X
https://orcid.org/0009-0009-0481-6537
https://orcid.org/0000-0001-7300-9215
https://doi.org/10.1145/3650212.3680302

ISSTA ’24, September 16–20, 2024, Vienna, Austria Cuiying Gao, Yueming Wu, Heng Li, Wei Yuan, Haoyu Jiang, Qidan He, and Yang Liu

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0
0

1 0
2 0
3 0
4 0
5 0

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0
0

1 0
2 0
3 0
4 0
5 0 B e n i g n M a l i c i o u s

(a) O r i g i n a l (b) O b f u s c a t e d
 O B - B e n i g n O B - M a l i c i o u s

Figure 1: Visualizing the benign-malicious separability of
VTP before and after obfuscation. The horizontal axis repre-
sents sample index, and the vertical axis represents VTP.

better detection results. Unfortunately, we observed that some high-
reputation engines still reverse their labels when faced with obfus-
cated samples. This problem should be avoided, since code obfus-
cation preserves software functionality and therefore should not
alter sample labels. Moreover, we realized that code obfuscation
usually results in the variation of VTP, which can further reduce
the discriminability of VTP between benign and malicious samples
and impair the engine-based dataset annotation.

To illustrate this issue clearly, we visualize the separability of
VTP in Figure 1. Figure 1 (a) demonstrates the original VTP val-
ues of benign and malicious samples. It can be seen that VTP ex-
hibits excellent separability between benign and malicious samples.
However, after the samples are obfuscated by encrypting constant
strings, the separability of VTP is significantly weakened, as shown
in Figure 1 (b). This indicates in the presence of code obfuscation,
the engines-based dataset annotation method may introduce label
noise and undermine downstream tasks.

Therefore, it is essential to carefully consider how to effectively
utilize antivirus engines for dataset annotation under code obfusca-
tion. Following the process of ’identifying problems, understanding
causes, and proposing solutions’, we investigate four issues: 1) How
does code obfuscation affect VTP and further influence the entire
dataset annotation process? 2) How do obfuscated and relabeled
samples in the training set impair the performance of different mal-
ware detectors? 3) How does code obfuscation impact each engine
and what are the differences between engines in resisting code
obfuscation? 4) How to appropriately select engines for sample
labeling to enhance the accuracy of dataset annotation?

Our research starts with constructing datasets for evaluating the
impact of code obfuscation on VTP. We first construct an original
dataset that is not only annotated by VirusTotal. We then generate
obfuscated datasets by applying various obfuscations to the original
dataset. Finally, we collected 131,894 valid reports. Aided by these
reports, we conducted the following four studies.
(1) Measuring the VTP variations caused by obfuscation. We
first evaluate the VTP variations of samples before and after differ-
ent obfuscations. Our experiments reveal that obfuscation tends to
increase VTP for benign samples and decrease VTP for malicious
samples. Moreover, different types of obfuscating transformations
have varying impacts on VTP.
(2) Investigating the impacts of VTP variations. We then con-
struct various training sets with different proportions of obfuscated
samples, which are re-labeled using VirusTotal. The training sets
are used to train the Drebin and Malscan detectors. Our experi-
ments show that as the proportion of obfuscated samples increases,
the performance of each detector decreases to varying degrees.

(3) Understanding the causes for VTP variations. To identify
the causes of VTP variations, we conduct a fine-grained experimen-
tal analysis for each engine, and clarify the differences between
various engines from the following three aspects. 1) Availability: En-
gines may have varying probabilities of producing available results.
2) Effectiveness: Engines possess different capabilities in detecting
malware from the original dataset. 3) Robustness: Engines have vary-
ing degrees of sensitivity to code obfuscation techniques. Based on
the above analysis, we find the causes for VTP variations before
and after obfuscation. Furthermore, we observe that more than 20
engines have very low availability, with less than 1% probability of
producing effective detection results, and 13 engines label all sam-
ples as benign with over 95% probability. Unfortunately, previous
studies paid little attention to these two types of engines.
(4) Improving the quality of dataset annotation. Based on the
understanding of various engines, we propose to categorize en-
gines and appropriately select engines for dataset annotation. By
using these selected engines (i.e., robust engine sets) to annotate
the training set containing obfuscated samples, we can improve the
performance of learning-based malware detectors by about 20%,
which is better than using the high-reputation engines.

As an extension to the above studies, we also investigate how
different obfuscation strategies affect the string labels output by
various engines.

Finally, our contributions are summarized below.
1) Finding. Through extensive experiments, we analyze the im-

pact of different code obfuscation techniques on VTP, and confirm
the harm to learning-based malware detectors caused by consider-
ing all engines equally in dataset annotation.

2) Insights. We quantitatively analyze each engine in three
aspects: availability, effectiveness and robustness, which reveals
the reason for the VTP variations before and after obfuscation from
different perspectives.

3)Method. We divide the engines into different sets based on
their capabilities. Then we select the robust engine sets for dataset
annotation to enhance the performance of learning-based malware
detectors, surpassing the high-reputation engine sets.

4) Dataset and code. Since obtaining VirusTotal reports of sam-
ples is a time-consuming and labor-intensive task, we make our
dataset, 131,894 reports and code available to facilitate future re-
search.

2 Preliminary
2.1 Dataset Annotation with Antivirus Engines

In this subsection, we introduce the main steps involved in con-
structing datasets aided by Antivirus Engines on VirusTotal, i.e.,
Sample Collection, Report Obtaining, and Label Aggregation.

• Sample Collection: In the first step, an adequate number of
Android packages (APKs) are downloaded from diverse sources
such as Google Play Store [5], Androzoo [9] and VirusShare [6].

• Report Obtaining: The collected APKs are uploaded onto Virus-
Total. VirusTotal will provide an analysis report for each sample,
which includes the detection result of every engine, e.g., benign,
malicious, or unavailable (i.e., failure).

• Label Aggregation: The last step involves determining the label
of a sample by aggregating the outputs of engines. The commonly

Uncovering and Mitigating the Impact of Code Obfuscation on Dataset Annotation with Antivirus Engines ISSTA ’24, September 16–20, 2024, Vienna, Austria

used approach is threshold-based aggregation [46]. If the VTP
reaches or exceeds the predetermined threshold 𝑇 , the input
sample will be labeled as malicious.

2.2 Code Obfuscation
Code obfuscation is a technique that uses code transformation

technology to convert the original program, making it function-
ally equivalent but difficult to comprehend and analyze [15] [17].
Suppose the original program is denoted as 𝑃 , and the transformed
program is denoted as 𝑃 ′. We have 𝑃 ′ ≜ 𝑇 (𝑃), where 𝑇 represents
the code transformation technique [15]. Code transformation has
various forms, e.g., renaming methods, encrypting strings, and so
on. As a standard operation, code obfuscation has been widely
used in Android app development [2] [3] to offer protection against
reverse engineering and enhance software security [33]. Many pop-
ular development tools, such as Android Studio, include built-in
code obfuscation features that developers can easily enable. Addi-
tionally, there are many code obfuscation tools [3] [1] [2]. However,
code obfuscation can also be utilized by attackers. More specifi-
cally, attackers can employ obfuscation techniques to circumvent
anti-malware engines, hence making Android malware more chal-
lenging to detect and analyze.

3 Setup
In this section, we introduce the setup of our study, covering

the issues of dataset construction, detection report obtaining, and
research questions.

3.1 Dataset Construction
Building appropriate datasets is a fundamental prerequisite for

our study. Asmentioned before, we need to use two kinds of datasets
in our evaluation, the original dataset and the obfuscated ones.

Original Dataset.Constructing the original dataset should meet
three basic requirements: 1) the dataset should include a large
number of samples; 2) the sample labels should be trustworthy;
and 3) the dataset cannot solely rely on antivirus engines from
VirusTotal for annotation. According to these requirements, we
select the CICMalDroid dataset [26] [25] as our original dataset.
As shown in Table 1, CICMalDroid contains 12,538 samples, each
of which is analyzed by static analysis, dynamic analysis [38] and
network traffic analysis. Based on the analysis results and logs, four
categories of malware (i.e., Adware, Banking, SMS, and Riskware)
and one category of benign samples, are manually identified.

Table 1: The brief description of the original dataset.

Category Adware Banking Riskware SMS Benign Total
#Sample 1,514 2,506 2,060 2,461 4,042 12,538

Obfuscated Dataset. We then build the obfuscated datasets
based on the original dataset. The reason why we decided to build
our own obfuscated databases is that the reconstructed datasets can
more accurately match the original dataset, helping us to observe
the change in VTP for each sample.

For a sample 𝑃 from the original dataset, we apply code transfor-
mation 𝑇 to generate 𝑃 ′. Since 𝑃 and 𝑃 ′ have equivalent function-
ality, they should have the same label. We employ the automated
obfuscation tool ObfuscAPK [10], an open-source tool supporting

multiple advanced code transformation strategies, to implement 𝑇 .
As shown in Table 2, we utilize 11 different code obfuscation trans-
formations to generate obfuscated samples. These code obfuscation
transformations come from six popular categories, including trivial,
rename, encryption, reflection, and so on. In summary, an original
sample 𝑃 can generate 11 different obfuscated samples 𝑃 ′.

In our experiments, an obfuscated sample can be benign or mali-
cious (i.e., Adware, Banking, SMS, and Riskware). It is noted that
the number of generated obfuscated samples (i.e., the set of 𝑃 ′) is
not constant for all original samples. This is because some code
transformations (e.g., CID) are more complicated, and may fail to
generate obfuscated samples occasionally. Fortunately, most of the
samples in our dataset can successfully produce the corresponding
obfuscated samples. Finally, we obtained 137,631 obfuscated sam-
ples, in addition to 12,538 samples from the original dataset. That
is, the total number of all samples is 150,169.

3.2 Getting Analysis Reports
With the obfuscated samples, we obtain their analysis reports

from VirusTotal following two steps. First, we upload the obtained
samples onto VirusTotal using the upload API. Then, we calculate
the sha256 of each sample and obtain the analysis report using the
scan API. The last column of Table 2 shows the number of reports
obtained from VirusTotal. Due to the size limit for each uploaded
sample (i.e., the maximum allowed file size is 32MB), 5,737 samples
are not successfully uploaded. In the end, we collect 131,894 analysis
reports for both original and obfuscated samples.

Table 2: Obfuscation introduced and obfuscated samples.
Ob-type T Description #Report

Trivial RDM Reordering entries in the Manifest file. 11,266

Rename
MR Renaming method names to meaningless

strings. 11,455

FR Renaming fields in a class to meaningless
strings. 10,769

CR Renaming class names to meaningless strings. 10,707

Encryption CSE Encrypting constant strings in the code. 11,478

Junk code
AB Inserting dead code that will

not be executed using arithmetic constraints. 11,136

NOP Inserting Nop instructions. 11,223

Code
ROR

Changing the structure of code blocks by
altering conditional branches or inserting
goto instructions.

10,666

CID
Adding intermediate calls to alter the
original function call relationships without
changing functionality.

9,411

Reflection
REF Performing reflection calls on APIs. 10,954

AREF Performing reflection calls on dangerous APIs. 10,547

Original samples 12,282
Total number of original and obfuscated samples 131,894

3.3 Research Questions
In this work, we aim to answer the following research questions:

ISSTA ’24, September 16–20, 2024, Vienna, Austria Cuiying Gao, Yueming Wu, Heng Li, Wei Yuan, Haoyu Jiang, Qidan He, and Yang Liu

• RQ1: How do obfuscation techniques affect the VTP of a sample?
To answer this question, we first analyze the VTP distribution of
original samples, and then examine the VTP changes before and
after obfuscation.

• RQ2: How does the inclusion of obfuscated and relabeled samples
in the training set impact the performance of learning-based detec-
tors? To answer this, we replace different proportions of original
samples with obfuscated ones, creating a new training set. Then
we train two standard detectors on this set to evaluate the impact
on their performance.

• RQ3:Which engines are the culprits for VTP variations? By explor-
ing the availability, effectiveness, and robustness of each engine,
we attempt to identify the causes of the changes in VTP before
and after obfuscation.

• RQ4: How to effectively utilize engines for dataset annotation?
To address this, we categorize engines into different sets based
on their detection effectiveness and obfuscation resistance. We
then label the training set using these sets, train several malware
detectors, and evaluate them on a unified test set.

• RQ5: How do obfuscation techniques affect the string label output
by engines? To answer this question, we explore the effects of
code obfuscation on the consistency of engines’ string labels, and
then summarize our key findings.

4 RQ1: Impact of Obfuscation on VTP
4.1 Goal and Setup

In this section, we aim to investigate the impact of code obfusca-
tion on the VTP of samples coming from different categories. Here
we consider five categories of the original dataset, i.e., Benign, Ad-
ware, Banking, SMS, and Riskware. We first analyze the distribution
of VTP of samples in the original dataset. We then analyze the VTP
variations of the samples in the corresponding obfuscated datasets.
For a pair of original and obfuscated samples, we use𝑉𝑇𝑃𝑣𝑎𝑟 to rep-
resent the VTP variation, i.e., 𝑉𝑇𝑃𝑣𝑎𝑟 = 𝑉𝑇𝑃𝑜𝑟𝑖 −𝑉𝑇𝑃𝑜𝑏𝑓 , where
𝑉𝑇𝑃𝑜𝑟𝑖 is the VTP of the original sample and𝑉𝑇𝑃𝑜𝑏𝑓 is that of the
obfuscated sample.

To further understand how different types of code obfuscation
techniques affect the VTP, we analyze the 𝑉𝑇𝑃𝑣𝑎𝑟 of samples from
five categories under various transformations.

4.2 Result and Analysis
Figure 2 (a) shows the 𝑉𝑇𝑃𝑣𝑎𝑟 of obfuscated samples from the

categories of Benign, and Figure 2 (b) shows it of category Banking1.
We first consider Figure 2 (a). The VTP of benign samples exhibits an
increasing trend after the samples are obfuscated. Over 95% of the
obfuscated samples have a 𝑉𝑇𝑃𝑣𝑎𝑟 greater than 0. If the threshold
of label aggregation is set to 1, more than 95% of obfuscated benign
samples will be falsely labeled as malicious, as shown in Figure
2 (b). That is, a significant number of mislabelled samples will be
included in datasets. In contrast, for themalicious samples, as shown
in Figure 2 (b), a decreasing trend in VTP is observed, with most
samples having negative 𝑉𝑇𝑃𝑣𝑎𝑟 . These results imply that benign
samples modified by obfuscation are more likely to be misclassified
as malicious by many engines, and malicious samples modified

1Due to space limitations, the 𝑉𝑇𝑃𝑣𝑎𝑟 of other categories are given in Figure 1 of
supplementary material. The distributions of𝑉𝑇𝑃𝑣𝑎𝑟 of other categories are similar
to that of the Banking category.

by obfuscation are more likely to be misclassified as benign by
many engines. That is, the separability of VTP is weakened by code
obfuscation.

In addition, it is observed that the VTP changing trend is similar
for different types of malicious samples under the same obfuscation
technique. However, the VTP changing trend differs for the samples
generated by different obfuscating transformations. In comparison,
the obfuscation technique CSE has a more pronounced impact on
VTP. This phenomenon is particularly evident on the benign sam-
ples and malicious samples from the Banking category. Specifically,
the𝑉𝑇𝑃𝑣𝑎𝑟 of samples generated by CSE is larger than that of sam-
ples generated by other obfuscating transformations, followed by
CID. As shown in Figure 2 (a), over 50% of samples obfuscated by
CSE have a 𝑉𝑇𝑃𝑣𝑎𝑟 greater than 15.

Answer to RQ1: Code obfuscation can impact the dataset anno-
tation with engines. Specifically, obfuscated benign samples are
more likely to be labeled as malicious, while obfuscated malicious
samples are more likely to be labeled as benign. Furthermore,
applying CSE and CID obfuscations to original samples will result
in a more noticeable mislabeling of engines.

5 RQ2: Impact of Obfuscation on Android
Malware Detectors

In this section, we will explore the impact of code obfuscation
on the performance of learning-based malware detectors by adding
obfuscated samples into the training set in varying proportions. To
clarify the concepts, we use the term "learning-based detectors"
(or "detectors" for short) to specifically refer to malware detectors
constructed by academic approaches. These detectors’ design and
evaluation process is usually public, allowing for replication and
verification. We refer to the Antivirus Engines as "engines." These
engines are often the products of commercial companies, and their
internal mechanisms are kept confidential. They are provided to
users as a black box.

5.1 Learning-based Detectors
In recent years, various types of supervised learning-based An-

droid malware detectors have emerged. The basic steps in building
these detectors include dataset construction, preprocessing, fea-
ture extraction, model training, and model testing. The quality of
the training set is crucial for the final detection performance. In
the previous sections, we described the process of constructing a
dataset using engines and quantitatively analyzed the impact of
code obfuscation on dataset annotation. Next, we will inject obfus-
cated samples in different proportions into the training set, and
relabel them based on VTP. Accordingly, we will explore the effect
of doing this on the performance of Android malware detectors.

5.2 Experimental Setup
In the following, we describe our experimental setup, including

the evaluated detectors, datasets, and evaluation metrics.

• Detectors:
1) Drebin: Drebin is a string-style feature based detector [18].
Drebin first extracts information, such as request permissions
and hardware components, from the APK and encodes them into
vectors. It then uses SVM to classify the feature vectors.

Uncovering and Mitigating the Impact of Code Obfuscation on Dataset Annotation with Antivirus Engines ISSTA ’24, September 16–20, 2024, Vienna, Austria

- 1 0

0

1 0

2 0 2 5 % ~ 7 5 % R a n g e w i t h i n 1 . 5 I Q R M e d i a n L i n e M e a n O u t l i e r s

VT
P-V

AR

R D M C R F R M R J U N K N O P C S E C I D R O R R E F A R E F

B e n i g n S o f t w a r e

(b)- 4 0

- 3 0

- 2 0

- 1 0

0

1 0

2 0

3 0

VT
P-V

AR

R D M C R F R M R J U N K N O P C S E C I D R O R R E F A R E F

 2 5 % ~ 7 5 % R a n g e w i t h i n 1 . 5 I Q R M e d i a n L i n e M e a n O u t l i e r s
B a n k i n g S o f t w a r e

(a)
Figure 2: The impact of obfuscation on the VTP of samples from different categories.

Table 3: Performance of different malware detectors under training sets mixed with different proportions of obfuscated samples.

OBRat

CID CSE
Drebin Malscan Drebin Malscan

P R A F1 P R A F1 P R A F1 P R A F1
Original 0.982 0.982 0.982 0.982 0.966 0.965 0.965 0.965 0.982 0.982 0.982 0.982 0.966 0.965 0.965 0.965
10% 0.969 0.968 0.968 0.968 0.970 0.970 0.970 0.970 0.960 0.959 0.959 0.959 0.962 0.961 0.961 0.961
20% 0.954 0.952 0.952 0.952 0.966 0.966 0.966 0.966 0.937 0.931 0.931 0.931 0.952 0.951 0.951 0.951
30% 0.939 0.934 0.934 0.934 0.957 0.956 0.956 0.956 0.905 0.889 0.889 0.888 0.919 0.911 0.911 0.91
40% 0.890 0.871 0.871 0.869 0.925 0.920 0.920 0.920 0.849 0.800 0.800 0.793 0.880 0.851 0.851 0.848
50% 0.872 0.843 0.843 0.840 0.925 0.918 0.918 0.918 0.823 0.741 0.741 0.724 0.854 0.800 0.800 0.792

2) Malscan: Malscan is a graph-based detector. Malscan extracts
function call graphs from APKs, selects 21,986 sensitive APIs, cal-
culates their centrality to build the APK’s features, and leverages
a machine learning-based model for classification.

• Dataset: We select 8,084 samples from the CICMalDroid dataset
to construct a balanced dataset for our experiments, consisting
of an equal number of benign and malicious software samples.
We divide the dataset into a training set and a test set at a ratio
of 4:1. Then, we randomly choose 10%, 20%, 30%, 40%, and 50%
of the training samples and replace them with obfuscated sam-
ples to create new training sets. For convenience, we will denote
this ratio as OBRat. These new training sets are then re-labeled
using VirusTotal, to simulate real-world scenarios, where users
collect obfuscated samples, label them using VTP, and add them
into the training set. In our experiments, we use two obfusca-
tion techniques, CID obfuscation and CSE obfuscation (detailed
descriptions of these techniques are provided in Section 3). In
RQ1, we find that these two obfuscation methods significantly
affect the antivirus engines. We use the VTP as the standard to
differentiate between benign and malicious software, with a VTP
threshold of 1, to align with the existing work’s settings [46]. This
means that if at least one engine identifies a sample as malicious,
then the sample is determined to be malicious. Otherwise, the
sample is declared as benign.

• Metric: In our research, we employ classic evaluation metrics
from machine learning to assess the performance of detection
models, including Accuracy (A), Precision (P), Recall (R), and
F1-Score (F1).

5.3 Result and Analysis
As shown in Table 3, we analyze the impact on two different

malware detectors when different proportions and types of obfus-
cated samples are introduced into the training set. Here, OBRat
represents the proportion of obfuscated samples. Original denotes
the original performance, i.e., training the model using the original

labels of the dataset. CID and CSE represent the types of obfuscated
samples mixed into the training set.

The results demonstrate that when using the original training
set, the performance of the two detectors is exceptionally high.
However, as the proportion of obfuscated samples increases, all
performance metrics exhibit a declining trend. For instance, with
50%-mixed CID obfuscated samples, Drebin and Malscan’s F1 de-
crease to 0.840 and 0.918, representing the reductions of 16.99%
and 5.14% from their original performance, respectively. Similarly,
with 50%-mixed CSE obfuscated samples, Drebin and Malscan’s F1
decrease to 0.724 and 0.792, representing reductions of 35.62% and
21.87% from their original performance, respectively.

Additionally, it can be seen that for the Malscan, when a small
number of CID obfuscated samples are introduced into the training
set, their performance slightly surpasses the original performance.
This is because CID obfuscation changes the features of Malscan
more, whichmay create some "robust" samples, similar to the effects
of data augmentation [23]. However, as the proportion of obfuscated
samples increases, the generation of more samples with label errors
adversely affects the performance of the detectors.

Answer to RQ2: The performance of the malware detectors is
impaired by relabeling obfuscated samples incorporated into its
training set. When 50% CID-obfuscated samples are mixed in,
Drebin’s F1 drops by 16.99%. Similarly, after incorporating 50%
CSE-obfuscated samples, Drebin’s and Malscan’s F1 decrease by
35.62% and 21.87%, respectively.

6 RQ3: Evaluating Individual Engines
6.1 Goal and Setup

In RQ1 and RQ2, we found that code obfuscation may lead to
the change of VTP for samples, and adversely affect model training.
In this section, we will further investigate the underlying reasons
behind this problem, by investigating which engines experience

ISSTA ’24, September 16–20, 2024, Vienna, Austria Cuiying Gao, Yueming Wu, Heng Li, Wei Yuan, Haoyu Jiang, Qidan He, and Yang Liu

label flipping when facing code obfuscation. To achieve this goal,
we evaluate every engine from the perspectives of availability, effec-
tiveness and robustness. Since our goal is not to compare various
engines, we will use Engine Index and Engine ID to refer to the
engines’ original names.

We first analyze the availability of each engine. Each engine
returns three possible results for an uploaded sample: malicious,
benign, or unavailable. For an engine, we use AvailRate to repre-
sent its availability rate, i.e., the probability of the engine returning
available results (i.e., benign or malicious). If an engine has a low
AvailRate, it should be excluded in the subsequent analysis to avoid
collecting insufficient reports. We then focus on engines with high
AvailRate and analyze their effectiveness and robustness to code
obfuscation. Finally, we will classify the engines based on the ex-
perimental results.

6.2 Result and Analysis
6.2.1 Availability. In the previous experiments, we obtained 131,894
valid analysis reports. We found 93 engines from these reports. We
then calculate the AvailRate for each engine, as shown in Figure 3.
This figure reveals that 60 engines have an AvailRate exceeding 0.9,
accounting for 64.5% of all engines. For the remaining 33 engines,
theirAvailRates are not more than 0.6. Furthermore, EN55 and EN59
are not selected by us due to their low AvailRate on certain cate-
gories of the original dataset. Specifically, EN59 only has a 1.85%
AvailRate in the Adware category and EN55 has a 5.34% AvailRate
in the Benign category.

It is noted that different engines exhibit varying degrees of
changes in their AvailRate between the original and obfuscated
samples. Take samples in the Adware category for example. The
AvailRate of EN59 engine on the original dataset is 0.018, while
the average AvailRate on the obfuscated dataset is 0.976. For EN63,
its AvailRate on the original dataset is 0.968, while the average
AvailRate on the obfuscated dataset is only 0.105. For EN73 and
EN69, their AvailRates are relatively low on both the original and
obfuscated datasets. Then we illustrate the variations in AvailRate
of each engine before and after obfuscation. The result shows that
the AvailRate of 4 engines has been changed by more than 30%, and
that of 14 engines has been changed by more than 20%. It is worth
noting that such changes will lead to the VTP variation before
and after obfuscation. However, these changes in AvailRate do not
follow a clear pattern and have a random nature. Therefore, we
attribute this impact to the random factor. Fortunately, the impact
of these engines on VTP is limited, as most of them exhibit a low
AvailRate.

Taking the above two points into consideration, a total of 35
engines that generate random factors have been identified. In the
next subsection, therefore, we will select 58 engines with an ade-
quate number of reports on both original and obfuscated samples
for in-depth analysis. For convenience, the selected 58 engines are
marked in red in Table 1 of the supplementary material.
6.2.2 Effectiveness and Robustness. We further investigate the ef-
fectiveness and robustness of the selected 58 engines. Specifically,
we first calculate the false positive rate (FPR) and false negative rate
(FNR) for each engine on the original dataset and the various ob-
fuscated datasets. FPR represents the proportion of benign samples
that are predicted as malicious among all benign samples. FNR

5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5 8 0 8 5 9 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0 A v a i l R a t e

I n d e x

A v a i l R a t e = 0 . 9

Figure 3: The AvailRate of 93 engines of VirusTotal.

denotes the proportion of malicious samples that are predicted as
benign among all malicious samples. The FPR (or FNR) before and
after obfuscation can reflect the label-flipping problem of benign
(or malicious) samples. Figure 4 and Figure 5 present the FPR and
FNR for each engine on the original dataset and various obfuscated
datasets, respectively. Every row corresponds to an engine, and ev-
ery column indicates a dataset. "ORI" represents the original dataset,
and "RDM~ARE" represents the obfuscated datasets with different
types of code transformations2. In these two figures, heatmaps are
used to visualize the results, where the color intensity represents
the magnitude of the corresponding value. Darker red color indi-
cates values closer to 1, darker blue color indicates values closer
to 0, and white color represents values of 0.5.

To understand the label flipping of each engine on benign sam-
ples, we focus on the metric of FPR. As shown in Figure 4, the FPR
of all engines is low on the original dataset. This indicates that the
engines can correctly identify the majority of benign samples as
benign. However, it is obvious that when the original samples are
obfuscated, the FPR of some engines increases significantly, indicat-
ing that a large number of benign samples experience label flipping
and are falsely classified as malicious. Moreover, different engines
exhibit varying degrees of label flipping in response to various ob-
fuscating transformations. For example, engines such as EN58 and
EN30 show a significant boost in FPR over all categories of obfus-
cated datasets. This reveals that benign samples obfuscated with
any type of obfuscation technique are at higher risk of being mis-
classified as malicious by these engines. Additionally, some engines
show higher label flipping rates on specific obfuscation techniques.
For instance, the engine EN11 exhibits higher FPR on CSE, REF, and
AREF obfuscated datasets compared to other obfuscated datasets.
This tells us that benign samples transformed by these obfuscation
techniques are more likely to be misclassified as malicious by EN11.
In addition, several engines, such as EN37, EN20, and EN9, have
higher FPR on CSE obfuscated datasets. This implies that applying
the CSE obfuscation technique to benign samples is more likely to
result in label flipping on multiple engines.

On the other hand, we observe that some engines (located at
the bottom of Figure 4) consistently maintain low FPR on differ-
ent types of obfuscated datasets. This phenomenon suggests that
these engines may possess relatively high stability against code
obfuscation techniques. As shown in Figure 5, however, when we
shift our focus to the FNR of these engines, we observe that their
FNR is consistently high. This implies that regardless of whether
the samples are benign or malicious, these engines tend to classify

2Here we use code transformation types to represent the corresponding obfuscated
datasets for convenience of representation.

Uncovering and Mitigating the Impact of Code Obfuscation on Dataset Annotation with Antivirus Engines ISSTA ’24, September 16–20, 2024, Vienna, Austria

ORI RDM CR FR MR AB NOP CSE CID ROR REF ARE

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
FPR

EN51
EN58
EN11
EN30
EN37
EN3
EN57
EN2
EN53
EN12
EN10
EN13
EN48
EN50
EN7
EN20
EN35
EN17
EN52
EN9
EN31
EN47
EN24
EN29
EN49
EN16
EN54
EN23
EN46
EN60
EN32
EN41
EN27
EN56
EN21
EN43
EN34
EN15
EN25
EN44
EN22
EN36
EN14
EN28
EN1
EN19
EN40
EN8
EN5
EN42
EN18
EN39
EN33
EN38
EN6
EN4
EN45
EN26

Figure 4: FPR of various engines on different datasets.
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
FNRORI RDM CR FR MR AB NOP CSE CID ROR REF ARE

EN51
EN58
EN11
EN30
EN37
EN3
EN57
EN2
EN53
EN12
EN10
EN13
EN48
EN50
EN7
EN20
EN35
EN17
EN52
EN9
EN31
EN47
EN24
EN29
EN49
EN16
EN54
EN23
EN46
EN60
EN32
EN41
EN27
EN56
EN21
EN43
EN34
EN15
EN25
EN44
EN22
EN36
EN14
EN28
EN1
EN19
EN40
EN8
EN5
EN42
EN18
EN39
EN33
EN38
EN6
EN4
EN45
EN26

Figure 5: FNR of various engines on different datasets.

them as benign with a significant probability without discrimina-
tion. Surprisingly, this problem exists on 13 engines, accounting for
22.4% of all the engines. We believe that these engines themselves
are biased.

We continue to analyze the FNR of the remaining engines. Here
we consider the malicious samples in both the original and the
obfuscated datasets. It is observed that the FNR of many engines
increases when malicious samples are obfuscated. Moreover, these
engines have varying degrees of FNR increase. Engines such as
EN37, EN48, EN16, EN9, etc., exhibit an FNR increment of over
0.2 regardless of the type of obfuscated transformations applied
to the malicious samples. This means that their output labels are
reversed when handling more than 20% of the malicious samples.
Once again, CSE exhibits the most significant impact on the labels of
malicious samples. 10 engines such as EN37, EN9, and others have
an FNR increment of over 0.5 on the CSE dataset. This indicates
that when the original malicious samples are obfuscated with CSE
transformation, these engines encounter label flipping on over 50%
of the samples. Among them, the engines of EN48 and EN31 show
a label flipping rate of over 80%. The engine EN50 demonstrates
relatively stable FNR on other types of obfuscated datasets, but on
CR and CSE, the label flipping rate exceeds 20%.

Answer to RQ3: The main causes for VTP changes are two-fold:
the random factor and the intrinsic factor. 35 low-availability
engines contribute to the random factor, and 58 obfuscation-
vulnerable engines contribute to the intrinsic factor. In comparison,
the impact of the random factor is relatively small, while the im-
pact of the intrinsic factor is significant.

7 RQ4: Mitigating the Impact of Code
Obfuscation

From RQ3, we observe that the quality of various engines is
inconsistent. If all engines are used for labeling, the presence of
code obfuscation may lead to label flipping, and hence degrade
the detection performance. Therefore, it is necessary to categorize
the engines based on a deeper understanding of the engines. As a
preliminary attempt to tackle obfuscation for dataset annotation,
we mitigate the impact of code obfuscation by selecting and using
more robust engines, based on understanding and categorization
of various engines. Then we use the SVTP, which is the decision
aggregation result of the various engine sets, to replace the VTP.

7.1 Taxonomy
According to the analysis of each engine in RQ3, we categorize

the total 93 engines into several sets.
1 Low-availability Engines: These engines return valid results

with a lower probability, as we have discussed in RQ3. There are
35 engines in this category.

2 Biased Engines: These engines can return results, but the
results are not informative as they almost classify all samples as
benign. There are 13 engines in this category.

After excluding the low-availability and biased engines, we clas-
sify the remaining ones based on detection performance and ob-
fuscation robustness. We calculate the F1 of each engine on the
original dataset to represent its original detection effectiveness, de-
noted as 𝐹1𝑜𝑟𝑖 . Then we compute the change in F1 caused by code
obfuscation, i.e., 𝐹1𝑉𝑎𝑟 . For every engine, we use the average 𝐹1𝑉𝑎𝑟

on various obfuscated datasets to represent its overall obfuscation

ISSTA ’24, September 16–20, 2024, Vienna, Austria Cuiying Gao, Yueming Wu, Heng Li, Wei Yuan, Haoyu Jiang, Qidan He, and Yang Liu

 Zillya

Gdata F-Secure Rising

ClamAV TreMicHC TrendMicro

BDefender Emsisoft Arcabit

FireEye Yandex VBA32

MWScan

Alibaba ZoneAlarm

Jiangmin MaxSecure

Kingsoft Sangfor

Sophos

Avast

Original effective

O
b

fu
sca

tio
n

-re
sista

n
t

36

7

Ikarus Trustlook

AhLabV3 Lionic

K7GW Kaspersky MAX

 Comodo BitDeFalx

5

SMInsight ENOD32

McAfee Cynet Avira

McfeGWE Fortinet N0Anti

 CATQuick DrWeb AvMob

Microsoft Tencent

Cyren

4

EN34 EN56 EN25 EN36

EN1 EN41 EN15 EN21

EN44 EN14 EN27 EN43

EN22 EN28

EN16 EN23 EN32

EN54 EN46 EN60

EN50

EN49

Original effective

O
b

fu
sca

tio
n

-re
sista

n
t

36

7

EN58 EN3 EN7 EN30

EN48 EN35 EN24

EN31 EN47

5

EN51 EN37 EN53 EN29

EN11 EN57 EN12 EN13 EN2

EN10 EN20 EN17 EN52 EN9

4

Figure 6: Cluster analysis of engines in sets 3 - 7 .

sensitivity, denoted as 𝐴𝑉𝐺𝑜𝑏𝑓 . We use the standard deviation of
𝐹1𝑉𝑎𝑟 , denoted as 𝑆𝑇𝐷𝑜𝑏𝑓 , to represent its sensitivity to different
obfuscation transformations.

We then group the rest engines into five categories. Subsequently,
we analyze the effectiveness and robustness of the engines in these
five categories and summarize the characteristics of each category.
Here we first depict the cluster analysis results of the rest engines
in Figure 6, where the x-axis represents detection effectiveness and
the y-axis denotes obfuscation robustness. We then summarize the
5 categories as follows.

3 Robust Engines: These engines have a high detection capabil-
ity for original samples, and exhibit lower sensitivity to obfuscation.
That is, their 𝐴𝑉𝐺𝑜𝑏𝑓 and 𝑆𝑇𝐷𝑜𝑏𝑓 are relatively low. There are 2
engines in this set, as shown in Figure 6. 4 Partially obfuscation-
vulnerable engines: These engines have a high detection capability
for original samples. However, they are vulnerable to some of the
obfuscation transformations, i.e., their 𝑆𝑇𝐷𝑜𝑏𝑓 is very high. There
are 14 engines in this set. 5 Obfuscation-vulnerable engines: These
engines have a high recognition capability for original samples.
However, they experience a certain degree of F1 decrease on all
obfuscation datasets, i.e., they have a high 𝐴𝑉𝐺𝑜𝑏𝑓 and a relatively
small 𝑆𝑇𝐷𝑜𝑏𝑓 . There are 9 engines in this set. 6 Ineffective and
obfuscation-resistant engines: These engines have a low recognition
capability for original samples, but they are resistant to obfusca-
tion techniques. There are 6 engines in this set. 7 Ineffective and
obfuscation-vulnerable engines: These engines have a low recog-
nition capability for original samples, and they are vulnerable to
obfuscation techniques. There are 14 engines in this set.

Inspired by our categorization, we can attribute the VTP change
to two kinds of factors, i.e., random and intrinsic. The engines in
set 1 contribute to the random factor. These engines occasionally
output valid labels for input samples, slightly changing the VTP
in an unpredictable manner. The engines that are vulnerable to
obfuscation to different extents contribute to the intrinsic factor.
There are a total of 28 such engines, which exist in three sets, 4 ,
5 and 6 . These engines have a significant and definite impact on
the VTP change between original and obfuscated samples.

7.2 Method
In the following, we propose to use different sets of engines

in dataset annotation, in order to better train various malware

detectors. It should be noted that based on the engine categorization
in the last subsection, one can design multiple methods to tackle
code obfuscation. For simplicity and as a demonstration of method
design, in this subsection, we only present a simple yet effective
method. Furthermore, we use extensive experiments to evaluate
the proposed method. We use the same experimental setup as RQ2.
7.2.1 Method Overview. We first give a brief introduction to our
proposed method. To more clearly demonstrate the impact of dif-
ferent engine sets on sample annotation, we annotate the dataset
by aggregating the results of engines from different sets. For clarity,
the original decision aggregation result on all engines is denoted as
VTP, while the decision aggregation results of the various engine
sets are denoted as SVTP. Figure 7 illustrates the difference between
VTP and SVTP.

1
0

0
1

…
 …

1
0

0
1

…
 …

1
0
0

1

…

1
0
0

1

…

Filter

FV-Label
EN1

EN2

EN3

EN4

ENn

…
 …

Unlabeled

sample

SVTP

V-Label

Different Engines Sets

VTP

Figure 7: Computational methods of VTP and SVTP.

For a sample 𝑥 , we first upload it onto VirusTotal to obtain the
output V-Label. The VTP is the sum of V-Label. Unlike VTP, the
calculation of SVTP requires passing through a filter. This filter will
screen out the results output by engines that do not belong to the
considered engine sets, producing an output FV-Label. The SVTP is
the sum of FV-Label. With the SVTP, one can determine whether
the sample is benign or malicious based on a threshold. To optimize
the annotation performance of each engine set, we utilized ROC
curves to help determine the optimal decision threshold. We found
that when the SVTP threshold is set to 1, the performance of each
engine set was optimal. This setting is consistent with the setting
of VTP as well.
7.2.2 Comparison of Different Engine Sets. Here we compare the
detection performance brought by different engine sets. Figure 8
presents the test results (F1) of various detectors trained on training
sets annotated by different engine sets. The training sets annotated
by different sets are referred to as SetN. For example, Set2 refers
to the training set annotated by engines belonging to the engine
set 2 . Here, we do not use engines from set 1 to label samples
because their availability is too low to obtain a sufficient number of
annotated samples. Specifically, Set58 denotes the result annotated
by 58 engines after filtering out the engines from the engine set 1 .

The results indicate that Set2 generally exhibits lower perfor-
mance, with the F1 consistently ranging between 0.3 and 0.4. This
is attributed to the engines in Set2 predominantly classifying sam-
ples as benign, resulting in a high degree of randomness in the
detection outcomes. Set3 demonstrates higher performance and is
comparatively the most stable. For instance, on the Drebin detector,
the performance remains virtually unchanged when 50% of CID

Uncovering and Mitigating the Impact of Code Obfuscation on Dataset Annotation with Antivirus Engines ISSTA ’24, September 16–20, 2024, Vienna, Austria

0.0 0.1 0.2 0.3 0.4 0.5

0.3

0.4

0.8

0.9

1.0
F1

OBRat

 VTP Set2 Set3 Set4
 Set5 Set6 Set7 Set58

0.0 0.1 0.2 0.3 0.4 0.5
0.4

0.5

0.6

0.7

0.8

0.9

1.0
F1

OBRat

 VTP Set2 Set3 Set4
 Set5 Set6 Set7 Set58

Drebin Malscan

MalscanDrebin

0.0 0.1 0.2 0.3 0.4 0.5

0.3

0.8

0.9

1.0
F1

OBRat

 VTP Set2 Set3 Set4
 Set5 Set6 Set7 Set58

C
ID

C
S

E

0.0 0.1 0.2 0.3 0.4 0.5

0.5

0.6

0.7

0.8

0.9

1.0
F1

OBRat

 VTP Set2 Set3 Set4
 Set5 Set6 Set7 Set58

Figure 8: The F1 of different detectors on the training dataset
labeled with different engine sets.

Original VTP-50%-CSE Set3-50%-CSE

0: Benign 1: Malicious

Original VTP-50%-CSE Set3-50%-CSE

0: Benign 1: Malicious

Figure 9: The distributions of the original, the VTP-annotated
containing 50% CSE obfuscated, and the Set3-annotated con-
taining 50% CSE obfuscated samples.

obfuscated samples are introduced into the training set. Across all
cases, the maximum performance drop for Set3 is only 2.95%. Partic-
ularly in scenarios with CID obfuscation, the performance decline
for various detectors does not exceed 1% across all proportions of
obfuscated samples. Set4 exhibits high initial performance3 and
good stability in some cases. For example, when different propor-
tions of CID and CSE obfuscated samples are introduced, Drebin’s
performance remains largely unaffected. Set5 has a high initial
performance but shows less stability. Set6 is also less stable, with
performance significantly degraded compared to the initial. Al-
though Set7 demonstrates high stability, its performance is lower.
Additionally, the results from Set58 reveal that filtering out engines
with lower effectiveness, as compared to the VTP, is beneficial for
performance enhancement. In summary, it is apparent that with
the appropriate selection of engines for dataset annotation, when
training sets are mixed with various proportions of obfuscated sam-
ples, the performance of Drebin and Malscan can be maintained at
97.28% and 99.32% of their initial capabilities, respectively. At their
highest performance levels, these two detectors surpass the VTP
by 15.21% and 19.23%, respectively.

To clearly understand why the annotation with Set3 can lead to
better performance, we take Malscan as an example, and depict the
distribution difference between three training sets: 1) the original
training set, 2) the VTP-annotated training set that contains 50%
CSE-obfuscated samples, and 3) the Set3-annotated training set
that contains 50% CSE-obfuscated samples in Figure 9. Here we
3Here we define the initial performance of each set as the performance without the in-
jection of obfuscated samples in the training set, i.e., the performance when OBRat=0.0.

0.1 0.2 0.3 0.4 0.5
0.80

0.85

0.90

0.95

1.00
F1

OBRat

 Set3
 Set4
 Reputable2
 Reputable9
 VTP

Drebin

C
S

E
C

ID

0.1 0.2 0.3 0.4 0.5
0.85

0.90

0.95

1.00
F1

OBRat

 Set3
 Set4
 Reputable2
 Reputable9
 VTP

Malscan

0.1 0.2 0.3 0.4 0.5

0.80

0.85

0.90

0.95

1.00
F1

OBRat

 Set3
 Set4
 Reputable2
 Reputable9
 VTP

Malscan

0.1 0.2 0.3 0.4 0.5
0.7

0.8

0.9

1.0
F1

OBRat

 Set3
 Set4
 Reputable2
 Reputable9
 VTP

Drebin

Figure 10: The F1 of different detectors on the dataset labeled
with different engine sets and high-reputation engine sets.

used t-SNE [39] for visualization. It is evident that the distribution
of the training data annotated with Set3 closely resembles that
of the original training data, exhibiting high separability between
benign and malicious samples. Conversely, the VTP-based anno-
tation results in a significant overlap between the distributions of
benign and malicious samples. Under this situation, the models
trained on the VTP-annotated datasets have inferior performance,
while those trained on Set3-annotated datasets demonstrate better
performance.
7.2.3 Comparing Our Select Engine Sets with High-reputation En-
gine Sets. Some papers have mentioned several engines with high
reputations [12] [46], which fall into two high-reputation engine
sets shown in Table 4. The engine set Reputable2 includes 2 high-
reputation engines, while the engine set Reputable9 contains 9
high-reputation engines. Among them, the EN61 engine was ex-
cluded from this set due to its low availability, so we primarily used
the remaining 8 engines in the engine set. In this subsection, we
compare these two high-reputation engine sets with our selected
engine sets through experiments.

Table 4: The introduction of high-reputation engines.
Set Engines

Reputable2 EN35, EN51
Reputable9 EN35, EN51, EN61, EN15, EN58, EN37, EN52, EN11,

EN50

The results are depicted in Figure 10. Observed that as the pro-
portion of CID obfuscated samples injected into the training set
increases to 50%, Drebin’s F1 decreases by 6.12% and 13.15% on
Reputable2 and Reputable9, respectively, while it only decreases by
0.04% and 3.80% on Set3 and Set4, respectively. Similarly, a similar
trend is observed for Malscan. When CSE obfuscation is injected
into the training set, both detectors show stable F1 only on Set3 an-
notations. Taking Drebin as an example, its F1 decreased by 32.04%
and 33.50% on Reputable2 and Reputable9, respectively, while the
F1 score on Set3 only decreased by 2.95%. In summary, compared
to using high-reputation engines, using Set3 for dataset annotation

ISSTA ’24, September 16–20, 2024, Vienna, Austria Cuiying Gao, Yueming Wu, Heng Li, Wei Yuan, Haoyu Jiang, Qidan He, and Yang Liu

averagely improves Drebin’s performance by 14.83% and Malscan’s
performance by 15.90%. This indicates that high-reputation engines
selected in previous literature are not able to robustly annotate
samples in the presence of code obfuscation.

Answer to RQ4:We identify two engine sets with better perfor-
mance. When the training datasets are injected with high propor-
tions of obfuscated samples: 1) Using Set3 for dataset annotation
can improve the performance of Drebin and Malscan by 15.21%
and 19.23%, respectively, as compared to using VTP. 2) Using Set3
for dataset annotation can improve the performance of Drebin
and Malscan by 14.83% and 15.90%, respectively, as compared to
using the high-reputation engine sets.

8 RQ5: The Impact of Code Obfuscation on the
String Labels of Engines

In this section, we investigate how different obfuscations affect
the string labels output by various engines. We observed that when
an engine labels a sample as malicious, it will generate a string
label, e.g., ADWARE/ANDR.Mobisec.FRRR.Gen. The string label can
reveal some information about the sample [21][36], such as the
family label. To study the consistency of string labels before and
after obfuscation, we select 15 engines for evaluation, which can
maintain a malicious detection ratio of over 1/3 after obfuscation.
We first introduce an evaluation metric known as the string labels
Consistency Ratio (SLConsistRatio), calculated as the propor-
tion of samples for which an engine produces identical string labels
before and after obfuscation.

As shown in Table 5, we present the SLConsistRatio of these 15
engines under various obfuscation techniques. These obfuscation
techniques have varied impacts on the consistency of the string
labels output by different engines. Overall, compared to other types
of obfuscation, CSE and CID generally have a more pronounced
effect on most engines. Moreover, it can be seen that the engines
EN57 and EN37 show a notably low SLConsistRatio across all ob-
fuscation techniques. Under various obfuscation techniques, EN57
changes the string label of the sample only from the original ’Ma-
licious (score: 85)’ to ’Malicious (score: 99)’. For EN37, the string
label output by it contains a unique identifier, leading to a high
inconsistency in its output string labels. In comparison, the engines
EN50 and EN51 exhibit high robustness, particularly when facing
CSE and CID obfuscations.

Table 5: The SLConsistRatio of engines under different ob-
fuscation techniques.
Obfuscation AREF AB CID CR CSE FR MR NOP RMF REF ROR

EN50 0.94 0.944 0.822 0.685 0.773 0.814 0.938 0.937 0.924 0.94 0.936
EN49 0.79 0.787 0.773 0.583 0.547 0.734 0.744 0.836 0.78 0.826 0.835
EN51 0.91 0.91 0.901 0.788 0.628 0.888 0.888 0.928 0.885 0.889 0.895
EN11 0.596 0.816 0.314 0.737 0.336 0.813 0.707 0.815 0.814 0.623 0.418
EN37 0.001 0 0 0.001 0.002 0.002 0.001 0.002 0 0 0.001
EN57 0 0 0 0 0 0 0 0 0 0 0
EN2 0.412 0.491 0.389 0.269 0.145 0.577 0.619 0.506 0.615 0.392 0.497
EN12 0.76 0.646 0.255 0.589 0.316 0.666 0.827 0.519 0.825 0.575 0.48
EN10 0.883 0.877 0.364 0.549 0.382 0.79 0.793 0.323 0.862 0.685 0.353
EN13 0.157 0.166 0.197 0.126 0.083 0.12 0.136 0.136 0.327 0.115 0.11
EN20 0.655 0.592 0.268 0.651 0.454 0.675 0.676 0.611 0.668 0.602 0.622
EN17 0.677 0.702 0.603 0.638 0.509 0.658 0.689 0.666 0.66 0.667 0.697
EN52 0.559 0.468 0.456 0.376 0.245 0.347 0.487 0.538 0.436 0.483 0.508
EN9 0.886 0.741 0.696 0.559 0.544 0.81 0.83 0.889 0.692 0.774 0.872
EN29 0.851 0.601 0.553 0.822 0.511 0.923 0.89 0.589 0.924 0.736 0.485

The color scale is set by the value of the column. Darker red color indicates values closer to 1,
darker blue color indicates values closer to 0.

In the following, we investigate the consistency changes between
the string labels output by engines before and after obfuscation,
with a focus on family labels. Here we introduce the AVClass[36],
which can aggregate the string labels produced by various engines
and input the constant family labels. Note that if less than two
engines can generate a consistent family label within a sample’s
AV report, the sample will be marked as ’SINGLETON ’. We define
FMConsistRatio as the ratio of samples whose family labels re-
main consistent before and after obfuscation to the total number
of samples, similar to SLConsistRatio. The experimental results4
are shown in Figure 11. It can be seen that the FMConsistRatio
decreases under all types of obfuscation. In comparison to other
obfuscation techniques, CSE significantly lowers FMConsistRatio,
with a ratio of only 0.528, while the latter remains above 0.7 for
other types of obfuscation.

We further calculated the proportion of samples that are tran-
sitioned from an original family label to SINGLETON under each
obfuscation technology, which is called SingleRatio. The experi-
mental results, as shown in Figure 12, indicate that the SingleRatio
formost obfuscation categories exceeds 20%. This demonstrates that
obfuscation affects the consistency of string labels among engines.

0 . 7 3 9 0 . 7 7 9
0 . 7 0 3 0 . 7 4 6

0 . 5 2 8

0 . 7 4 9 0 . 7 5 6 0 . 7 0 0
0 . 7 8 4 0 . 7 2 7 0 . 7 3 5

A R E F A B C I D C R C S E F R M R N o p R M D R E F R O R0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

AV
Co

nsi
stR

atio

Figure 11: The FMConsistRa-
tio under different obfusca-
tion technologies.

3 0 . 2 4 %

2 2 . 2 5 % 2 1 . 1 9 %

1 3 . 9 4 %

3 9 . 7 1 %

2 3 % 2 2 . 3 6 %

3 9 . 8 %

2 1 . 2 8 % 2 1 . 1 8 %

2 6 . 9 8 %

A R E F A B C I D C R C S E F R M R N O P R M F R E F R O R0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

Sin
gle

Ra
tio

Figure 12: The SingleRatio un-
der different obfuscations.

Answer to RQ5: Code obfuscation not only impacts the consis-
tency of string labels within a single engine, but also impacts the
consistency of string labels across different engines.

9 Discussion
Engine Selection. VirusTotal integrates numerous commercial

engines to provide free malware scanning services. However, it
is crucial to have a deeper understanding of each engine and not
blindly trust high-reputation engines. Therefore, we meticulously
demonstrate the usability, effectiveness, and robustness of each
engine before and after obfuscation, offering users an additional
perspective for engine selection. We find that if a sample is ob-
fuscated, only the engines in Set3 can provide relatively reliable
detection results. To verify the generalizability of this finding on
other malware datasets, we conduct experiments on a different
dataset Malradar [41]. The details can be found in supplementary
material due to the space limitations.

Engines Detection Mechanism. Since engines’ internal mecha-
nisms are kept confidential, and provided to users as a black box, it
is challenging to analyze the impact of obfuscation on them from

4Notably, we exclude samples labeled as SINGLETON in the original dataset, since
the transition from SINGLETON to SINGLETON does not indicate consistent engine
outputs. Moreover, these samples only account for 2.97% of all samples.

Uncovering and Mitigating the Impact of Code Obfuscation on Dataset Annotation with Antivirus Engines ISSTA ’24, September 16–20, 2024, Vienna, Austria

the root. In theory, code obfuscation has a significant impact on
signature-based engines. For instance, it can help malware evade
detection by such engines. However, our experiments reveal that
different obfuscations have varying effects on different engines. For
example, certain code obfuscation techniques cause benign soft-
ware to be identified as malware by the engines. Therefore, we have
reason to believe that these engines are not exclusively based on
signatures to identify malware. On the other hand, signature-based
detection methods cannot identify unseen malware, but this ability
is particularly important for engines. It is crucial for each engine
to enhance its capability to detect unknown malware.

Label Noise. The findings of our work also alert us to be vigilant
about the issue of label noise caused by obfuscation in Android mal-
ware datasets. Label noise caused by obfuscation can lead detectors
to learn incorrect decision boundaries, hence degrading detection
performance. Furthermore, this uncertainty can also be exploited
by attackers to more easily generate adversarial examples. In our
work, we conduct a more refined analysis of the performance of
various engines, seeking robust engines to improve the application
of antivirus engines in dataset annotation. We hope that our work
will draw the attention of researchers and motivate them to prompt
more solutions for label noise.

10 Limitations
Here we discuss the limitations of this work. 1) Obfuscation

Tools.We employed ObfuscAPK [10] to implement transformations,
as it is open-source and can provide advanced strategies. Consid-
ering that different tools may obfuscate the programs in a slightly
different way, we use a commercial obfuscation tool, Allatori [3],
for further validation. We chose to conduct experiments on CSE
obfuscation, as it has the largest impact on VTP. Our experiments
show that there is no significant difference in the changing trend of
VTP when using either ObfuscAPK or Allatori. Specifically, there is
an increase in VTP on benign samples and a decrease in malicious
samples. Therefore, we believe our method can also work when
facing other obfuscation tools. Moreover, some new interesting
obfuscation technologies have emerged, such as VM-based obfusca-
tion. At present, we are primarily concerned with bytecode-based
obfuscation due to its prevalence. 2) Dataset. The original dataset
used in our experiments may not comprehensively represent the
data distribution in the real world. Furthermore, there may be some
errors in the labels, which are inevitable in practice even if the sam-
ples are dynamically analyzed and manually scanned. Moreover,
there may exist some obfuscated samples in our original dataset. To
further validate the dataset, we manually collect a dataset with 963
clean benign samples from F-droid [4], whose code is available to
us. We obfuscate these samples and upload them to VirusTotal for
analysis. We find that the analysis reports exhibit the same pattern
as our previous results.

11 Related Work
In this section, we review previous studies and highlight the

differences between ours and theirs.
Currently, some studies have explored the characteristics of com-

mercial engines. AV-Meter [30] employed a dataset to examine the
performance of engines in detection rates, labeling accuracy, and
consistency. Kantchelian et al. [22] focused on the issue of label

noise introduced by threshold-based sample annotation using en-
gines, and proposed an unsupervised labeling approach utilizing a
generative Bayesian model. Hurier et al. [21] conducted an exten-
sive investigation into the inconsistency among AV engines using
a large dataset, proposing a set of metrics to quantify the inconsis-
tency from different perspectives. Hammad et al. [20] evaluated top
anti-malware products on different obfuscation datasets, and found
that code obfuscation has a significant impact on most of them.
Gashi et al. [19] revealed the issue of the same engine producing
inconsistent labels for identical samples at different times. Further-
more, Zhu et al. [46] analyzed the label aggregation methods used
in prior research and examined the dynamic labeling issue of Virus-
Total. They showed that threshold-based aggregation methods offer
greater stability and recommended a feasible range of thresholds.
Moreover, they observed that obfuscated PE files are more likely to
generate false positives. To address the problem of dynamic label-
ing, Salem et al. [35] proposed a machine learning-based labeling
method, which requires training based on analysis reports from
a certain period in the past. Based on confident learning, Wang
et al. [42] developed a new labeling tool by integrating three exist-
ing malware detectors [12] [44] [8] to identify noisy labels in the
dataset. Xu et al. [45] introduced a general framework to decrease
the noise level of the existing dataset. They employed two iden-
tical deep-learning models for differential training and an outlier
detection algorithm was then utilized to identify noisy samples.

Different from these studies, our work attached more impor-
tance to how obfuscation affects engines in dataset annotation. We
identified the causes of negative impact by evaluating the engine
in availability, effectiveness, and robustness. Finally, based on our
evaluation results, we construct a robust engine set to improve
dataset annotation in the presence of code obfuscation.

12 Conclusion
In this paper, we conduct a data-driven evaluation to analyze the

impact of code obfuscation on dataset annotation with antivirus
engines. We quantify the availability, effectiveness, and robustness
of the engines in VirusTotal to assist in identifying the factors
that impact dataset annotation with antivirus engines. We further
propose an engine selection method to identify the robust engine
sets for data annotation when obfuscations exist. Finally, we explore
how different obfuscation techniques affect the string labels output
by engines as an extended study. We believe our work can assist
researchers when using antivirus engines for dataset annotation in
the presence of code obfuscation.

Acknowledgments
This work is partially supported by the Fundamental Research

Funds for the Central Universities (YCJJ20230466), the Postdoctoral
Fellowship Program of CPSF under Grant Number GZB20240248,
the China Postdoctoral Science Foundation under Grant Number
2024M751010 and supported by the National Research Foundation,
Singapore, and the Cyber Security Agency under its National Cyber-
security R&D Programme (NCRP25-P04-TAICeN). Any opinions,
findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not reflect the views
of National Research Foundation, Singapore and Cyber Security
Agency of Singapore.

ISSTA ’24, September 16–20, 2024, Vienna, Austria Cuiying Gao, Yueming Wu, Heng Li, Wei Yuan, Haoyu Jiang, Qidan He, and Yang Liu

References
[1] 2022. DashO. (2022). https://www.preemptive.com/products/dasho/overview.
[2] 2022. Proguard. (2022). https://www.guardsquare.com/en/products/proguard.
[3] 2023. Allatori. (2023). https://allatori.com/.
[4] 2023. F-droid. (2023). https://f-droid.org/packages/.
[5] 2023. Google play store. (2023). https://play.google.com/store/apps.
[6] 2023. VirusShare. (2023). https://virusshare.com/.
[7] 2023. Virustotal. (2023). https://www.virustotal.com/.
[8] Kevin Allix, Tegawendé F Bissyandé, Quentin Jérome, Jacques Klein, Radu State,

and Yves Le Traon. 2016. Empirical assessment of machine learning-based
malware detectors for android. Empirical Software Engineering 21, 1 (2016),
183–211. https://doi.org/10.1007/s10664-014-9352-6

[9] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
AndroZoo: Collecting Millions of Android Apps for the Research Community. In
Proceedings of the 13th International Conference on Mining Software Repositories
(MSR ’16). ACM, New York, NY, USA, 468–471.

[10] Simone Aonzo, Gabriel Claudiu Georgiu, Luca Verderame, and Alessio Merlo.
2020. Obfuscapk: An open-source black-box obfuscation tool for Android apps.
SoftwareX 11 (2020), 100403. https://doi.org/10.1016/j.softx.2020.100403

[11] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, and
et al. 2022. Dos and don’ts of machine learning in computer security. In
Proc. of the USENIX Security Symposium. https://www.usenix.org/conference/
usenixsecurity22/presentation/arp

[12] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,
and CERT Siemens. 2014. Drebin: Effective and explainable detection of android
malware in your pocket. In Proceedings of Symposium on Network and Distributed
System Security (NDSS), Vol. 14. Internet Society, 23–26. https://doi.org/10.14722/
ndss.2014.23247

[13] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven
Arzt, Siegfried Rasthofer, and Eric Bodden. 2015. Mining Apps for Abnormal
Usage of Sensitive Data. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 1. 426–436. https://doi.org/10.1109/ICSE.2015.61

[14] Marcus Botacin, Fabricio Ceschin, Paulo de Geus, and André Grégio. 2020. We
need to talk about antiviruses: challenges & pitfalls of AV evaluations. Computers
& Security 95 (2020), 101859. https://doi.org/10.1016/j.cose.2020.101859

[15] Christian Collberg and Douglas Low. 1997. A taxonomy of obfuscating transfor-
mations. Technical Report. Department of Computer Science, The University of
Auckland, New Zealand.

[16] Thaís Damásio, Michael Canesche, Vinícius Pacheco, Marcus Botacin, Ander-
son Faustino da Silva, and Fernando M. Quintão Pereira. 2023. A Game-Based
Framework to Compare Program Classifiers and Evaders. In Proceedings of the
21st ACMIEEE International Symposium on Code Generation and Optimization
(CGO 2023). ACM, New York, NY, USA, 108–121. https://doi.org/10.1145/3579990.
3580012

[17] Li Menghao Dong Shuaike and et al. 2018. Understanding android obfuscation
techniques: A large-scale investigation in the wild. In Proc. SecureComm. https:
//doi.org/10.1007/978-3-030-01701-9_10

[18] C. Gao, G. Huang, H. Li, B.Wu, Y.Wu, andW. Yuan. 2024. A Comprehensive Study
of Learning-based Android Malware Detectors under Challenging Environments.
In 2024 IEEE/ACM 46th International Conference on Software Engineering (ICSE).
Los Alamitos, CA, USA, 104–116. https://doi.org/10.1145/3597503.3623320

[19] Ilir Gashi, Bertrand Sobesto, Stephen Mason, Vladimir Stankovic, and Michel
Cukier. 2013. A study of the relationship between antivirus regressions and
label changes. In 2013 IEEE 24th International Symposium on Software Reliability
Engineering (ISSRE). 441–450. https://doi.org/10.1109/ISSRE.2013.6698897

[20] MahmoudHammad, JoshuaGarcia, and SamMalek. 2018. A Large-Scale Empirical
Study on the Effects of Code Obfuscations on Android Apps and Anti-Malware
Products. In 2018 IEEE/ACM 40th International Conference on Software Engineering
(ICSE). 421–431. https://doi.org/10.1145/3180155.3180228

[21] Médéric Hurier, Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves
Le Traon. 2016. On the Lack of Consensus in Anti-Virus Decisions: Metrics
and Insights on Building Ground Truths of Android Malware. In Detection of
Intrusions and Malware, and Vulnerability Assessment. Springer International
Publishing, Cham, 142–162. https://doi.org/10.1007/978-3-319-40667-1_8

[22] Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Brad Miller, Vaishaal
Shankar, Rekha Bachwani, Anthony D. Joseph, and J. D. Tygar. 2015. Better
Malware Ground Truth: Techniques for Weighting Anti-Virus Vendor Labels.
In Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security
(AISec ’15). Association for Computing Machinery, New York, NY, USA, 45–56.
https://doi.org/10.1145/2808769.2808780

[23] Bohan Li, Yutai Hou, and Wanxiang Che. 2022. Data augmentation approaches
in natural language processing: A survey. Ai Open 3 (2022), 71–90. https://doi.
org/10.1016/j.aiopen.2022.03.001

[24] Heng Li, Zhang Cheng, Bang Wu, Liheng Yuan, Cuiying Gao, Wei Yuan, and
Xiapu Luo. 2023. Black-box Adversarial Example Attack towards FCG Based
Android Malware Detection under Incomplete Feature Information. (2023). https:
//doi.org/10.5555/3620237.3620304

[25] Samaneh Mahdavifar, Dima Alhadidi, Ali Ghorbani, et al. 2022. Effective and
efficient hybrid android malware classification using pseudo-label stacked auto-
encoder. Journal of Network and Systems Management 30, 1 (2022), 1–34. https:
//doi.org/10.1007/s10922-021-09634-4

[26] Samaneh Mahdavifar, Andi Fitriah Abdul Kadir, and et al. 2020. Dynamic android
malware category classification using semi-supervised deep learning. In 2020
IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on
Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing,
Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/-
CyberSciTech). IEEE, 515–522. https://doi.org/10.1109/DASC-PICom-CBDCom-
CyberSciTech49142.2020.00094

[27] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon J. Ross, and Gianluca Stringhini. 2017. MaMaDroid: Detect-
ing Android Malware by Building Markov Chains of Behavioral Models. In
24th Annual Network and Distributed System Security Symposium, NDSS 2017,
San Diego, California, USA, February 26 - March 1, 2017. The Internet Society.
https://doi.org/10.14722/ndss.2017.23353

[28] O. Mirzaei, JMD Fuentes, and et al. 2018. ANDRODET: An adaptive Android
obfuscation detector. FUTURE GENER COMP SY 90, 4 (2018). https://doi.org/10.
1016/j.future.2018.07.066

[29] Tom Michael Mitchell et al. 2007. Machine learning. Vol. 1. McGraw-hill New
York.

[30] Aziz Mohaisen and Omar Alrawi. 2014. AV-Meter: An Evaluation of An-
tivirus Scans and Labels. In Detection of Intrusions and Malware, and Vulner-
ability Assessment. Springer International Publishing, Cham, 112–131. https:
//doi.org/10.1007/978-3-319-08509-8_7

[31] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, Lorenzo
Cavallaro, et al. TESSERACT: Eliminating experimental bias in malware classifica-
tion across space and time. In Proceedings of the 28th USENIX Security Symposium.
729–746. https://www.usenix.org/conference/usenixsecurity19/presentation/
pendlebury

[32] Fabio Pierazzi, Feargus Pendlebury, and et al. 2020. Intriguing Properties of
Adversarial ML Attacks in the Problem Space. In 2020 IEEE Symposium on Security
and Privacy (SP). 1332–1349. https://doi.org/10.1109/SP40000.2020.00073

[33] Joel Reardon, Álvaro Feal, Primal Wijesekera, and et al. 2019. 50 ways to leak
your data: An exploration of apps’ circumvention of the android permissions
system. In 28th USENIX security symposium (USENIX security 19). 603–620.

[34] Xiaolei Ren, Michael Ho, Jiang Ming, Yu Lei, and Li Li. 2021. Unleashing the
Hidden Power of Compiler Optimization on Binary CodeDifference: An Empirical
Study. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (PLDI 2021). ACM, New York,
NY, USA, 142–157. https://doi.org/10.1145/3453483.3454035

[35] Aleieldin Salem, Sebastian Banescu, and Alexander Pretschner. 2021. Maat:
Automatically analyzing virustotal for accurate labeling and effective malware
detection. ACM Transactions on Privacy and Security (TOPS) 24, 4 (2021), 1–35.
https://doi.org/10.1145/3465361

[36] Marcos Sebastián, Richard Rivera, and et al. 2016. Avclass: A tool for massive
malware labeling. In Proc. RAID. Springer. https://doi.org/10.1007/978-3-319-
45719-2_11

[37] Silvia Sebastián and Juan Caballero. 2020. Avclass2: Massive malware tag ex-
traction from av labels. In Proc. ACSAC. 42–53. https://doi.org/10.1145/3427228.
3427261

[38] Kimberly Tam, Aristide Fattori, Salahuddin Khan, and Lorenzo Cavallaro. 2015.
Copperdroid: Automatic reconstruction of android malware behaviors. In NDSS
Symposium 2015. 1–15. https://doi.org/10.14722/NDSS.2015.23145

[39] Laurens Van Der Maaten. 2014. Accelerating t-SNE using tree-based algorithms.
The journal of machine learning research 15, 1 (2014), 3221–3245. https://doi.org/
10.5555/2627435.2697068

[40] Haoyu Wang, Junjun Si, Hao Li, and Yao Guo. 2019. Rmvdroid: towards a reliable
android malware dataset with app metadata. In 2019 IEEE/ACM 16th international
conference on mining software repositories (MSR). IEEE, 404–408.

[41] LiuWang, HaoyuWang, RenHe, Ran Tao, GuozhuMeng, Xiapu Luo, and Xuanzhe
Liu. 2022. MalRadar: Demystifying Android Malware in the New Era. SIGMET-
RICS Perform. Eval. Rev. 50, 1 (jul 2022), 21–22. https://doi.org/10.1145/3530906

[42] Liu Wang, Haoyu Wang, Xiapu Luo, and Yulei Sui. 2022. MalWhiteout: Reducing
Label Errors in Android Malware Detection. In 37th IEEE/ACM International
Conference on Automated Software Engineering. 1–13. https://doi.org/10.1145/
3551349.3560418

[43] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. 2017. Deep
ground truth analysis of current android malware. In Detection of Intrusions and
Malware, and Vulnerability Assessment: 14th International Conference, DIMVA
2017, Bonn, Germany, July 6-7, 2017, Proceedings 14. Springer, 252–276. https:
//doi.org/10.1007/978-3-319-60876-1_12

[44] Yueming Wu, Xiaodi Li, Deqing Zou, Wei Yang, Xin Zhang, and Hai Jin. 2019.
MalScan: Fast Market-Wide Mobile Malware Scanning by Social-Network Cen-
trality Analysis. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). 139–150. https://doi.org/10.1109/ASE.2019.00023

https://www.preemptive.com/products/dasho/overview
https://www.guardsquare.com/en/products/proguard
https://allatori.com/
https://f-droid.org/packages/
https://play.google.com/store/apps
https://virusshare.com/
https://www.virustotal.com/
https://doi.org/10.1007/s10664-014-9352-6
https://doi.org/10.1016/j.softx.2020.100403
https://www.usenix.org/conference/usenixsecurity22/presentation/arp
https://www.usenix.org/conference/usenixsecurity22/presentation/arp
https://doi.org/10.14722/ndss.2014.23247
https://doi.org/10.14722/ndss.2014.23247
https://doi.org/10.1109/ICSE.2015.61
https://doi.org/10.1016/j.cose.2020.101859
https://doi.org/10.1145/3579990.3580012
https://doi.org/10.1145/3579990.3580012
https://doi.org/10.1007/978-3-030-01701-9_10
https://doi.org/10.1007/978-3-030-01701-9_10
https://doi.org/10.1145/3597503.3623320
https://doi.org/10.1109/ISSRE.2013.6698897
https://doi.org/10.1145/3180155.3180228
https://doi.org/10.1007/978-3-319-40667-1_8
https://doi.org/10.1145/2808769.2808780
https://doi.org/10.1016/j.aiopen.2022.03.001
https://doi.org/10.1016/j.aiopen.2022.03.001
https://doi.org/10.5555/3620237.3620304
https://doi.org/10.5555/3620237.3620304
https://doi.org/10.1007/s10922-021-09634-4
https://doi.org/10.1007/s10922-021-09634-4
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00094
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00094
https://doi.org/10.14722/ndss.2017.23353
https://doi.org/10.1016/j.future.2018.07.066
https://doi.org/10.1016/j.future.2018.07.066
https://doi.org/10.1007/978-3-319-08509-8_7
https://doi.org/10.1007/978-3-319-08509-8_7
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://doi.org/10.1109/SP40000.2020.00073
https://doi.org/10.1145/3453483.3454035
https://doi.org/10.1145/3465361
https://doi.org/10.1007/978-3-319-45719-2_11
https://doi.org/10.1007/978-3-319-45719-2_11
https://doi.org/10.1145/3427228.3427261
https://doi.org/10.1145/3427228.3427261
https://doi.org/10.14722/NDSS.2015.23145
https://doi.org/10.5555/2627435.2697068
https://doi.org/10.5555/2627435.2697068
https://doi.org/10.1145/3530906
https://doi.org/10.1145/3551349.3560418
https://doi.org/10.1145/3551349.3560418
https://doi.org/10.1007/978-3-319-60876-1_12
https://doi.org/10.1007/978-3-319-60876-1_12
https://doi.org/10.1109/ASE.2019.00023

Uncovering and Mitigating the Impact of Code Obfuscation on Dataset Annotation with Antivirus Engines ISSTA ’24, September 16–20, 2024, Vienna, Austria

[45] Jiayun Xu, Yingjiu Li, and Robert H Deng. 2021. Differential training: A generic
framework to reduce label noises for android malware detection. In Proc. of
Network and Distributed Systems Security (NDSS) Symposium. https://doi.org/10.
14722/NDSS.2021.24126

[46] Shuofei Zhu, Jianjun Shi, Limin Yang, and . et al. 2020. Measuring and Modeling
the Label Dynamics of Online Anti-Malware Engines. In 29th USENIX Security
Symposium (USENIX Security 20). 2361–2378. https://doi.org/10.5555/3489212.
3489345

https://doi.org/10.14722/NDSS.2021.24126
https://doi.org/10.14722/NDSS.2021.24126
https://doi.org/10.5555/3489212.3489345
https://doi.org/10.5555/3489212.3489345

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Dataset Annotation with Antivirus Engines
	2.2 Code Obfuscation

	3 Setup
	3.1 Dataset Construction
	3.2 Getting Analysis Reports
	3.3 Research Questions

	4 RQ1: Impact of Obfuscation on VTP
	4.1 Goal and Setup
	4.2 Result and Analysis

	5 RQ2: Impact of Obfuscation on Android Malware Detectors
	5.1 Learning-based Detectors
	5.2 Experimental Setup
	5.3 Result and Analysis

	6 RQ3: Evaluating Individual Engines
	6.1 Goal and Setup
	6.2 Result and Analysis

	7 RQ4: Mitigating the Impact of Code Obfuscation
	7.1 Taxonomy
	7.2 Method

	8 RQ5: The Impact of Code Obfuscation on the String Labels of Engines
	9 Discussion
	10 Limitations
	11 Related Work
	12 Conclusion
	References

