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Graph convolutional networks (GCNs) are promising for graph learning tasks. For privacy-preserving graph

learning tasks involving distributed graph datasets, federated learning (FL)-based GCN (FedGCN) training

is required. An important open challenge for FedGCN is scaling to large graphs, which typically incurs

1) high computation overhead for handling the explosively-increasing number of neighbors, and 2) high

communication overhead of training GCNs involving multiple FL clients. Thus, neighbor sampling is being

studied to enhance the scalability of FedGCNs. Existing FedGCN training techniques with neighbor sampling

often produce extremely large communication and computation overhead and inaccurate node embeddings,

leading to poor model performance. To bridge this gap, we propose the Federated Adaptive Attention-based

Sampling (FedAAS) approach. It achieves substantial cost savings by efficiently leveraging historical embedding

estimators and focusing the limited communication resources on transmitting the most influential neighbor

node embeddings across FL clients. We further design an adaptive embedding synchronization scheme to

optimize the efficiency and accuracy of FedAAS on large-scale datasets. Theoretical analysis shows that the

approximation error induced by the staleness of historical embedding is upper bounded, and the model is

guaranteed to converge in an efficient manner. Extensive experimental evaluation
1
against four state-of-the-

art baselines on six real-world graph datasets show that FedAAS achieves up to 5.12% higher test accuracy,

while saving communication and computation costs by 95.11% and 94.76%, respectively.
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1 INTRODUCTION
Graph convolutional networks (GCNs) [23] are powerful models that learn representations from

complex graph-structured data. By stacking multiple graph convolution layers, GCNs can learn

node representations by aggregating information from distant neighbors. GCNs and their variants

[9, 16, 32] have been applied in various domains, e.g., social network predictions [10, 24], drug

discovery [33, 36], knowledge graph mining [8, 40] and traffic flow modeling [39]. Due to privacy

concerns, it is common for large-scale graph data owned by different entities to be located on

multiple decentralized sites. For example, pharmaceutical companies would significantly benefit

from graph data from other healthcare providers, but they cannot afford to disclose their sensitive

private data. With heterogeneous subgraphs separately stored by data owners (e.g., molecule graphs

owned by pharmaceutical companies and social networks located in the social app of end users),

building globally applicable GCNs requires collaboration.

Federated learning (FL) is a collaborative machine learning paradigm that performs distributed

training of models on local datasets owned by FL clients (e.g., sensors, edge devices) [17, 25, 29]. The
global model can be obtained by aggregating a large corpus of clients’ local models without exposing

their local data to any third party. Due to the advantages of FL, federated graph learning (FedGL)

[1, 18, 37] for collaborative GCN training while preserving data privacy and reducing bandwidth

has gained traction. Based on the distribution of graph data, there are two main categories of FedGL:

1) inter-graph FedGL, and 2) intra-graph FedGL. Under inter-graph FedGL [18, 37], all local data

samples are graph data, and the global model performs graph-level task. Under intra-graph FedGL

[1, 7, 30], each client owns a part of the graph or one correlated graph, and global model performs

node-level or link-level tasks. Intra-graph FL is common in practice, e.g., in online social application

where each user has a local social network, and all networks constitute the latent entire human

social network. The developers are able to design friend recommendation algorithms based on

intra-graph FL to avoid violating users’ social privacy [44].

The key challenge hindering the wide adoption of intra-graph FedGL is scaling it to large

graphs (e.g., a social network maintained by Facebook contains over three billion users, and the

corresponding graph data size may be several hundreds of gigabytes). Firstly, the exponentially

increasing dependency of neighboring nodes over layers (i.e., neighbor explosion) causes the
computation graph to be extremely large, which can exceed FL clients’ local storage capacity.

Secondly, intra-graph FedGL requires intermediate embedding communication across clients. There

can be edges between nodes that are stored by different clients. As embedding calculation for one

node requires information from its recursive neighbors several hops away, which may be stored

on other devices, fetching neighbor information from other clients incurs high communication

overhead. Treating sub-graphs at different devices as independent, thereby ignoring the information

from neighbors across clients, results in high prediction errors or slow model convergence [1, 7].

To alleviate these challenges, we focus on the graph sampling approach which adaptively

transmits important cross-client neighbor embeddings for large-scale distributed graphs. There

are a number of existing graph sampling methods for efficient graph learning under centralized

learning settings instead of FL settings: 1) node-wise sampling, and 2) layer-wise sampling. Node-

wise sampling methods [3, 5, 16] iteratively sample a number of neighbors for each node based

on specific probabilities (e.g., calculated based on node centrality [41]). However, the number

of sampling nodes may grow exponentially as more layers are constructed. Besides, the shared
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neighbors of some nodes can result in a large number of embedding computation redundancy,

which incurs unnecessarily large computation overhead [20]. Layer-wise sampling methods [2, 47]

select a number of nodes for each GCN layer. Since multiple nodes are jointly sampled in each layer,

the time cost of the sampling process is significantly reduced by avoiding the exponential extension

of neighbors. However, since nodes of different layers are sampled independently, some sampled

nodes might not be connected with the ones in the previous layer, which causes the embeddings of

some unconnected nodes to be lost during the graph convolution operation, thereby deteriorating

model performance [1, 2]. Besides, since all those methods are designed for centralized scenarios,

they neglect communication cost and incur substantial communication burden when the volume

of the training data is large, and raise serious privacy concerns.

As for graph sampling in FL, in [1], graph sampling is conducted with the node-wise sampling

method by utilizing deep reinforcement learning (DRL). However, since the proposed DRL reward

function only consists of learning speed and accuracy, while ignoring the impact of the topological

structure of the graph, it leads to inaccurate node embeddings and thus suboptimal model per-

formance. Besides, it incurs large computational overhead since each FL client needs to train two

DRL networks to calculate the neighbor node sampling probability. Another work [7] proposed

to determine the optimal neighbor sampling interval by solving the online problem to achieve a

trade-off between model convergence and time cost. However, it ignores the influence of different

neighboring nodes and directly adopts a random sampling strategy, which introduces unnecessarily

large communication costs as well as bias and variance in model gradients.

To address these limitations of existing work, we propose a novel federated graph sampling

scheme - the federated adaptive attention-based sampling (FedAAS) approach - for large-scale

graph data in node classification tasks. It achieves substantial cost savings by efficiently leveraging

historical embedding estimators and focusing the limited communication and computation resources

on transmitting and aggregating the most influential cross-client neighboring node embeddings.

By designing an adaptive embedding synchronization scheme, it is further capable of achieving

the best error-runtime trade-off between model convergence and time cost. The key advantages of

FedAAS are summarized as follows:

• Scalability: FedAAS is able to scale FedGL to large graphswith constantmemory consumption

with respect to input node sizes. For a given set of within-client nodes, FedAAS prunes the
GCN computation graph so that only nodes inside the current clients and their direct 1-hop

cross-client neighbors are retained, regardless of GCN depth. Historical embeddings are used

to accurately fill in the inter-dependency information of cross-client neighbors.

• Efficiency: FedAAS achieves highly efficient federated graph learning by prioritizing highly

influential neighbors and adaptive embedding transmission based on historical embeddings. It

reduces unnecessary cross-client neighbor embedding communications through the adaptive

attention-based sampling to determine the optimal communication period and achieves faster

convergence with lower computation and communication costs.

• Interpretability: The adaptive attention-based rules guiding the FedAAS decision-making

process with regard to updating neighbor selection intervals are transparent. FedAAS starts

with infrequent embedding synchronization to improve convergence speed, and then in-

creases the frequency to gradually reduce the variance of gradients and construct a global

FedGCN model with low prediction errors.

We evaluated FedAAS on six graph datasets of different scales with real-world workloads. Compared

to the four state-of-the-art approaches, FedAAS achieves significant cost savings in training high-

performance FedGL models with thousands of data owners. On average, it improves test accuracy

by 5.12%, while incurring 95.11% and 94.76% lower computation and lower communication cost,
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respectively. In this way, FedAAS achieves the best efficiency and accuracy on several large-scale

graph benchmark datasets. Furthermore, it enables the application of expressive and hard-to-

scale-up models on large graphs, leading to state-of-the-art results on several large-scale graph

benchmark datasets.

2 RELATEDWORK
To reduce the overhead incurred for training GCN models involving large graphs, graph sam-

pling methods have been proposed, mostly under cenntralized learning settings [5, 16, 28], albeit

techniques designed for FL settings [27, 31, 45] are starting to emerge.

2.1 Graph Sampling under Centralized Learning Settings
Graph sampling methods in centralized learning can be mainly divided into two main categories: 1)

node-wise sampling, and 2) layer-wise sampling. Node-wise sampling [3, 5, 16] iteratively samples

a number of neighbors for each node based on specific probabilities (e.g., calculated based on node

centrality [41]). A representative work under this category is GraphSAGE [16]. It randomly selects

a fixed number of neighbors for each node in each graph network layer. However, the number of

sampling nodes might grow exponentially as more layers are constructed, a phenomenon referred

to as neighbor explosion [13]. Besides, Huang et al. [20] have pointed out that the shared neighbors

of some nodes results in a large number of embedding computation redundancies, thereby incurring

high computation overhead unnecessarily. Several recent works, such as VR-GCN [3] and Cluster-

GCN [4], have been proposed to improve the performance of node-wise sampling approaches.

Nevertheless, they are still unable to address this problem.

Instead of sampling neighbors for each node, layer-wise sampling methods (e.g., FastGCN [2],

LADIES [47]) sample a number of nodes for each GCN layer. For example, FastGCN [2] interpret

graph convolutions as integral transforms of embedding functions under probability measures.

Such an interpretation allows for the use of Monte Carlo approaches to consistently estimate

the integrals, and samples a certain number of nodes in each layer independently based on the

importance sampling [21]. Since multiple nodes are jointly sampled in each layer, the time cost of

the sampling process is significantly reduced by avoiding the exponential extension of neighbors.

However, since nodes of different layers are sampled independently, some sampled nodes may have

no connections with the ones in the previous layer. Then, the embeddings of some unlinked nodes

may be lost during graph convolution operations, which can result in performance deterioration.

Besides, since all those methods are designed for centralized scenarios, they neglect communication

cost and incur substantial communication burden when the volume of the training data is large,

and raise serious privacy concerns. In brief, such methods are not directly applicable to FL systems,

where the local training data are private, and the majority of clients are resource-constrained.

2.2 Graph Sampling under FL Settings
Relatively few works on graph sampling under FL settings have been proposed for the node

classification tasks [1, 7, 46], In [1], graph sampling is conducted with the node-wise sampling

method by utilizing deep reinforcement learning (DRL). However, since the proposed reward

function of DRL only covers learning speed and accuracy, while ignoring the graph topology. This

leads to inaccurate node embeddings and thus, inferior model performance. In addition, since

each local client needs to train two additional deep networks separately to calculate the selection

probabilities, it would incur large computation overhead. In [7], a technique for determining the

optimal neighbor sampling interval by solving the online problem to achieve a trade-off between

convergence and time cost has been proposed. However, since it ignores the influence of different

neighboring nodes and directly adopts a random sampling strategy, it incurs high communication
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cost unnecessarily, and results in large bias and variance in the gradients. The work [46] directly

applies GraphSAGE [16] in FL, which also suffers from the neighbor explosion problem. The

proposed FedAAS aims to address these limitations facing existing FL graph sampling techniques.

3 PROBLEM FORMULATION AND MAIN IDEA
3.1 Preliminaries on Federated Graph Learning
There are two types of entities involved in a typical FedGL scenario: an FL server 𝑆 , and𝐾 distributed

FL clients {1, 2, · · · , 𝐾}. Each client 𝑘 possesses a local dataset 𝐷𝑘 = (𝐺𝑘 , 𝑌𝑘 ), where 𝐺𝑘 = (𝑉𝑘 , 𝐸𝑘 )
is an undirected graph in 𝐷𝑘 with |𝑉𝑘 | vertices and |𝐸𝑘 | edges. We assume that each client is aware

of the existence of neighboring nodes maintained by other clients, but cannot directly access their

feature vectors. This is consistent with real-world graph data distribution [44]. Taking a social

network as an example, each user only maintains his friend list locally, while the details about his

friends are contained in their friends’ profiles.

We focus on the task of node classification, where each vertex 𝑣 ∈ 𝑉𝑘 is associated with a

feature vector 𝑥𝑣 ∈ 𝑋𝑘 and a label 𝑦𝑣 ∈ 𝑌𝑘 . Under the coordination of the FL server, all FL clients

collaboratively train a global FedGCN model 𝜃 ∗ ∈ R𝑑 by sharing their respective local models

updated with their respective private datasets, and obtaining the representation ℎ𝑣,𝜃 ∗ , from which

𝑦𝑣 can be predicted. Generally, FedGCN follows a neural message passing mechanism [15]. For client

𝑘 , the (𝑙 + 1)-th layer is defined as:

ℎ
(𝑙+1)
𝑣,𝜃

= 𝛾
(𝑙+1)
𝜃

(
ℎ
(𝑙 )
𝑣,𝜃
, {ℎ (𝑙 )

𝑤,𝜃
}𝑤∈𝑁 (𝑣)

)
= 𝐴

(𝑙+1)
𝜃

(
ℎ
(𝑙 )
𝑣,𝜃
,𝑈
(𝑙+1)
𝜃
(ℎ (𝑙 )𝑣 , {ℎ (𝑙 )

𝑤,𝜃
}𝑤∈𝑁 (𝑣) )

)
. (1)

Here, ℎ
(𝑙 )
𝑣,𝜃

is the embedding of client 𝑘’s node 𝑣 in layer 𝑙 . ℎ
(1)
𝑣,𝜃

= 𝑥𝑣 . 𝑁 (𝑣) denotes the set of neighbor
nodes of 𝑣 . For simplicity, we use ℎ

(𝑙 )
𝑣 instead of ℎ

(𝑙 )
𝑣,𝜃

in the rest of the paper.

Here, the function 𝛾
(𝑙+1)
𝜃

operates on multiple sets. It can be decomposed into two components: 1)

aggregation function 𝐴
(𝑙+1)
𝜃

, which takes the embeddings of node 𝑣 and its neighbors as input, and

outputs the aggregated neighborhood embedding; and 2) updating function𝑈
(𝑙+1)
𝜃

, which combines

the embedding of 𝑣 and the aggregated neighborhood embedding to update the embedding of node

𝑣 for the next layer. The functions 𝐴
(𝑙+1)
𝜃

and 𝑈
(𝑙+1)
𝜃

are parameterized by 𝜃 . Consequently, we

formulate FedGCN as a distributed optimization problem to minimize the aggregated risk:

𝜃 ∗ = arg min{𝐹 (ℎ (𝐿) , 𝜃 ) =
𝐾∑︁
𝑘=1

|𝑉𝑘 |
𝑉

𝐹𝑘 (ℎ (𝐿) , 𝜃 )},where 𝐹𝑘 (ℎ (𝐿) , 𝜃 ) =
1

|𝑉𝑘 |
∑︁
𝑣∈𝑉𝑘

𝑓 (ℎ (𝐿)𝑣 , 𝜃,𝑦𝑣) (2)

where ℎ
(𝐿)
𝑣 is the embedding of node 𝑣 from the last layer 𝐿, and can be calculated by following

Eq. (1). 𝑓 (ℎ (𝐿)𝑣 , 𝜃,𝑦𝑣) and 𝐹𝑘 (ℎ (𝐿) , 𝜃 ) represent loss functions of an individual sample 𝑥𝑣 on client

𝑘’s local model and all samples on client 𝑘’s local model. 𝐹 (ℎ (𝐿) , 𝜃 ) represents loss function of the

global model, and 𝑉 =
∑𝐾
𝑘=1
|𝑉𝑘 |. Similarly, we simplify the notations of 𝑓 (ℎ (𝐿)𝑣 , 𝜃,𝑦𝑣), 𝐹𝑘 (ℎ (𝐿) , 𝜃 )

and 𝐹 (ℎ (𝐿) , 𝜃 ) to 𝑓 (ℎ (𝐿)𝑣 ), 𝐹𝑘 (ℎ (𝐿) ) and 𝐹 (ℎ (𝐿) ), respectively. We denote the receptive field of a node

𝑣 ∈ 𝑉𝑘 as all its 𝐿-hop neighbors (i.e., nodes that are reachable from 𝑣 within 𝐿 hops).

3.2 Problem Formulation
To solve the optimization problem in Eq. (2), existing works use mini-batch stochastic gradient

decent (SGD) optimization instead of full-gradient over all labeled nodes. For the general message
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scheme given in Eq. (1), the execution can be formulated as:

ℎ
(𝑙+1)
𝑣 = 𝛾

(𝑙+1)
𝜃

(
ℎ
(𝑙 )
𝑣 , {ℎ (𝑙 )𝑤 }𝑤∈𝑁 (𝑣)∩𝑉𝑘︸              ︷︷              ︸

Within-client nodes

∪ {ℎ (𝑙 )𝑤 }𝑤∈𝑁 (𝑣)\𝑉𝑘︸              ︷︷              ︸
Cross-client nodes

)
.

(3)

Here, we separate the neighbor node information of node 𝑣 ∈ 𝑉𝑘 into two parts: 1) the local

information of the neighbor nodes𝑁 (𝑣) which are part of the current client𝑘 , and 2) the information

of neighbor nodes which are not included in the current client but are part of the cross-client. We

denote [𝐾] := {1, 2, · · · , 𝐾} for any 𝐾 ∈ Z+, and let 𝑄 ⊆ [𝐾] denote the set of FL clients where 𝑣 ’s

cross-client neighbor nodes𝑤 ∈ 𝑁 (𝑣) \𝑉𝑘 are located. We refer to them as neighbor clients.
In training round 𝑡 , the server randomly selects a subset 𝑀𝑡 of𝑚 clients, and distributes the

current model 𝜃𝑡 to them. Each chosen client 𝑘 independently selects a mini-batch 𝐵 ⊆ 𝑉𝑘 of

nodes, fetches neighbor embeddings from both the within-client and cross-client neighbor nodes,

and aggregates them to update the current node embedding using Eq. (3) in each local iteration.

Then, it computes a local update 𝜃𝑘𝑡+1 ← 𝜃𝑡 − 𝜂 1

|𝐵 |
∑
𝑣∈𝐵 ∇𝑓 (ℎ

(𝐿)
𝑣 ) with learning rate 𝜂, and sends

𝜃𝑘𝑡+1 to the server. The server aggregates updates from selected clients and applies the update

𝜃𝑡+1 ← 1

𝑚

∑
𝑘∈𝑀𝑡

𝜃𝑘𝑡+1. This process is iterated until the global model converges (i.e., a convergence
criterion is met), whence the global model

ˆ𝜃 is obtained.

This process, however, incurs substantial computation and communication costs due to the

large receptive field size and high number of cross-client neighbor nodes for large-scale graph

datasets. Note that FedGCN models aggregate embeddings for each node from its neighbors in the

previous layer. Then, if we track back multiple FedGCN layers, the size of supporting neighbors will

grow exponentially with the depth. Specifically, evaluating all the embedding ℎ
(𝑙 )
𝑣 terms requires

ℎ
(𝑙 )
𝑣 to be computed and transmitted recursively, i.e., we again need the activations ℎ

(𝑙−1)
𝑤 of all

of 𝑣 ’s neighbors 𝑤 ∈ 𝑁 (𝑣). For cross-client neighbor nodes, client 𝑘 will send a request to the

corresponding client 𝑞 ∈ 𝑄 through the server to continue neighbor sampling, and then perform

cross-client embedding calculation and transmission. Suppose the average degree in a local graph

𝐺𝑘 is 𝑑𝑘 . To evaluate the term ℎ
(𝑙 )
𝑣 for one node 𝑣 ∈ 𝑉𝑘 in an 𝐿-layer FedGCN, on average the

number of neighbour nodes involved would be 𝑑𝐿
𝑘
[3], which leads to an exponential increase in

computation and communication overhead with respect to 𝐿 (i.e., with 𝑂 ( | ∪𝑣∈𝑉𝑘 𝑁 (𝑣) ∪ {𝑣}| · 𝑑𝐿𝑘 )
computation operations and 𝑂 (∑𝑣∈𝑉𝑘

∑
𝑤∈𝑁𝑘\𝑉𝑘

∑𝐿
𝑙=1
𝑑𝑙𝑑

𝐿
𝑘
) communication cost per local epoch).

Aggregating only within-client neighbor node embeddings and ignoring cross-client information

will suffer irreducible performance loss [1, 45]. A desirable FedGCN framework should enable all

participants to efficiently train a high-performance global graph model by using a small number of

embedding calculations and transfers on important neighbor nodes. We assume that all participants

including the server are semi-honest (i.e., they follow the protocol of FL and neighbor node sampling

but may be curious about others’ local feature data).

4 HISTORICAL EMBEDDING-BASED ESTIMATOR
4.1 Historical Embedding for FedGCN

While computing the aggregated neighbor embedding, it is prohibitively costly to evaluate all ℎ
(𝑙 )
𝑣

terms because they need to be computed recursively. Our key design idea to address this challenge

is to maintain a history
¯ℎ
(𝑙 )
𝑣 for each ℎ

(𝑙 )
𝑣 as an affordable approximation, while saving computation
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Fig. 1. Test accuracy and F1-score of the FedGCN model trained on CS dataset.

and communication overhead.

˜ℎ
(𝑙+1)
𝑣 ≈ 𝛾 (𝑙+1)

𝜃

(
ℎ
(𝑙 )
𝑣 , {ℎ (𝑙 )𝑤 }𝑤∈𝑁 (𝑣)∩𝑉𝑘 ∪ { ¯ℎ

(𝑙 )
𝑤 }𝑤∈𝑁 (𝑣)\𝑉𝑘︸              ︷︷              ︸

Historical embeddings

)
.

(4)

For cross-client neighbor nodes𝑤 ∈ 𝑁 (𝑣) \𝑉𝑘 , we approximate their embeddings ℎ
(𝑙 )
𝑤 via historical

embeddings acquired in previous iterations, denoted as
¯ℎ
(𝑙 )
𝑤 . Each client maintains a storage for all

the historical embeddings. After the current local training epoch, the newly computed embeddings

ℎ
(𝑙 )
𝑣 are pushed to the storage and serve as historical embeddings

¯ℎ
(𝑙 )
𝑤 for future epochs. The

separation of within-client nodes and cross-client nodes, and their approximations via historical

embeddings, significantly reduce overhead as historical embeddings are retrieved from an offline

storage rather than recomputed during each iteration. Compared to the previous approach which

incurs exponentially higher computation and communication cost as the number of layers 𝐿

grows, that incurred by the proposed historical embedding-based estimator increases linearly with

𝐿 (i.e., with 𝑂 ( | ∪𝑣∈𝑉𝑘 𝑁 (𝑣) ∪ {𝑣}| · 𝐿) computation operations and 𝑂 (∑𝑣∈𝑉𝑘
∑
𝑤∈𝑁𝑘\𝑉𝑘

∑𝐿
𝑙=1
𝑑𝑙 )

communication cost per local epoch).

In an intuitive solution, at each local epoch, each client needs to compute the embedding of

each node using all its neighbor nodes and transmit it to the target clients to serve as historical

embeddings (referred to as full synchronization). Let 𝜏 denote the communication period, and 𝜏 = 1

for full synchronization. It requires 𝑂 (∑𝐾
𝑘=1

𝑉𝑘 | ∪𝑣∈𝑉𝑘 𝑁 (𝑣) ∪ {𝑣}| · 𝐿𝑇 𝐽 ) computation operations,

and incurs 𝑂 (∑𝐾
𝑘=1

∑
𝑣∈𝑉𝑘

∑
𝑤∈𝑁𝑣\𝑉𝑘

∑𝐿
𝑙=1
𝑑𝑙 · 𝑇 𝐽 ) communication cost. 𝑇 and 𝐽 are numbers of

global training rounds and local training epochs, respectively. Considering large-scale graphs with

a large number of cross-client neighbor nodes, directly performing full synchronization incurs high

computation and communication overhead in FedGCN systems. To reduce the communication cost

as well as speed up FedGCN training, we design our method by the following two approaches.

(1) Reducing Unnecessary Neighbor Node Embedding Transmission through Impor-
tance Evaluation. Since not all neighbor nodes are equally important for node embedding ag-

gregation, FedAAS leverages attention-based mechanism to iteratively quantify neighbor node

influence and update their selection probabilities for node aggregation. In this way, only important

cross-client neighbor node embeddings are transmitted to the corresponding FL clients, thereby

avoiding unnecessary expensive communication for unimportant ones.

(2) Reducing Communication Frequency through Adaptive Historical Embedding Syn-
chronization. A trade-off between convergence speed and prediction error can be observed when

historical embedding synchronization intervals are varied. On the one hand, a longer interval

saves communication delay and achieves faster convergence with respect to the wall-clock time

due to lower time cost per epoch and less frequent historical embedding synchronization. On the

other hand, a longer interval leads to inferior error-convergence models since the staleness of
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historical embeddings results in larger embedding approximation errors. Thus, we propose an

adaptive historical embedding synchronization strategy. With such a strategy, we aim to improve

the error-runtime trade-off by achieving faster convergence with lower computation and com-

munication costs as well as lower prediction errors as illustrated in Fig. 1. Here, FedLocal is the

federated GraghSAGE [16], which performs random selection of within-client neighbor nodes,

where the cross-client neighbor node information is ignored. FedPNS performs periodic selection

and embedding synchronization of cross-client neighbor nodes.

4.2 Analysis of Approximation Error

The advantages of utilizing historical embeddings
¯ℎ
(𝑙 )
𝑣 to compute an approximation

˜ℎ
(𝑙 )
𝑣 of the exact

embedding ℎ
(𝑙 )
𝑣 come at the cost of an approximation error | | ˜ℎ (𝑙 )𝑣 − ℎ (𝑙 )𝑣 | |. It can be decomposed

into two sources of variances: 1) the closeness of estimated inputs to their exact values (i.e.,
| | ˜ℎ (𝑙−1)

𝑣 − ℎ (𝑙−1)
𝑣 | |); and 2) the staleness of historical embeddings (i.e., | | ¯ℎ (𝑙−1)

𝑣 − ˜ℎ
(𝑙−1)
𝑣 | |). Here, we

show concrete bounds for these two types of errors. Our analysis focuses on arbitrary 𝛾
(𝑙 )
𝜃

GCN

layers as described in Eq. (1). We restrict both 𝐴
(𝑙 )
𝜃

and 𝑈
(𝑙 )
𝜃

to model 𝛼-Lipschitz continuous

functions due to their potentially highly non-linear nature. We use the expected gradient norm

as an indicator of convergence [14] since the objective function is non-convex. The algorithm

produces an 𝜖-suboptimal solution if

E
[

min

𝑡 ∈[𝑇 ]
| |∇𝐹 ( ˜ℎ (𝐿) , 𝜃𝑡 ) | |2

]
≤ 𝜖. (5)

When 𝜖 is arbitrarily small, this condition guarantees algorithm convergence to a stationary point.

Assumption 1. Let 𝐹 be differentiable and 𝜆-Lipschitz smooth, and the value of 𝐹 be bounded
below by a scalar 𝐹𝑖𝑛𝑓 . Let 𝐴

(𝑙 )
𝜃

,𝑈 (𝑙 )
𝜃

be Lipschitz continuous functions with Lipschitz constants 𝛼1, 𝛼2.

Lemma 1. Under Assumption 1, if for all 𝑣 ∈ 𝑉𝑘 , the inputs are close to the exact inputs (i.e.,
| | ˜ℎ (𝑙−1)

𝑣 −ℎ (𝑙−1)
𝑣 | | ≤ 𝛿), and the historical embeddings do not become stale (i.e., | | ¯ℎ (𝑙−1)

𝑣 − ˜ℎ
(𝑙−1)
𝑣 | | ≤ 𝛽),

the output error is bounded by:

| | ˜ℎ (𝑙 )𝑣 − ℎ (𝑙 )𝑣 | | ≤ 𝛿𝛼2 + (𝛿 + 𝛽)𝛼1𝛼2 |𝑁 (𝑣) |. (6)

Due to the characteristics of Lipschitz constants in the function composition, we obtain the

upper bound which depends on 𝛼1, 𝛼2 and |𝑁 (𝑣) |, as well as the errors 𝛿 and 𝛽 of the inputs. We

then analyze the final output error produced by a 𝐿-layer FedGCN.

Theorem 1. Under Assumption 1, if for all 𝑣 ∈ 𝑉𝑘 and all 𝑙 ∈ {1, 2, · · · , 𝐿 − 1}, the historical
embeddings do not become stale (i.e., | | ¯ℎ (𝑙 )𝑣 − ˜ℎ

(𝑙 )
𝑣 | | ≤ 𝛽 (𝑙 ) ), the final output error of layer 𝐿 in round

𝑡 ∈ [𝑇 ] is bounded by:

| | ˜ℎ (𝐿)𝑣 − ℎ (𝐿)𝑣 | | ≤
𝐿−1∑︁
𝑙=1

𝛽 (𝑙 )𝛼𝐿−𝑙
1
𝛼𝐿−𝑙

2
|𝑁 (𝑣) |𝐿−𝑙 . (7)

Notably, this upper bound does not depend on | | ˜ℎ (𝑙−1)
𝑣 − ℎ (𝑙−1)

𝑣 | | ≤ 𝛿 . Furthermore, Theorem 1

lets us immediately derive an upper error bound for the gradients, i.e.,

| |∇𝑓 ( ˜ℎ (𝐿)𝑣 ) − ∇𝑓 (ℎ (𝐿)𝑣 ) | | ≤ 𝜆 | | ˜ℎ (𝐿)𝑣 − ℎ (𝐿)𝑣 | |. (8)

This shows that the historical embedding-based estimator incurs low variance and bias in the

learning process.
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5 ADAPTIVE ATTENTION-BASED SAMPLING
5.1 System Overview
FedAAS consists of two modules (as shown in Fig. 2).

(1) Graph Attention-based Cross-client Neighbor Node Sampling. In each embedding

synchronization iteration, each selected FL client 𝑘 calculates the influence scores of its

neighbor nodes and sends requests to neighbor clients to conduct neighbor node sampling.

Each neighbor client samples the most important cross-client neighbor nodes with the

highest probabilities and sends their embeddings for historical embedding updating and node

aggregation. The influence scores are updated through a shared graph attention mechanism

based on the updated historical embeddings.

(2) Adaptive Historical Embedding Synchronization and Model Updating. With the influ-

ence estimation and sampling results, each selected client 𝑘 updates its historical embeddings

and performs node aggregation. Then, it updates its local model and estimates the next

optimal synchronization interval via joint analysis of the overhead and error-convergence to

optimize the error-runtime trade-off. Finally, client 𝑘 sends the updated local model to the FL

server, which then aggregates the received local models to produce the global FL model.

Local 
updating

Neighbor
selection

Embedding !"($)

Client &

'( ')

Embedding !"($)

!*($) +!"($)

Probability calculation

,*"($)

Embedding 
aggregation

…

Local models
Global
model -./0

Model 
aggregation

⑥ ① ② ③④⑤

Client 1

Server

Global
model -.

Local
model -./01

Sampling policy

Probability 
2*"($)

Module 1 Module 2

Fig. 2. System overview of FedAAS. Notations: 1○- 2○ probability 𝑝 (𝑙 )𝑣𝑤 , 3○- 4○ node embedding ℎ (𝑙 )𝑤 , 5○ local
model 𝜃𝑘

𝑡+1, 6○ global model 𝜃𝑡+1.

5.2 Graph Attention-based Neighbor Node Influence Evaluation
For efficient and accurate training, we aim to dynamically quantify the influence of neighbor nodes

on the current nodes, and increase the probability of transmission and embedding aggregation for

highly influential cross-client neighbor nodes. Specifically, for client 𝑘 ∈ [𝐾], we first instantiate
Eq. (1) and perform self-attention on its nodes. A shared attentional mechanism 𝑒 : R𝑑𝑙 × R𝑑𝑙 → R
computes a score 𝑒 (𝑣,𝑤) (𝑙 ) for every edge (𝑤, 𝑣), which indicates the importance of the cross-client

neighbor node𝑤 ’s historical representation
¯ℎ
(𝑙 )
𝑤 for client 𝑞 ∈ 𝑄 to node 𝑣 ∈ 𝑉𝑘 in the 𝑙-th layer,

𝑒 (𝑣,𝑤) (𝑙 ) = LeakyReLU(𝑎⊤ · [𝜃 (𝑙 )
𝑘
ℎ
(𝑙 )
𝑣 | |𝜃 (𝑙 )𝑞 ¯ℎ

(𝑙 )
𝑤 ]) (9)

where 𝑎 ∈ R2𝑑𝑙
, 𝜃
(𝑙 )
𝑘
∈ R𝑑𝑙×𝑑𝑙−1

are learned through training. 𝜃
(𝑙 )
𝑘

denotes the model parameters of

the 𝑙-th FedGCN layer and | | is the concatenation operation. The importance values 𝑒 (𝑣,𝑤) (𝑙 ) for
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within-client neighbor nodes𝑤 ∈ 𝑁 (𝑣) ∩𝑉𝑘 can be calculated in a similar manner. These attention

scores are normalized across all neighbors 𝑤 ∈ 𝑁 (𝑣) using the softmax function. Then, the

probability 𝑝
(𝑙 )
𝑣𝑤 of the neighbor node𝑤 being selected to participate in the embedding aggregation

of node 𝑣 can be updated as,

𝑝
(𝑙 )
𝑣𝑤 = softmax(𝑒 (𝑣,𝑤) (𝑙 ) ) = exp(𝑒 (𝑣,𝑤) (𝑙 ) )∑

𝑤∈𝑁 (𝑣) exp(𝑒 (𝑣,𝑤) (𝑙 ) )
. (10)

Client 𝑘 then asks each client 𝑞 ∈ 𝑄 to select a set 𝑆𝑞 of max{𝜙 |𝑁 (𝑣) \𝑉𝑘 |, 1} nodes from the cross-

client neighbor set 𝑁 (𝑣) \𝑉𝑘 with probabilities {𝑝 (𝑙 )𝑣,𝑤}, calculate
∑
𝑤∈𝑆𝑞 𝜃

(𝑙 )
𝑞 ℎ

(𝑙 )
𝑤 and transmit them

to client 𝑘 through the server. Finally, client 𝑘 individually selects a set of 𝑆𝑘 of max{𝜙 |𝑁 (𝑣) \𝑉𝑘 |, 1}
nodes from the within-client neighbor set 𝑁 (𝑣) \𝑉𝑘 and calculates the output ℎ

(𝑙+1)
𝑣 by using the

selected neighbor embeddings,

˜ℎ
(𝑙+1)
𝑣 = 𝜎

( ∑︁
𝑤∈𝑆𝑘

𝜃
(𝑙 )
𝑘
ℎ
(𝑙 )
𝑤 +

∑︁
𝑞∈𝑄

∑︁
𝑤∈𝑆𝑞

𝜃
(𝑙 )
𝑞

¯ℎ
(𝑙 )
𝑤

)
(11)

where 𝜎 is a nonlinear function. To stabilize the selection probability learning process, we can

adopt the multi-head attention strategy [38] to execute multiple independent attention mechanisms

and concatenate the resulting embeddings into the output embeddings.

5.3 Federated Adaptive Attention-based Sampling
OverheadAnalysis for Periodic Synchronization.Wenowpresent a comparison of the overhead

incurred by periodic synchronization with that incurred by full synchronization to illustrate how

increasing 𝜏 achieves significant overhead reduction. In each training round 𝑡 , each selected

client 𝑘 ∈ 𝑀𝑡 performs 𝜏 node embedding aggregations and local model updating before fetching

embeddings from both within-client and cross-client neighbor clients. Let 𝐶𝑡
𝑘,𝜏

and 𝑂𝑡𝜏 be the

corresponding computation time and communication delay, and 𝑂𝑡𝜏𝑏𝑡 is the communication cost

which is incurred by transmitting embeddings from cross-client neighbor clients with 𝑏𝑡 being the

average network bandwidth during 𝑡 .

Full synchronization is equivalent to periodic synchronization with communication period 𝜏 = 1.

The total time to complete each iteration is 𝐶syn = max{𝐶𝑡
1,1, · · · ,𝐶𝑡𝑘,1} +𝑂

𝑡
𝜏 . In periodic synchro-

nization, the average computation time per local updating epoch is𝐶avg = max{𝐶𝑡
1
, · · · ,𝐶𝑡

𝐾
}+𝑂𝑡𝜏/𝜏𝑡

where 𝐶𝑡
𝑘
= 1

𝜏𝑡

∑𝜏𝑡
𝑖=1
𝐶𝑡
𝑘,𝑖
. We evaluate the speed-up of periodic synchronization over full synchro-

nization to illustrate how different values of 𝐶𝑡
𝑘,𝜏

and 𝑂𝑡𝜏 affect the speed-up. Consider the simplest

case where 𝐶𝑡
𝑘,𝜏

= 𝐶 and 𝑂𝑡𝜏 = 𝑂 are constants, and 𝐶/𝑂 is the ratio of communication delay to

computation cost. The ratio depends on many factors, e.g., the size of FedGCN model and the

mini-batch size as well as network bandwidth, and client computing capacity. Then, the ratio of

𝐶syn and 𝐶avg is 𝐶syn/𝐶avg =
1+𝐶/𝑂
1+𝐶/𝑂𝜏 .

Joint Analysis of Overhead and Error-Convergence. We combine the above overhead

analysis with error-convergence analysis that inspires the design of FedAAS.

Assumption 2. The stochastic gradient evaluated on the mini-batch 𝐵 is an unbiased estimator
of the full batch gradient with bounded variance, E[𝑔( ˜ℎ (𝐿) ) − ∇𝐹𝑘 (ℎ (𝐿) )] ≤ 𝜁 2, where 𝑔( ˜ℎ (𝐿) ) =

1

|𝐵 |
∑
𝑣∈𝐵 ∇𝑓𝑘 ( ˜ℎ

(𝐿)
𝑣 ).

Theorem 2. For periodic synchronization, under Assumption 1-2, Theorem 1 and Eq. (8), if the
learning rate 𝜂 satisfies 𝜂𝜆+𝜂2𝜆2𝜏 (𝜏 −1) ≤ 1,𝐶 and𝑂 are local computation time and communication
delay, and 𝜃1 is the initial model generated by the server, then after a total time cost of 𝐶total, the
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minimal expected squared gradient norm is bounded by

2(𝐹 ( ˜ℎ (𝐿) , 𝜃1) − 𝐹𝑖𝑛𝑓 )
𝜂𝐶𝑡𝑜𝑡𝑎𝑙

(𝐶 + 𝑂
𝜏
) + 𝜂2𝜆2𝜁 2 (𝜏 − 1). (12)

Proof. Under assumptions 1-2, after 𝑇 iterations, we have:

E
[

min

𝑡 ∈[𝑇 ]
| |∇𝐹 ( ˜ℎ (𝐿) , 𝜃𝑡 ) | |2

]
≤ E

[
1

𝑇

𝑇∑︁
𝑡=1

| |∇𝐹 ( ˜ℎ (𝐿) , 𝜃𝑡 ) | |2
]
≤

2(𝐹 ( ˜ℎ (𝐿) , 𝜃1) − 𝐹𝑖𝑛𝑓 )
𝜂𝑇

+ 𝜂2𝜆2𝜁 2 (𝜏 − 1).

(13)

Since the expected runtime per iteration for periodic synchronization is 𝐶avg = 𝐶 + 𝑂
𝜏
, the total

runtime for 𝑇 iterations is 𝐶total = 𝑇 (𝐶 + 𝑂𝜏 ). Directly substituting 𝑇 = 𝐶total/(𝐶 + 𝑂𝜏 ) into Eq. (13),

we thus complete the proof. □

From the optimization error bound in Eq. (12), the error-runtime trade-off for different synchro-

nization communication intervals can be derived. While a larger 𝜏 reduces the runtime per iteration

and makes the first term in Eq. (12) smaller, it also adds noise and increases the last term.

The FedAAS Algorithm. Based on the joint analysis of overhead and error-convergence,

we propose FedAAS to balance the first term and the last term in Eq. (12). This is achieved by

starting with infrequent embedding synchronization for improved convergence speed, and gradually

transiting to higher embedding synchronization frequencies to reduce the prediction error of the

learned global model. The key idea of FedAAS is to select the optimal embedding synchronization

interval that minimizes the optimization error at each wall-clock time. At each training round 𝑡 ,

the server determines the optimal embedding transmission interval that achieves the fast test loss

decay of the global model 𝜃𝑡 for the next interval. Theorem 2 shows that there is an optimal value

𝜏∗ that minimizes the optimization error bound at round 𝑡 , which is given as the following.

Theorem 3. For periodic synchronization, under assumptions 1-2, the optimization error upper
bound in Theorem 2 at time 𝐶total is minimized when the synchronization period is:

𝜏∗ =

√︄
2(𝐹 ( ˜ℎ (𝐿) , 𝜃1) − 𝐹𝑖𝑛𝑓 )𝑂

𝜂3𝜆2𝜁 2𝐶total

. (14)

Proof. Taking first-order derivative of Eq. (12) with respect to the synchronization period and

setting it to zero, we obtain:

2(𝐹 ( ˜ℎ (𝐿) , 𝜃1) − 𝐹𝑖𝑛𝑓 )E[𝑂]
𝜂𝜏2𝐶total

= 𝜂2𝜆2𝜁 2. (15)

Since the term𝜂2𝜆2𝜁 2
of Eq. (15) is greater than zero, the optimal synchronization period is expressed

as Eq. (14). □

Suppose all clients start from the same model 𝜃1 = 𝜃 𝑗=0 initialized by the FL server, where 𝑗

denotes the wall-clock time. Applying Theorem 3 to the first time interval with 𝑗 = 0 yields the

optimal embedding synchronization period as:

𝜏0 =

√︄
2(𝐹 ( ˜ℎ (𝐿) , 𝜃 𝑗=0) − 𝐹𝑖𝑛𝑓 )𝑂

𝜂3𝜆2𝜁 2𝐶total

. (16)
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Algorithm 1: FedAAS
Input :𝐾 clients {1, 2, · · · , 𝐾}, each client 𝑘 owns dataset 𝐷𝑘 = (𝐺𝑘 , 𝑌𝑘 ) with𝐺𝑘 = (𝑉𝑘 , 𝐸𝑘 )
Output :Optimal global model

ˆ𝜃

1 // At the FL Server:

2 Server initializes model 𝜃1, count 𝑖 = 0;

3 for each round 𝑡 = 1, 2, · · · ,𝑇 do
4 𝑀𝑡 ← randomly select𝑚 clients;

5 for each client 𝑘 ∈ 𝑀𝑡 in parallel do
6 𝜃𝑘𝑡+1, 𝑖 ←LocalUpdate(𝑘, 𝜃𝑡 , 𝑖)

7 𝜃𝑡+1 ← 1

𝑚

∑
𝑘∈𝑀𝑡

𝜃𝑘𝑡+1 // update global model

8 // At FL Client 𝑘 ∈ [𝐾]:
9 Function LocalUpdate(𝑘, 𝜃𝑘

0
, 𝑖):

10 for each local epoch 𝑗 = 1, 2, · · · , 𝐽 do
11 Randomly select a batch 𝐵 ⊆ 𝑉𝑘 of nodes, 𝑖 = 𝑖 + 1

12 𝑄 ← neighbor clients with𝑤 ∈ 𝑁 (𝑣) \𝑉𝑘 , 𝑣 ∈ 𝐵
13 for each layer 𝑙 = 1, 2, · · · , 𝐿 − 1 do
14 ˜ℎ

(𝑙 )
𝑤,𝑞 = 0 for𝑤 ∈ 𝑁 (𝑣) \𝑉𝑘 , 𝑞 ∈ 𝑄 , calculate 𝑝 (𝑙 )𝑣,𝑤 with Eq. (10);

15 𝑆𝑘 ← select nodes𝑤 ∼ 𝑝 (𝑙 )𝑣,𝑤 ,𝑤 ∈ 𝑁 (𝑣) ∩𝑉𝑘 ;
16 if 𝑙 = 1 then
17 ˜ℎ

(𝑙+1)
𝑣 = 𝜎 (∑𝑤∈𝑆𝑘 𝜃

𝑘,(𝑙 )
𝑗

ℎ
(𝑙 )
𝑤 );

18 else if 𝑙 > 1 && 𝑖 = 𝜏 then
19 ˜ℎ

(𝑙 )
𝑤,𝑞 ← Sampling(𝑞, 𝑝𝑣,𝑤), ˜ℎ

(𝑙+1)
𝑣 = 𝜎 (∑𝑤∈𝑆𝑘 𝜃

𝑘,(𝑙 )
𝑗

ℎ
(𝑙 )
𝑤 +

∑
𝑞∈𝑄 ˜ℎ

(𝑙 )
𝑤,𝑞);

20 Update interval 𝜏 with Eq. (14), and 𝑖 = 0;

21 else
22 ˜ℎ

(𝑙+1)
𝑣 = 𝜎 (∑𝑤∈𝑆𝑘 𝜃

𝑘,(𝑙 )
𝑗

ℎ
(𝑙 )
𝑤 +

∑
𝑞∈𝑄 ˜ℎ

(𝑙 )
𝑤,𝑞);

23 𝜃𝑘𝑗 ← 𝜃𝑘𝑗−1
− 𝜂 1

|𝐵 |
∑
𝑣∈𝐵 ∇𝑓 ( ˜ℎ

(𝐿)
𝑣 , 𝑦𝑣);

24 Return 𝜃𝑘
𝐽
, 𝑖

25 Function Sampling(𝑞, 𝑝𝑣,𝑤):
26 𝑆𝑞 ← select nodes with𝑤 ∼ 𝑝𝑣,𝑤 ,𝑤 ∈ 𝑁 (𝑣) \𝑉𝑘 ;
27 ℎ

(𝑙 )
𝑤,𝑞 =

∑
𝑤∈𝑆𝑞 𝜃

𝑞,(𝑙 )
𝑗

ℎ
(𝑙 )
𝑤 for local epoch 𝑗 ∈ [𝐽 ];

28 Return ℎ (𝑙 )𝑤,𝑞 ;

Similarly, for the 𝑖-th time interval, clients can be viewed as restarting local training at a new initial

point 𝜃 𝑗=𝑖𝑇0
after performing embedding synchronization. By applying Theorem 3, we have:

𝜏𝑖 =

√︄
2(𝐹 ( ˜ℎ (𝐿) , 𝜃 𝑗=𝑖𝑇0

) − 𝐹𝑖𝑛𝑓 )𝑂
𝜂3𝜆2𝜁 2𝐶total

. (17)

Interpreting Synchronization Interval. It can be observed from Eq. (16) and Eq. (17) that when

the learning rate is fixed, the generated synchronization sequence decreases with increasing target

value 𝐹 ( ˜ℎ (𝐿) , 𝜃 𝑗 ). It is consistent with the intuition that the trade-off between error-convergence
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and communication efficiency varies over time. Compared to the initial phase of model training, the

benefit of using a large communication period diminishes as the model approaches convergence

(i.e., a lower prediction error is preferred over faster runtime in latter stage of FL modeling training).

Thus, FedAAS starts with infrequent embedding synchronization to improve convergence speed,

and then increases the frequency to gradually reduce the variance of gradients and construct a

global FedGCN model with low prediction errors.

Practical Considerations. Furthermore, in some practical scenarios where the Lipschitz con-

stant 𝜆 and the gradient variance bound 𝜁 2
are unknown, estimating these constants is difficult

due to highly non-convex and high-dimensional loss surfaces. To this end, we propose a simpler

alternative form of FedAAS that approximates 𝐹𝑖𝑛𝑓 by 0, and divide Eq. (17) by Eq. (16) to obtain

the communication period update rule 𝜏𝑖 =

⌈
(𝐹 ( ˜ℎ (𝐿) , 𝜃 𝑗=𝑖𝑇0

)/𝐹 ( ˜ℎ (𝐿) , 𝜃 𝑗=0))
1

2 𝜏0

⌉
, where ⌈𝑟⌉ is the

ceil function to round 𝑟 to the nearest integer. Since the objective function values (i.e., test loss
𝐹 ( ˜ℎ (𝐿) , 𝜃 𝑗=𝑖𝑇0

) and 𝐹 ( ˜ℎ (𝐿) , 𝜃 𝑗=0)) can be easily obtained during aggregation, we get a heuristic

estimate of 𝜏0 by running a simple grid search over different 𝜏 run for one or two epochs each.

Implementation. The proposed FedAAS approach is illustrated in Algorithm 1. Specifically,

the FL server initializes a global model 𝜃1 and a global count 𝑖 = 0. In the 𝑡-th training round, the

server randomly selects a subset of𝑚 clients,𝑀𝑡 , and distributes the current model 𝜃𝑡 to them. Each

selected client 𝑘 ∈ 𝑀𝑡 at local epoch 𝑗 first independently selects a batch 𝐵 ⊆ 𝑉𝑘 of nodes 𝑣 ∈ 𝑉𝑘 .
For each layer 𝑙 of FedGCN, client 𝑘 calculates the importance score 𝜉

(𝑙 )
𝑣𝑤 , sampling probability

𝑝
(𝑙 )
𝑣𝑤 and selects sets 𝑆𝑘 , 𝑆𝑞 of within-client and cross-client neighbors with the sampling ratio

𝜙 . Then, it calculates the embedding
˜ℎ
(𝑙+1)
𝑣 following Eq. (11) by aggregating selected historical

embeddings
˜ℎ
(𝑙 )
𝑤,𝑞 of cross-client neighbors and selected embeddings 𝜃

𝑘,(𝑙 )
𝑗

ℎ
(𝑙 )
𝑤 of within-client

neighbors (line 25). When the number of local epochs 𝑗 reaches 𝜏 (i.e., 𝑖 = 𝜏), client 𝑘 performs

embedding synchronization by asking client 𝑞 ∈ 𝑄 to select and update the selected cross-client

neighbor embeddings and transmit them back to 𝑘 (lines 29-32). Finally, client 𝑘 sets 𝑖 = 0, updates

the synchronization interval 𝜏 (line 23) and local model parameters 𝜃𝑘𝑗 , and sends the model 𝜃𝑘
𝐽
to

the FL server (lines 26-27).

6 ANALYTICAL EVALUATION
6.1 Privacy Analysis
FedAAS preserves each client’s local feature data from exposure to other parties, including the FL

server, during the sampling and updating process. Firstly, the training process strictly follows a

standard FL training protocol. Hence, no local feature data are transmitted during training [29].

Secondly, during the sampling process, no local feature data are transmitted. Let clients 𝑘 and

𝑞 ∈ [𝐾] be neighboring clients who need to share embeddings during the sampling process. Suppose

𝑘 aggregates embeddings from 𝑞, and intends to infer 𝑞’s original node features 𝐻
(1)
𝑞 = {ℎ (1)𝑤 |𝑤 ∈

𝑉𝑞}, which is a matrix containing features of all nodes held by 𝑞 (i.e., ℎ (1)𝑤 = 𝑥𝑤). Thanks to our

attention-based neighbor sampling design, 𝑞 transmits only the selected aggregated embeddings

ℎ
(𝑙 )
𝑤,𝑞 =

∑
𝑤∈𝑆𝑞 𝜃

𝑞,(𝑙 )
𝑗

ℎ
(𝑙 )
𝑤 , 𝑗 ∈ [𝐽 ] (Algorithm 1 line 29) to 𝑘 when they synchronize embeddings.

Thus, it is difficult for 𝑘 to infer individual ℎ
(2)
𝑤 , · · · , ℎ (𝐿)𝑤 with aggregated embeddings ℎ

(𝑙 )
𝑤,𝑞 although

it approximates the remote model 𝜃
𝑞,(𝑙 )
𝑗

using its local model 𝜃
𝑘,(𝑙 )
𝑗

[1].

Last but not least, though ℎ
(2)
𝑤 , · · · , ℎ (𝐿)𝑤 can be obtained somehow, it is still difficult for 𝑘 to

accurately infer 𝑞’s node features𝐻
(1)
𝑞 . Let𝑄1 ⊆ [𝐾] denote the set of clients where𝑤 ’s cross-client

neighbors are located, and 𝑆𝑞 , 𝑆𝑘 denote the sets of within-client and cross-client neighbors sampled
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with the probability 𝑝
(1)
𝑣𝑤 . Since ℎ

(2)
𝑤 = 𝜎 (∑𝑣∈𝑆𝑞 𝜃

(1)
𝑞 ℎ

(1)
𝑣 +

∑
𝑘∈𝑄1

ℎ
(1)
𝑤,𝑞), client 𝑘 has no information

about the selected set 𝑆𝑞 and 𝑤 ’s neighbor set 𝑄1. That is, 𝑘 has no information about either∑
𝑣∈𝑆𝑞 𝜃

(1)
𝑞 ℎ

(1)
𝑣 or

∑
𝑘∈𝑄1

∑
𝑣∈𝑆𝑣 𝜃

(1)
𝑘
ℎ
(1)
𝑣 . Thus, it is difficult for client 𝑘 to infer 𝑞’s original node

features 𝐻
(1)
𝑞 . Therefore, FedAAS can protect node features, while enabling information sharing

during sampling and updating process.

6.2 Convergence Analysis
Here, we present a convergence guarantee for FedAAS by extending the error analysis for syn-

chronization. Without loss of generality, we analyze an arbitrary synchronization period sequence

{𝜏1, · · · , 𝜏𝑅} with 𝑅 embedding synchronization rounds.

Theorem 4. For FedAAS, suppose the learning rate remains the same in each local model updating
period. If the following conditions are satisfied as 𝑅 →∞,

𝑅∑︁
𝑟=0

𝜂𝑟𝜏𝑟 →∞,
𝑅∑︁
𝑟=0

𝜂2

𝑟𝜏𝑟 < ∞,
𝑅∑︁
𝑟=0

𝜂3

𝑟𝜏
2

𝑟 < ∞, (18)

then the global model 𝜃 is guaranteed to converge to a stationary point:

E
[∑𝑅−1

𝑟=0
𝜂𝑟

∑𝜏𝑟
𝑡=1
| |∇𝐹 ( ˜ℎ (𝐿) , 𝜃∑𝑟−1

𝑖=0
𝜏𝑖+𝑘 ) | |∑𝑅−1

𝑟=0
𝜂𝑟𝜏𝑟

]
→ 0. (19)

The basic idea of proof is as follows. First, to understand the meaning of condition (18), let us

consider the case when 𝜏0 = · · · = 𝜏𝑅 is a constant. Then, the converge condition is identical to

mini-batch SGD:

∑𝑅
𝑟=0

𝜂𝑟 →∞,
∑𝑅
𝑟=0

𝜂2

𝑟 < ∞. As long as the sequence of communication periods is

bounded, the learning rate scheme in mini-batch SGD can be easily adjusted to satisfy condition

(18). In particular, when the communication period sequence decreases, the last two terms in (18)

become easier to satisfy, and the differences between the objective values of two consecutive rounds

are bounded. The proof details are illustrated as follows.

Proof. Let matrices Θ𝑡 , 𝑔𝑡 ∈ R𝑑×𝐾 that concatenate all local models and gradients, which are

Θ𝑡 = [𝜃 1

𝑡 , · · · , 𝜃𝐾𝑡 ] and 𝑔𝑡 = {𝑔( ˜ℎ (𝐿) , 𝜃 1

𝑡 ), · · · , 𝑔( ˜ℎ (𝐿) , 𝜃𝐾𝑡 )}. We focus on the 𝑟 -th local update period,

where 𝑟 ∈ {0, 1, · · · , 𝑅}. Without loss of generality, suppose the index of the 𝑟 -th local update

period starts from 1 and ends at 𝜏𝑟 . Then, for the 𝑗-th local step, we have the following lemmas.

Lemma 2. For FedAAS, under assumptions 1-2, at the 𝑗-th iteration, we have the following bound
for the objective value:

E[𝐹 ( ˜ℎ (𝐿)𝑣 , 𝜃𝑡+1) − 𝐹 ( ˜ℎ (𝐿)𝑣 , 𝜃𝑡 )] ≤ −
𝜂𝑟

2

(1 − 𝜂𝑟𝜆) ·
| |∇𝐹 (Θ𝑡 ) | |2

𝐾
+
𝜂2

𝑗𝜆𝜁
2

2𝐾
+
𝜂 𝑗𝜆

2

2𝐾
| |Θ𝑡 (I − J) | |2 (20)

where J = 11T/(1T1) is a 𝐾 × 𝐾 matrix (1 = [1, · · · , 1]𝑇 ) and the identity matrix I is of size 𝐾 × 𝐾 .

Taking the expectation and summing over all iterations during the 𝑟 -th local update, we have:

E[𝐹 ( ˜ℎ (𝐿) , 𝜃𝜏𝑟+1) − 𝐹 ( ˜ℎ (𝐿) , 𝜃1)] ≤ −
𝜂𝑟

2

𝜏𝑟∑︁
𝑡=1

E| |∇𝐹 ( ˜ℎ (𝐿) , 𝜃𝑡 ) | |2 −
𝜂𝑟

2

(1 − 𝜂𝑟𝜆) ·
𝜏𝑟∑︁
𝑡=1

E[| |∇𝐹 (Θ𝑡 ) | |2]
𝐾

+ 𝜂
2

𝑟𝜆𝜁
2𝜏𝑟

2𝐾
+ 𝜂𝑟𝜆

2

2𝐾

𝜏𝑟∑︁
𝑡=1

E| |Θ𝑡 (I − J) | |2 .

(21)
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Note that Θ𝑡 (I − J) = −𝜂𝑟
∑𝑡−1

𝑖=1
𝑔𝑖 (I − J), and it follows the fact that all clients start from the same

model in the beginning (i.e., Θ1 (I − J) = 0). Thus, we have:

E ≤ 2𝜂2

𝑟

𝐾∑︁
𝑘=1

E[| |
𝑡−1∑︁
𝑖=1

𝑔( ˜ℎ (𝐿) , 𝜃𝑘𝑖 ) − ∇𝐹𝑘 ( ˜ℎ (𝐿) , 𝜃𝑘𝑖 ) | |2]︸                                                       ︷︷                                                       ︸
𝐻1

+ 2𝜂2

𝑟

𝐾∑︁
𝑘=1

E[| |
𝑡−1∑︁
𝑖=1

∇𝐹𝑘 ( ˜ℎ (𝐿) , 𝜃𝑘𝑖 ) | |2]︸                                     ︷︷                                     ︸
𝐻2

.
(22)

For the first term 𝐻1, since the stochastic gradients are unbiased, all cross terms are zero. Thus,

combining with Assumption 2, we have 𝐻1 ≤ 2𝜂2

𝑟𝐾 (𝑡 − 1)𝜁 2
. For the second term 𝐻2, directly

applying Jensen’s inequality yields:

𝐻2 ≤ 2𝜂2

𝑟 (𝑡 − 1)
𝑡−1∑︁
𝑖=1

E[| |∇𝐹 (Θ𝑖 ) | |2] . (23)

Substituting the bounds of 𝐻1 and 𝐻2 into Eq. (22), we have:

E[| |Θ𝑡 (I − J) | |2] ≤ 2𝜂2

𝑟 (𝑡 − 1)
𝑡−1∑︁
𝑖=1

E| |∇𝐹 (Θ𝑖 ) | |2 + 2𝜂2

𝑟 𝜁
2𝐾 (𝑡 − 1). (24)

Recall the upper bound Eq. (20), we derive the following bound:

𝜏𝑟∑︁
𝑡=1

E| |Θ𝑡 (I − J) | |2 ≤
𝜏𝑟∑︁
𝑡=1

𝜂2

𝑟 (𝜏2

𝑟 + 𝜏𝑟 ) (𝑡 − 1)
𝑡−1∑︁
𝑖=1

E| |∇𝐹 (Θ𝑖 ) | |2 + 𝜂2

𝑟𝐾𝜁
2𝜏𝑟 (𝜏𝑟 − 1). (25)

Substituting Eq. (25) into Eq. (20), and when the learning rate satisfies 𝜂2

𝑟𝜆
2𝜏𝑟 (𝜏𝑟 − 1) + 𝜂𝑟𝜆 ≤ 1,

E[𝐹 ( ˜ℎ (𝐿)𝑣 , 𝜃𝜏𝑟+1) − 𝐹 ( ˜ℎ
(𝐿)
𝑣 , 𝜃1)] ≤ −

𝜂𝑟

2

𝜏𝑟∑︁
𝑡=1

E| |∇𝐹 (𝜃𝑖 ) | |2 +
𝜂2

𝑟𝜆𝜁
2𝜏𝑟

2𝐾
+ 𝜂

3

𝑟𝜆
2𝜁 2𝜏𝑟 (𝜏𝑟 − 1)

2

. (26)

Suppose 𝑠𝑟 =
∑𝑟−1

𝑖=0
𝜏𝑖 + 1 is the first index in the 𝑟 -th local period. Summing over all local periods

from 0 to 𝑅, we obtain:

E
[∑𝑅−1

𝑟=0
𝜂𝑟

∑𝜏𝑟
𝑡=1
| |∇𝐹 ( ˜ℎ (𝐿) , 𝜃𝑠𝑖+𝑘 ) | |∑𝑅−1

𝑟=0
𝜂𝑟𝜏𝑟

]
≤
𝜆𝜁 2

∑𝑅−1

𝑟=0
𝜂2

𝑟𝜏𝑟

𝐾
∑𝑅−1

𝑟=0
𝜂𝑟𝜏𝑟

+
2(𝐹 ( ˜ℎ (𝐿) , 𝜃1) − 𝐹𝑖𝑛𝑓 )∑𝑅−1

𝑟=0
𝜂𝑟𝜏𝑟

+ 𝜆2𝜁 2

∑𝑅−1

𝑟=0
𝜂3

𝑟𝜏𝑟∑𝑅−1

𝑟=0
𝜂𝑟𝜏𝑟

.

(27)

When the condition Eq. (18) holds as 𝑅 → ∞, the bound Eq. (27) converges to zero. Thus, we

complete the proof of convergence. □

7 EXPERIMENTAL EVALUATION
7.1 Experimental Settings
7.1.1 Implementation. We have implemented FedAAS and in an FL system consisting of one server

and 50 clients. To further investigate the performance of FedAAS in large-scale FL systems, we also

tested it in an environment with up to 150 clients. Note that there are two main modules in our

implementation, 1) federated graph learning framework with cross-client embedding transmission

and aggregation, and 2) adaptive historical embedding synchronization. The implementation of the

first module is independent of our algorithm design since all existing related work [1, 7] on federated

graph learning needs to implement such a framework. We leverage the widely adopted PyTorch

Geometric library that uses the message passing mechanism to build graph neural networks (GNNs).

Then, we extend GNNs into FL settings by adopting existing FL frameworks [29]. For the second

module, we update the embedding interval and the aggregated embeddings by using the parameters
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generated during the first module. Our implementation is based on Python 3.11, Pytorch 2.1 and

Pytorch Geometric 2.0.1 [12]. All the experiments are performed on Ubuntu 20.04 operating system

equipped with a 32-core AMD Ryzen Threadripper PRO 5965WX s (48) @ 3.800GHz CPU, 192G of

RAM and three NVIDIA RTX A5000 GPUs, each having 24GB memory.

7.1.2 Datasets. We use six real-world graph datasets of different scales for our FedGCN tasks. 1) CS
and 2) Physics [35]: These two datasets are co-authorship graphs based on the Microsoft Academic

Graph. Here, nodes represent authors that are connected by an edge if they coauthored a paper;

node features represent paper keywords for each author’s papers. 3) Pubmed [34]: This dataset

consists of 19,717 scientific publications pertaining to diabetes where publication is described

by a TF/IDF weighted word vector. 4) Amazon Computers (AC): [34] Nodes represent goods
and edges represent that two goods are frequently bought together. Given product reviews as

bag-of-words node features, the task is to map goods to their respective product category. 5) Yelp
[43]: This dataset is a subset of Yelp’s businesses, reviews, and user data for use in connection

with academic research. It was originally put together for the Yelp Dataset Challenge which is a

chance for students to conduct research or analysis on Yelp’s data and share their discoveries. 6)
Reddit [16]: This dataset contains Reddit posts belonging to different communities, where posts

are connected if the same user comments on them.

For these datasets, we leverage their original training/ validation/ testing split ratios [12] in our

evaluations. We partitioned training sets and validation sets over 50 clients in both independent and

identically distributed (iid) setting and non-independent and identically distributed (non-iid) setting

[29]. Take Reddit for example, we divided nodes of each class into 50 shards, and assign each client

41 shards. When the 41 shards contain nodes of 41 different categories, this is referred to as the iid

setting; otherwise, non-iid one. We simulate a non-iid partition by simulating 𝑝𝑖 ∼ 𝐷𝑖𝑟𝑘 (𝛼) with
𝛼 = 0.5 through a Dirichlet distribution, and allocating a 𝑝𝑖,𝑘 proportion of the instances of class

𝑖 to client 𝑘 , following the setting in [26, 42]. With 𝛼 → ∞, all clients are iid, while with 𝛼 → 0,

each client is much non-iid, e.g., each one holds examples from only one class. We partitioned other

datasets in a similar way. Since the original graph is extremely dense, we downsample the edges in

local subgraphs, i.e., we randomly cut off 99% of the edges, following the setting in [16]. The test

dataset is located at the FL server. The statistics of the datasets are presented in Table 1.

Table 1. Statistics of the datasets and the synthesized distributed subgraph system.𝑉𝑘 , 𝐸𝑘 denote the averaged
numbers of nodes and edges in all subgraphs of client 𝑘 , △𝐸 denotes the total number of cross-client edges.

Dataset CS Physics Pubmed AC Yelp Reddit
𝑉 18,333 34,493 19,717 13,752 716,847 232,965

𝐸 163,788 247,962 88,648 491,722 13,954,819 114,615,892

# features 6,805 8,415 500 767 300 602

# classes 15 5 3 10 100 41

Train/Val/Test 0.8/0.1/0.1 0.8/0.1/0.1 0.8/0.1/0.1 0.8/0.1/0.1 0.75/0.10/0.15 0.66/0.10/0.24

50 clients
𝑉𝑘 293 552 364 219 10,741 3,068

𝐸𝑘 32 48 18 98 2,761 22,718

△𝐸 2,020 6,068 1,480 6,114 144,977 1,024,925

7.1.3 FLModels. We implemented FedAAS (Algorithm 1) by leveraging thewidely used GraphSAGE

model [16] in an FL system achieving following tasks: 1) FedCS and 2) FedPhysics: mapping authors

to their respective field of study given paper keywords for each author’s papers; 3) FedPubmed:
classifying scientific publication categories with the citation network; 4) FedAC: detecting the

category of goods given product reviews; 5) FedYelp: predicting communities of online posts

based on user comments; and 6) FedReddit: categorizing types of businesses based on customer
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Fig. 3. F1-score and test loss of different communication rounds for training various FedGCN models.

reviewers and friendship. Each model has two hidden graph attention layers with 256 and 128

neurons respectively and uses the mean aggregator. We set the number of neighbor nodes sampled

in each layer to 10 and the minimum interval to 2 batch training epochs. During model training, we

use Adam [22] as the optimizer with the weight decay to be zero. We leverage ReLU as the activation

function and use the cross-entropy loss function. We set the initial learning rate 𝜂 = 0.001, the

fixed batch number is 10 and local epoch is 1. We conduct FedGCN learning until a pre-specified

test accuracy is reached, or a maximum number of iterations has elapsed (e.g., 50 rounds). For all
experiments, we perform 10-fold cross validation and report the average results.

7.1.4 Comparison Baselines. We compare FedAAS against the following four baselines. 1) FedCross:
It performs the random neighbor node selection of both local subgraph neighbors and cross-client

neighbors in each local training epoch. 2) GraphFed [6]: It samples cross-client neighbor nodes of

overlapping nodes and adopts personalized subgraph FL with graph data distribution similarity

obtained using inter-subgraph distances. 3) FedPNS [7]: It conducts the periodic neighbor node

selection and embedding synchronization of cross-client neighbors. We set the periodic interval to

2 local epochs, i.e., we sample cross-device neighbors every 2 local epochs, and sampling neighbor

nodes of local subgraphs for the remaining epochs. 4) FedGraph [1]: It samples neighbor nodes of

local subgraph neighbors and cross-client neighbors by automatically adjusting sampling policies

based on deep reinforcement learning. For all the methods, we set the neighbor node sampling

size to 10, and for the method FedCross, we set both the number of local sampling nodes and the

number of cross-device sampling nodes to be 5 batch training epochs.

7.1.5 EvaluationMetrics. Tomeasure the accuracy of FedGCNmodels, we use three metrics [11, 19],

i.e., test accuracy, F1-score, and Area Under the Curve (AUC). There are four types of predictions

for a model: True Positive (TP), where the model correctly predicts the positive class; True Negative

(TN), where the model correctly predicts the negative class; False Positive (FP), where the model

incorrectly predicts the positive class; and False Negative (FN), where the model incorrectly predicts
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Fig. 4. Test accuracy and F1-score of size of communication cost for training FedGCN models.
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Fig. 5. The total computation cost and communication cost for training different FedGCN models.

the negative class. Based on these four possible prediction results, the performance metrics test

accuracy, F1-score and AUC are defined as follows.

• Test accuracy. Test accuracy is a metric that measures how often a DL model correctly

predicts the outcome. It can be calculated as 𝑇𝑒𝑠𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 .

• F1-score. F1-score is the harmonic mean of the precision and recall. It ranges from 0 to 1, and

a higher F1-score indicates more accurate predictions. F1-score is calculated as 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2·𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛·𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 , where precision is calculated as 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃+𝐹𝑃 and recall (True Positive

Rate, TPR) is defined as 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 .

• AUC. AUC is the area under the Receiver Operating Characteristic (ROC) curve that plots

TPR against False Positive Rate (FPR). It ranges from 0 to 1, where 0.5 means a random

prediction, and 1 means a perfect prediction.
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Table 2. Performance comparison for training different FedGCN models on various datasets.

Method Metric Performance results (%) ±standard deviations
CS Physics Pubmed AC Yelp Reddit

iid non-iid iid non-iid iid non-iid iid non-iid iid non-iid iid non-iid

FedCross
testAcc 93.08±0.78 90.31±1.02 95.73±0.48 94.89±0.24 86.14±2.16 86.24±1.03 88.94±0.42 87.97±0.63 85.36±3.29 86.41±2.08 78.98±0.52 75.62±0.62
F1-score 89.51±1.25 80.68±0.94 93.54±0.37 92.19±1.02 85.62±0.87 84.44±0.91 88.34±0.25 85.17±0.81 31.63±2.14 19.41±1.03 71.08 ±1.52 65.77±1.15
AUC 97.89±1.32 82.23±1.28 99.21±0.39 96.21±0.68 95.83±0.64 95.29±0.71 98.36±0.29 91.42±0.36 73.16±2.03 77.36±1.43 95.76±0.05 81.12±1.02

GraphFed
testAcc 92.61±0.62 89.17±1.08 95.29±0.78 93.91±0.64 87.52±0.77 85.81±0.77 88.29±1.09 87.09±0.58 68.39±0.52 67.67±0.62 78.76±0.32 74.46±0.53
F1-score 83.77±1.05 77.03±1.03 93.15±0.57 82.19±0.76 85.84±0.87 84.21±0.51 83.37±0.24 82.71±1.12 25.53 ±0.52 20.52±1.15 71.02±0.23 65.56±0.38
AUC 97.61±0.67 80.26±0.82 98.88±0.34 95.81±0.64 95.88±0.14 94.43±0.74 98.16±1.03 90.36±1.13 72.47±0.35 70.41±1.02 95.85±0.43 79.89±0.29

FedPNS
testAcc 94.24±0.21 90.03±0.57 95.76±0.34 94.71±0.79 86.96±1.23 85.27±1.05 88.64±0.55 86.58±0.74 88.76±0.59 87.57±0.82 78.95±1.26 75.78±0.73
F1-score 91.42±2.34 79.41±1.02 93.61±0.76 91.63±0.57 85.68±2.74 85.81±1.46 86.46±0.73 81.56±1.06 31.78±1.02 15.89±1.14 70.34±0.62 65.74±0.62
AUC 98.31±2.37 78.89±1.72 99.11±0.34 94.87±1.24 95.76±1.29 94.96±1.09 98.37±0.79 89.26±0.72 73.97±0.25 76.74±1.02 96.43±1.28 81.07±0.36

FedGraph
testAcc 94.81±1.16 90.17±1.15 94.93±0.43 94.45±0.52 87.36±0.97 86.14±0.84 89.72±0.63 86.57±0.71 89.05±0.82 87.43±0.58 78.34±0.75 75.93±1.04
F1-score 91.88±1.24 79.03±1.16 92.52±0.81 91.46±0.41 85.58±1.04 84.58±1.41 85.21±0.63 82.25±0.38 31.94±1.22 20.42±1.02 70.85±0.83 66.42±1.04
AUC 98.58±0.78 80.86±0.76 98.87±0.61 95.13±0.17 95.81±1.62 95.75±1.27 98.41±0.39 85.94±0.39 74.15±0.51 78.31±0.89 96.13±1.17 79.82±0.71

FedAAS
testAcc 95.32±0.16 91.62±0.75 95.98±0.41 95.02±0.28 88.82±0.59 86.51±1.07 89.83±0.28 88.13±0.68 90.48±0.17 88.46±0.79 79.26±0.18 76.12±0.83
F1-score 92.91±1.07 79.67±1.07 93.89±0.26 92.65±0.37 86.19±0.21 84.91±0.83 86.53±0.29 84.83±0.37 31.65±0.26 25.87±0.69 71.64±0.23 66.38±0.51
AUC 98.72±0.12 83.71±1.04 99.23±0.18 95.12±0.31 95.97±0.31 95.81±0.94 97.82±0.45 91.64±0.27 74.32±0.12 78.53±0.72 96.26±1.05 81.48±0.56
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Fig. 6. The performance of model FedReddit trained on dataset Reddit with different non-iid degree settings.

7.2 Results and Discussions
FedAAS improves accuracy.We compare FedAASwith other baselines by training different FedGCN
models, and evaluating the performance metric scores of the global models. We present the F1-

score and test loss of different communication rounds of models FedCS and FedReddit for training

datasets CS and Reddit in the iid setting in Fig. 3. The other metric scores of different communication

rounds of models FedPubmed and FedYelp in both iid and non-iid settings are quite similar to that

in Fig. 3. The results show that FedAAS outperforms all other methods in terms of both accuracy

scores and convergence speed. For example, in the 50-th round of training the FedCS model on

dataset CS, the F1-score of FedAAS is 92.91% outperforming other baselines by 3.4%, 9.14%, 1.49%

and 1.03%. Besides, compared to FedLocal that ignores the cross-client information (see Fig. 1), all

these methods that consider cross-client information can achieve much higher accuracy scores.

We present the results of test accuracy, F1-score, AUC scores and the standard deviations of the

final global models in Table 2. It shows that FedAAS achieves higher test accuracy, F1-score and AUC
scores than all other baseline methods in almost all cases. As an example, for model FedPubmed, the
average test accuracy of FedAAS is 1.30% higher than the best performing baseline. Meanwhile, the

standard deviations are relative small, e.g., with 1.57%, 0.18%, 0.64% and 0.38% smaller than that of

other baselines. For some cases where FedAAS performs second best in terms of accuracy metrics,

our test accuracy, e.g., 96.26% is much close to the best accuracy 96.43%, while FedAAS saves a large

amount of communication and computation overhead which will be illustrated later.

FedAAS improves efficiency. To clearly illustrate that FedAAS achieves faster convergence with

lower computation and communication costs, we present the test accuracy and F1-scores with the

size of communication overhead for training models FedCS and FedReddit in iid settings in Fig. 4.

The test accuracy and F1-scores with the size of communication overhead for training FedPubmed
and FedYelp in both iid and non-iid settings is much similar to that in Fig. 4. Besides, the test
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Fig. 7. Test accuracy and communication cost of model FedCS trained with different ablation baselines.
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Fig. 8. The performance of model FedReddit (a-b) and FedPubmed (c-d) with different number of participants.

accuracy and F1-scores with the total runtime for training various FedGCN models is also much

similar to that in Fig. 4. The results show that FedAAS requires less amount of communication

volume than the baselines to achieve the target accuracy scores, which leads to less training time.

For example, for the target test accuracy 80.0% of the trained FedCS, FedAAS achieves 23.83 ×,
25.19×, 22.9×, 19.34× faster runtime and its communication cost is 94.88%, 94.46%, 94.62%, 95.11%

lower than the other four baselines. In addition, compared to the full synchronization methods,

i.e., FedCross, GraphFed, FedGraph, the periodic synchronization methods, i.e., FedAAS, FedPNS
achieves faster convergence with lower computation and communication costs.

Furthermore, we present the total computation cost and communication cost when training

FedGCN models using different methods in Fig. 5. It can be observed that FedAAS achieves signifi-

cantly saving of both computation costs and communication costs than others. As an example, for

model FedReddit trained on Reddit, FedAAS achieves 22.89× faster runtime and requires less than

76.19% communication cost than the best performing baseline. Overall, FedAAS converges faster
with lower computation costs and communication costs as well as lower prediction errors.
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Fig. 9. F1-score of model FedReddit trained on dataset Reddit with different sampled neighbor nodes.

7.3 Ablation Study
We perform various ablation studies to show the effectiveness of each component of FedAAS. We

compare FedAAS against the following baselines: 1) Centralized-graph: it conducts the centralized

graph learning using random selected neighbors; 2) FedAll: it conducts FL training using all neighbor

nodes for each node in each local training epoch; 3) FedAAS1: it only conducts the proposed attention-
based neighbor node sampling without the adaptive embedding synchronization; and 4) FedAAS2:
it conducts training using all neighbor nodes for each node with the proposed adaptive embedding

synchronization. We train various FedGCN models using these ablation baselines and evaluating

the performance of the global models. We present the test accuracy with the size of communication

cost for training FedCS in Fig. 7(a) and show the total communication costs in Fig. 7(b). The results

show that the test accuracy of Centralized-graph is relative high, e.g., with 3.50%, 3.39%, 1.92%,

0.68% higher than that of FL baselines. Besides, FedAAS, FedAAS1 and FedAAS2 achieve higher

performance in saving much communication costs to reach the target accuracy scores and FedAAS
performs the best among them. Thus, both the attention-based neighbor node sampling module

and the adaptive embedding synchronization module are effective to construct FedAAS.

7.4 Sensitivity Analysis
Impact of the non-iid degree. We evaluate how FedAAS behaves as the non-iid degree 𝛼 varies,

where 𝛼 indicates the concentration parameter of the Dirichlet distribution. We present the

example results of test accuracy of the model FedReddit with different non-iid degrees (i.e.,
𝛼 = 0.05, 0.1, 0.2, 0.5, 1.0, 10, 100) in Fig. 6(a). It can be observed that FedAAS achieves the highest
test accuracy in almost all cases. Besides, these accuracy scores of the model FedReddit increase
as 𝛼 increases, and when 𝛼 is larger than 0.5, the accuracy scores are relatively high. We further

present the F1-scores with the size of communication cost for training the model FedReddit in

Fig. 4(d) with 𝛼 = 0.5, and that of other non-iid degree settings are quite similar to Fig. 4(d). The

results in Fig. 4(d) show that FedAAS consistently requires less communication cost than others

to achieve the target test accuracy. In addition, we present two examples of communication costs

under 𝛼 = 0.1, 𝛼 = 1 settings in Fig. 6(b), and the computation costs are quite similar to Fig. 6(b).

It shows that FedAAS significantly saves both communication and computation costs than other

baselines, and is highly robust against different non-iid degree settings.

Impact of the number of participants. To evaluate the scalability of FedAAS, we conduct large-
scale client engagement experimentswith different number of clients, i.e.,𝐾 = 50, 200, 500, 700, 1, 000,

for training different FedGCNmodels. We present the example results of test accuracy of FedReddit
trained with different number of clients in Fig. 8(a). The results show that the test accuracy of

FedAAS is consistently high, e.g., above 75.0%, as the number of client increases to 1,000 and achieves

test accuracy that is comparable to or higher than others. Besides, we present the test accuracy with
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Fig. 10. F1-score and communication cost of model FedCS trained with different subgraph edge drop ratios.

the size of communication cost in Fig. 8(b) for training FedReddit with 𝐾 = 1, 000. It shows that

FedAAS requires less amount of communication overhead than the baselines to achieve the target

test accuracy scores. Further, we show the computation and communication costs of FedReddit in

Fig. 8(c), 8(d). It shows that both communication and computation costs increase as the number

of client increases and meanwhile, FedAAS achieves substantial cost savings than other baselines

in all settings. For example, in the 1,000 client setting, FedAAS achieves 29.84% lower runtime and

33.11% lower communication cost than the best performing baseline. Thus, under different number

of client settings, FedAAS consistently achieves the target accuracy most efficiently.

Impact of the number of neighbor nodes sampled. We investigate how FedAAS behaves

as the number of sampled neighbor nodes varies. Fig. 9(a) presents the F1-scores of the trained

FedReddit model when the number of sampled neighbor nodes is 10, 20, 30, 50, and the test

accuracy and AUC scores are much similar to Fig. 9(a). It shows that by sampling only 10 influential

neighbor nodes, FedAAS can construct a FedGCN model with high accuracy. We further present

the F1-score with the size of communication cost in Fig. 9(b). It shows that FedAAS achieves much

communication savings and highly efficient model training.

Impact of the local subgraph edge drop ratio. Fig. 10(a) presents the F1-score of the trained
model FedCS when the subgraph edge drop ratio is 0, 0.5, 0.7, 0.9, 0.99. It shows that as the drop

ratio increases, the F1-score decreases slightly, and FedAAS achieves consistently high F1-scores,

e.g., with the F1-score above 90%, with different drop ratios. We also present two examples of

communication cost in Fig. 10(b) for ratio settings of 0.5, 0.7, and the computation costs are quite

similar to Fig. 10(b). It shows that FedAAS significantly saves both communication and computation

overhead than other baselines, which demonstrates the robustness of FedAAS against different

subgraph edge drop ratio settings.

8 CONCLUSIONS
In this work, we proposed a federated adaptive attention-based graph sampling approach, FedAAS,
for large-scale graph data in node classification tasks. It achieves substantial communication and

computation cost savings by efficiently leveraging historical embedding estimators to accurately

fill in the inter-dependency information of cross-client neighbors. FedAAS achieves highly efficient

federated graph learning by prioritizing highly influential neighbors and adaptive embedding trans-

mission based on historical embeddings. It reduces unnecessary cross-client neighbor embedding

communications through the adaptive attention-based sampling to determine the optimal commu-

nication period and achieves faster convergence with lower computation and communication costs

as well as lower prediction errors. Extensive experimental evaluations show that FedAAS improves

test accuracy, while saving significant communication and computation costs.
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