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Abstract—Due to its open-source nature, Android operating system has been the main target of attackers to exploit. Malware creators
always perform different code obfuscations on their apps to hide malicious activities. Features extracted from these obfuscated
samples through program analysis contain many useless and disguised features, which leads to many false negatives. To address the
issue, in this paper, we demonstrate that obfuscation-resilient malware family analysis can be achieved through contrastive learning.
The key insight behind our analysis is that contrastive learning can be used to reduce the difference introduced by obfuscation while
amplifying the difference between malware and other types of malware. Based on the proposed analysis, we design a system that can
achieve robust and interpretable classification of Android malware. To achieve robust classification, we perform contrastive learning on
malware samples to learn an encoder that can automatically extract robust features from malware samples. To achieve interpretable
classification, we transform the function call graph of a sample into an image by centrality analysis. Then the corresponding heatmaps
can be obtained by visualization techniques. These heatmaps can help users understand why the malware is classified as this family.
We implement IFDroid and perform extensive evaluations on two datasets. Experimental results show that /FDroid is superior to
state-of-the-art Android malware familial classification systems. Moreover, IFDroid is capable of maintaining a 98.4% F1 on classifying

69,421 obfuscated malware samples.

Index Terms—Android malware, Obfuscation-resilient, Familial classification, Contrastive learning

1 INTRODUCTION

S the most widely used mobile operating system [1],
Athe security of Android platform has become more
and more closely related to personal privacy and financial
security. Meanwhile, due to the open-source and market
openness of Android operating system, it is more likely to be
exploited by malware [2]. To hide their malicious tasks, dif-
ferent code obfuscations have been applied by attackers [3],
[4]. After obfuscations, malware samples become more com-
plex, resulting in features obtained from them containing
many useless and camouflage features. These futile features
make it difficult to perform accurate behavioral analysis
of Android malware. Therefore, it is important to provide
obfuscation-resilient Android malware analysis.

Most traditional Android malware analysis methods [5],
[6], [7] cannot resist code obfuscations. For example, for
familial classification of Android malware, it can be roughly
divided into two main categories [8], namely string-based
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approaches (e.g., permissions [5]) and graph-based tech-
niques (e.g., function call graph [9]). Some methods [5], [6],
[7] focus on permissions requested by apps and search for
the presence of several strings (e.g., API calls) from disas-
sembling code to build models to analyze Android malware.
However, they can be easily evaded by obfuscations because
of the lack of structural and contextual information of the
program behaviors. To achieve more robust malware clas-
sification, studies [8], [9] distill the program semantics of
apps into graph representations and apply graph matching
to analyze the malware families. For example, FalDroid [8]
extracts the function call graph of an app and applies
frequent subgraph analysis to classify Android malware.
However, Hammad and Dong et al. [3], [4] report that mal-
ware creators always perform complex obfuscations (e.g.,
control-flow obfuscations) to hidden their malicious tasks.
In this case, features extracted from graphs obtained by
FalDroid [8] may not be accurate since graphs may change a
lot after applying advanced code obfuscations. In one word,
due to different code obfuscations, features obtained from
malware samples may contain many useless and disguised
features, making it difficult to achieve accurate behavioral
analysis.

To address the issue, we propose to use contrastive learn-
ing on Android malware analysis. Due to the powerful high-
level feature extraction of contrastive learning, it has been
widely used in different areas, such as text representation
learning [10] and language understanding [11]. To the best
of our knowledge, we are the first to use contrastive learn-
ing to resist code obfuscations. To demonstrate the ability
of contrastive learning on analyzing obfuscated Android
malware, in this paper, we propose a novel approach that
can achieve obfuscation-resilient Android malware classifi-



cation.

Specifically, we first obtain the function call graph of an
app and then apply centrality analysis [12] to transform the
graph into an image. The generated images are used to train
an encoder by contrastive learning. The use of contrastive
learning is to maximize the similarity between positive sam-
ples and minimize the similarity between negative samples.
In practice, although applying obfuscations may change the
app codes, the inherent program semantics do not change.
In other words, the obfuscated app can be treated as one
of the positive samples of the original app. Therefore, we
can leverage contrastive learning to reduce the differences
introduced by code obfuscations while enlarging the dif-
ferences between different types of malware, making it
possible to correctly classify the obfuscated malware into
the corresponding family.

To further show how contrastive learning improves
the usability of malware analysis, we apply visualization
techniques to visualize the valuable features extracted by
contrastive learning. Specifically, we apply Gradient-weighted
Class Activation Mapping++ (Grad-CAM++) [13], [14] on
our images to obtain the corresponding heatmaps. Grad-
CAM++ is a class-discriminative localization technique that
generates visual explanations for any CNN-based network
without changing the architecture or retraining. According
to the intensity of the color in the heatmap, we can know
which features are more effective in classifying this malware
as this family. These valuable features can represent the
essential behaviors to explain why the malware is classified
as this family.

We implement IFDroid and conduct evaluations on two
datasets. Through the comparative experimental results,
we find that IFDroid is superior to ten state-of-the-art
Android malware familial classification systems (i.e., Den-
droid [15], Apposcopy [16], DroidSIFT [17], MudFlow [18],
DroidLegacy [19], Astroid [20], FalDroid [8], AOM [21], MVI-
IDroid [22], and CDFG [23]). As for obfuscations, IFDroid can
maintain a 98.4% F1 on classifying 69,421 obfuscated mal-
ware samples. As for interpretability, our experiments show
that the heatmaps of most malware in the same family are
similar, and the heatmaps of malware in different families
are different. This result is in line with expectations and it
can help security analysts analyze the specific reasons why
malware samples are classified as corresponding families.
As for runtime overhead, IFDroid requires an average of
1.78 seconds to complete the classification and 1.62 seconds
to interpret the classification result in our dataset. Such re-
sults indicate that IFDroid can conduct large-scale malware
analysis.

In summary, this paper makes the following contribu-
tions:

o To the best of our knowledge, we are the first to
use contrastive learning to resist code obfuscations
of Android malware. Contrastive learning can not
only improve the accuracy but also enhance the
robustness of Android malware analysis.

o We design a novel system (i.e., IFDroid) by transform-
ing the function call graph of an app into an image
and performing contrastive learning on generated
images. IFDroid can achieve robust and interpretable

classification of Android malware.

e We conduct evaluations on two datasets and re-
sults indicate that IFDroid is superior to ten state-of-
the-art Android malware classification systems (i.e.,
Dendroid [15], Apposcopy [16], DroidSIFT [17], Mud-
Flow [18], DroidLegacy [19], Astroid [20], FalDroid [8],
AOM [21], MVIIDroid [22], and CDFG [23]).

Paper organization. The remainder of the paper is orga-
nized as follows. Section 2 presents our motivation. Section
3 introduces our system. Section 4 reports the experimental
results. Section 5 discusses the future work and limitations.
Section 6 describes the related work. Section 7 concludes the
present paper.

2 MOTIVATION SCENARIO
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Fig. 1: Motivation scenario of IFDroid

Assuming that there is a security analyst, his daily task
is to classify newly detected malware into corresponding
families to enrich their malware family dataset. The richer
the family dataset, the more accurately the unknown mal-
ware behavior can be predicted. AV-TEST Institute [24]
reported that the average number of new malware detected
per day is about 9,000. It will be a very time-consuming
project if the analyst conducts in-depth manual analysis on
these malware samples one by one. Therefore, the analyst
decides to extract the semantic information of the samples
by program analysis, and then classify them into their cor-
responding families through semantic similarity matching
(e.g., graph matching). But in fact, obfuscation technology
has become more and more advanced, and it is used more
and more frequently by attackers [3], [4]. In other words,
these samples may be applied to different obfuscation
techniques, resulting in the extracted features containing
many useless and camouflage features. At the same time,
after classifying the samples into their families, the analyst
wants to know which semantic features make these malware
samples classified into corresponding families. However,
the classification method can only tell us which family the
malware belongs to, and will not explain which features are
used to determine that they are classified into this family.
The whole scenario is shown in Figure 1.



To address the above challenges in the scenario, we first
transform the program semantics of samples into images
and then train a robust encoder by contrastive learning.
In classification phase, we use a visualization technique
to obtain the corresponding heatmaps of generated im-
ages. These heatmaps can help security analysts understand
which features are more valuable in classifying them as
corresponding families. We implement IFDroid to complete
the whole analysis process automatically.

3 SYSTEM ARCHITECTURE

In this section, we introduce IFDroid, a novel contrastive
learning-based robust and interpretable Android malware
classification system.
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Fig. 2: System overview of IFDroid

3.1 Overview

As shown in Figure 2, IFDroid consists of two main phases:
Training Phase and Classification Phase.

The goal of Training Phase is to train a robust encoder
and an accurate classifier. This phase consists of four steps
as follows. 1) Static Analysis: This step aims to extract the
function call graph of a malware sample based on static
analysis where each node is an API call or a user-defined
function. 2) Image Generation: This step aims to transform
the function call graph into an image based on centrality
analysis. 3) Contrastive Learning: This step aims to learn
an encoder that can automatically extract robust features
from an image. 4) Classifier Training: This step aims to use
vectors encoded by the learned encoder to train an accurate
classifier.

The purpose of Classification Phase is to classify unlabeled
malware into their corresponding families. This phase in-
cludes three steps: 1) Static Analysis, 2) Image Generation,
and 3) Family Classification and Interpretation. The first two
steps are the same as in Training Phase. Given an image,
it will be fed into a learned encoder in Training Phase to
obtain the vector representation. The vector is then labeled
as corresponding family by a trained classifier in Training
Phase. To interpret the classification result, we use a deep vi-
sualization technique to obtain the corresponding heatmap
of the image to help the security analyst understand why it
is classified as this family.

3.2 Static Analysis

Empirical studies [8], [17] have demonstrated that graph
representation is more robust than string-based features.
In this paper, we aim to achieve efficient malware analy-
sis. Therefore, we perform low-cost program analysis (e.g.,
context- and flow-insensitive analysis) to distill the program
semantics of a malware sample into a function call graph.
More specifically, we leverage a widely used Android re-
verse engineering tool namely Androguard [25] to complete
our static analysis.

To better describe the detailed steps in IFDroid, we
choose a real-world malware sample! as our example. Fig-
ure 3 shows the sample’s function call graph where each
node is an API call or a user-defined function. The number
of nodes and edges are 117 and 170, respectively.

3.3

On the one hand, deep-learning-based image classification
can process millions of images while maintaining high accu-
racy. On the other hand, the output of image classification
can be visualized to give a better intuition to users rather
than giving a single decision. Because of these advantages,
image-based methods have been widely used in malware
analysis. However, most of these approaches [26], [27],
[28], [29] only use simple mapping algorithms to transform
malware samples into images and then apply deep learning
to analyze them. Thus the semantics of the malware samples
may be ignored.

To achieve efficient and semantic malware analysis, we
use the technique (i.e., centrality analysis) in our previous
work [12] to transform the function call graph into an image.
The centrality concept was first proposed in social network
analysis whose purpose is to dig out the most important
persons in the network. It can measure the importance of a
node in a network and is very useful for network analysis.
In practice, there have been proposed many studies to use
centralities in different areas such as biological network [30],
co-authorship network [31], transportation network [32],
criminal network [33], etc

Different centralities analyze the importance of a node
in a network by performing different network analyses,
therefore, they have the potential to preserve different struc-
tural properties of a network. In our paper, we select four
widely used centrality measures (i.e., Degree centrality [34],
Katz centrality [35], Closeness centrality [34], and Harmonic
centrality [36]) to commence our image generation phase.
These four centralities can represent graph details from four
different aspects. By this, we can achieve more complete
preservation of a function call graph’s semantics. Specifi-
cally, the definitions of these four centralities are as follows.

Image Generation

o Degree Centrality [34] assigns an importance score
based simply on the number of edges held by each
node. It is normalized by dividing by the maximum
possible degree in a graph N — 1, where N denotes
the number of nodes within the graph, deg(i) is the
degree of node 1.

deg(i)
N-1

Ca(i) =

1. 485c85b5998bfceca88c6240e3bd5337

)



o Katz Centrality [35] computes the relative influence
of a node within a graph by measuring the num-
ber of the immediate neighbors and also all other
nodes in the graph that connect to the node under
consideration through these immediate neighbors.
If Ci (i) denotes Katz centrality of a node i, where
the element at location (4, j) of the adjacency matrix
A raised to the power k (ie., Ak) reflects the total
number of k£ degree connections between nodes i
and j. The « denotes an attenuation factor, then
mathematically:

Crli) = Y52, 202,k (AR @

o Closeness centrality [34] indicates how close a node
is to all other nodes in the network. It is calculated
as the average of the shortest path length from the
node to every other node in the graph. The smaller
the average shortest distance of a node, the greater
the closeness centrality of the node. In other words,
the average shortest distance and the correspond-
ing closeness centrality are negatively correlated. If
d(i,7) is the distance between nodes 7 and j and N
is the number of nodes in the graph, then mathemat-
ically:
N-1

e Harmonic centrality [36] reverses the sum and re-
ciprocal operations in the definition of closeness cen-
trality. If d(4, j) is the distance between nodes i and
j and N is the number of nodes in the graph, then
mathematically:

Ce(i) = ®)

1
; T
. i#£]
Cnll) = N7

On the one hand, Android apps use API calls to access
operating system functionality and system resources. On the
other hand, malware samples always invoke sensitive API
calls to perform malicious tasks. For example, getDeviceID
can get your phone’s IMEI and getLinelNumber can obtain
your phone number. Therefore, we can leverage sensitive
API calls to characterize the malicious behaviors of malware
samples. Specifically, we choose 426 sensitive API calls [37]
as our concerned objectives which compose of three differ-
ent API call sets. The first API call set is the top 260 API calls
with the highest correlation with malware, the second API
call set is 112 API calls that relate to restrictive permissions,
and the third API call set is 70 API calls that are relevant
to sensitive operations. Since the same API call may exist
in different subsets, after calculating the union set of these
three API call sets, the total number of API calls is not 442,
but 426.

(4)

Given a function call graph, we first apply centrality
analysis to obtain four centrality values of sensitive API
calls. If sensitive API calls do not appear in the function
call graph, the four centrality values will all be zero. For
example, the malware sample in Figure 3 invokes a total of
three sensitive API call (i.e., sendTextMessage(), getDefault(),
and setText()). Then the four centrality values of these three
sensitive API calls can be computed by centrality analysis.

426 sensitive API calls four centrality measures

degree katz  closenessharmonic
H 0 0 0 0
sendTextMessage() ii[ 0.0086 [ 0.0888] 0.0155 | 0.0172
AudioRecord() 0 0 0 0
sendDataMessage() 0 0 0 0
getDefault() 0.0086 | 0.0888 [ 0.0155 | 0.0172
getDataDirectory() 0 0 0 0
getNetworkld() 0 0 0 0
setText() 0.0172 [ 0.0952[ 0.0172 [ 0.0172
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Fig. 3: An example to illustrate the image generation step of
IFDroid

Other 423 sensitive API calls do not appear in the call graph,
therefore, their centrality values are all zero. After centrality
analysis, we can obtain a 4264 vector representation. If we
directly transform it into an image, the generated image will
be too narrow, making it difficult to distinguish which area
it is when using heatmap for interpretation. Moreover, it
is not conducive to viewing. Therefore, we crop the vector
and turn it into a more square image. Specifically, we add
60 zeros at the end and then reshape it as a 42x42 (ie,
426+4+60=42%42) vector. At the same time, in order to be
able to see more clearly, we multiply all the values in the
vector by 255 to brighten the pixels in the image. The range
of centrality values is between zero and one, and the range
of image pixels is between 0 and 255. After the two are
multiplied, the range is also between 0 and 255. Finally, we
can obtain a 42x42 image. Each pixel in the image represents
a certain centrality value for a sensitive API call. Even if
these pixels are separated, each pixel is still meaningful and
can still represent the graph details of the sensitive API call.

3.4 Contrastive Learning

In our daily life, humans can recognize objects in the wild,
even if we do not remember the exact appearance of the
object. This happens because we have retained enough high-
level features of the object to distinguish it from others and
ignored pixel-level details. For example, despite we have
seen what a dollar bill looks like many times, we rarely
draw a dollar bill exactly the same. However, although we
cannot draw a lifelike dollar bill, we can easily distinguish
it [38]. Therefore, researchers have asked a question: Can
we build a representation learning algorithm that does not pay
attention to pixel-level details and only encodes high-level features
that are sufficient to distinguish different objects? To answer the
question, contrastive learning is proposed.

The goal of contrastive learning is to maximize the agree-
ment between original data and its positive data while min-
imize the agreement between original data and its negative
data by using a contrastive loss in the vector space. Note that
x is a sample, 2 is a positive (i.e., similar) sample of z, and
2~ is a negative (i.e., dissimilar) sample of z. Encoder f can
encode samples into vector representations. s is a function



that computes the similarity between two vectors. In self-
supervised contrastive learning, the positive sample z* of
an image x is constructed by data augmentations such as
image rotation and image cropping. As for negative sample
2~ , any other images can be selected as z~.
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Fig. 4: Supervised contrastive learning in IFDroid, the goal
is to maximize the similarity between samples in the same
family and minimize the similarity between samples in
different families.

Many studies have demonstrated the high effectiveness
of self-supervised contrastive learning [10], [11], [39], but
Khosla et al. [40] found that the label information of samples
can be used to improve the accuracy of contrastive learning.
Therefore, in this paper, we select supervised contrastive
learning to train our encoder. In other words, our positive
samples z T are selected from other malware samples in the
same family, rather than being data augmentations of itself,
as done in self-supervised contrastive learning. As shown
in Figure 4, sample B; and B; are both from droidkungfu
family while sample A; is from dowgin family. Images
of these three malware samples (i.e., A;, B;, and Bj) are
passed through an encoder to get their corresponding vector
representations (i.e., v1;, v2;, and vy;). Then the goal of our
contrastive learning is to maximize the similarity between
positive samples (i.e., (v2;, v2;)) and minimize the similarity
between negative samples (i.e., (v1;, v2;) and (vi;, V2;)).

Specifically, supervised contrastive learning (SupCon)
calculates contrastive loss in batches. Given an input batch
of data, SupCon first applies data augmentation twice to
obtain two copies of the batch and then combines these
two augmented batches to form a multi-viewed batch. For
each anchor sample x; with label [;, the positive samples
are all samples labeled [; in the same batch and the neg-
ative samples are the remaining samples whose labels are
different from [;. Within a multi-viewed batch of data, let
i€ I=1{1,..,.2N} be the index of an arbitrary augmented
sample, the loss takes the following form.

sup _ -1
‘Cout 1621 |P(Z)‘ Z lOg

pEP(3)

exp(vi - vp/T)
ZaeA(i) exp(vi - Va/T)

©)
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Here, v; represents the embedding of data z;, 7 € Rt is
a scalar temperature parameter. A(i) = I/{i} and P(i) =
{p € A(3) : I, = [;} is the set of indices of all positives in the
batch apart from 4, |P(4)| is its cardinality. The equation (5)
uses multiple positive and negative samples per batch, and
brings more information advantages to contrastive learn-
ing. It uses the positive normalization factor (i.e., Ip—b)l)
to remove bias present in multiple positives samples and
preserve the summation over negatives in the denominator
to increase performance which has been shown in many
studies [41], [42].

TABLE 1: Parameters used in our contrastive learning

Parameters Settings
loss function | SupCon loss in [40]
temperature 0.07
optimizer SGD
momentum 0.9
weight decay 0.0001
learning rate 0.05
batch size 64
epoch 100

After experimenting with certain widely-used neural
networks, we finally choose ResNet-18 [43] as our image
encoder since it can achieve a balance between accuracy and
efficiency. In computer vision tasks, the input of common
datasets is 224+224 images with three channels. In our paper,
the final image size is only 42%42, and there is only one
channel. To make ResNet-18 suitable for our classification
task, we modify the fully connected layer at the input of
ResNet-18 so that the dimension of the input is the same
as the size of our image. At the same time, in the whole
process of ResNet-18, we reduce the depth to one-third
of the original to adapt to our malware classification task.
Moreover, because contrastive learning requires the original
sample, the corresponding positive samples, and negative
samples when calculating loss, it is necessary to use batch
normalization to normalize the output of different samples
to ensure that the magnitude of the output of all samples is
consistent. In other words, we use the normalized output to
train our classifier. Table 1 shows the details of parameters
used in our contrastive learning. The loss function is the
same as in SupCon [40] namely Supervised Contrastive Loss.
The whole procedure is trained using Stochastic Gradient
Descent (SGD) with 0.9 momentum and 0.0001 weight decay.
The output in this step is a learned encoder, that is, a learned
ResNet-18. It can convert an image into a vector whose
dimension is 512.

3.5 Classifier Training

In this step, we first use our learned encoder (i.e., ResNet-18)
to encode images into corresponding vectors, and then train
a classifier (i.e., a one-layer fully connected layer) by using
these vectors and their labels. After training 100 epochs, the
classifier will be selected as our final classifier. Parameters
used in classifier training and contrastive learning are dif-
ferent only in loss function (i.e., Cross Entropy in classifier
training), and the others are the same.
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3.6 Family Classification and Interpretation

After training phase, we can obtain a learned encoder and a
trained classifier. They will be used to classify newly unla-
beled malware samples. Specifically, given a new malware
sample, we first perform static analysis to extract the func-
tion call graph. Then the graph is transformed into an image
by centrality analysis. As shown in Figure 5, given an image,
the encoder can encode it as a vector representation. Finally,
the classifier takes the input of the vector and predicts the
corresponding family.
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Fig. 6: The heatmap generated by Grad-CAM++ visualiza-
tion technique to illustrate the classification result

Since we transform a function call graph into an image
and leverage a CNN model to classify malware, we can
apply visualization techniques to interpret the classification
result. In practice, there have been strong efforts focusing
on creating meaningful heatmaps that highlight the im-
portance of individual pixel regions in an input image to
its classification using a CNN. After trying several visu-
alization techniques (e.g., CAM [44], Grad-CAM [13], and
Grad-CAM++ [14]), we find that Grad-CAM++ can achieve
better interpretability. Particularly, it introduces pixel-wise
weighting of the gradients of the output with respect to a
particular spatial position in the final convolutional feature
map of the CNN. In this way, it can provide a measure of
the importance of each pixel in a feature map towards the
overall decision of the CNN. Moreover, the visual explana-
tions of Grad-CAM++ for any CNN-based network can be
generated without changing the architecture or retraining.
Therefore, we select it to interpret our classification result.

Figure 6 shows the visualization of a real-world mal-
ware sample. According to the intensity of the color in the
heatmap, we can know which features are more effective
in classifying this malware as this family. For example, a
malware sample is classified as droidkungfu family. After
applying Grad-CAM++ visualization technique on the im-
age, we can obtain the corresponding heatmap as shown in
Figure 6. The redder area in the heatmap indicates that this
area contains more effective features. We can find the cor-
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TABLE 2: Descriptions of metrics used in our experiments

Metrics Abbr Definition
True Positive TP #malware in famlly f are correctly
classified into family f
. #malware not in family f are
True Negative N correctly not classified into family f
False Positive FP #malware not in family f are

incorrectly classified into family f
#malware in family f are incorrectly

False Negative EN not classified into family f

True Positive Rate | TPR TP/(TP+EN)
Falsell{\; eBave | FNR FN//(TP+FN)
True Iiet‘gat“’e TNR TN/(TN+EP)
False Positive | ppR FP/(TN+FP)
Precision P TP /(TP+FP)
Recall R TP/(TP+EN)
F-measure F1 2*P*R/(P+R)
Classification percentage of malware which are
Accurac CA correctly classified into their
y families

responding areas in the original image in reverse. Sensitive
API calls contained in these areas have higher weights in
identifying the malware as the family.

4 EXPERIMENTAL EVALUATION

In this section, we aim to answer the following research
questions:

e RQ1: What is the effectiveness of IFDroid on classifying
Android malware without and with obfuscations?

e RQ2: Can IFDroid interpret the familial classification
results?

o RQ3: What is the runtime overhead of IFDroid on classi-
fying Android malware?

4.1 Datasets and Metrics

We first select one widely used ground truth dataset (i.e.,
dataset-I [45]) as our experimental dataset to evaluate IF-
Droid. 1t is provided by Genome project [45] which consists
of 1,247 malware samples. In fact, these malware samples
were developed in 2011-2012, and are too old. To achieve
more comprehensive evaluations, we construct another new
larger dataset. Specifically, we choose the malware samples
in AndroZoo [46] as our targets since most of them have
been scanned by antivirus products in VirusTotal [47]. After
collecting all scanning reports, these malware samples can
be labeled into their corresponding families by using a tech-
nique namely Euphony [48]. To construct our new dataset-
II, we randomly download 8,000 samples from 15 largest
families and the number of samples in our new dataset is
120,000. Note that AndroZoo is one of the largest Android
app collections which contains more than 10 million An-
droid apps. Euphony is a tool to label the family of a malware
sample by analyzing the VirusTotal reports and has been
used by many other researchers [49], [50].

To evaluate IFDroid, we conduct experiments by per-
forming ten-fold cross-validations. In other words, we first
divide our dataset into ten subsets, then nine of them are
selected as training sets and the last subset is used to test.



We repeat this ten times and report the average classifica-
tion results. Furthermore, to measure the effectiveness of
IFDroid, we leverage certain widely used metrics (Table 2)
to present the classification results. We run our experiments
on a desktop equipped with a 32-core 2.30GHz CPU, a GTX
1080 GPU, and 128GB of RAM.

TABLE 3: Classification accuracy of IFDroid and six state-of-
the-art comparative systems on dataset-I [45]

Baseline Approach | Classification Accuracy
Dendroid [15] 0.942
Apposcopy [16] 0.900
DroidSIFT [17] 0.930
MudFlow [18] 0.881
DroidLegacy [19] 0.929
Astroid [20] 0.938
IFDroid 0.984

4.2 RQ1: Effectiveness
4.2.1 Effectiveness on Classifying General Malware

First, we conduct evaluations to check the ability of IF-
Droid on classifying general Android malware. We first use
dataset-I to present the comparative results of IFDroid and
six state-of-the-art related systems. These systems include:
1) Dendroid [15] applies text mining techniques to analyze
the code structures of Android malware and classify them
into corresponding families; 2) Apposcopy [16] performs
program analysis to extract both data-flow and control-
flow information of malware samples to classify them; 3)
DroidSIFT [17] pays attention to constructing API depen-
dency graph by analyzing the program semantics to classify
Android malware; 4) MudFlow [18] extracts the source-and-
sink pairs of malware samples and regards them as features
to classify malware; 5) DroidLegacy [19] conducts app par-
tition to divide the malware sample into sub-modules and
labels the corresponding family by analyzing the malicious
sub-module; and 6) Astroid [20] synthesizes a maximally
suspicious common subgraph of each malware family as a
signature to classify malware.

Because most of these systems are not publicly available
and the dataset used to produce evaluation results are all the
same (i.e., dataset-I [45]), we directly adopt the classification
accuracy of these six systems in their papers [15], [16], [17],
[18], [19], [20]. Through results in Table 3, we see that IFDroid
is superior to other comparative systems. This happens
because IFDroid not only considers the program semantics
of malware samples but also extracts effective features by a
learned robust encoder.

To achieve more comprehensive evaluations, we use our
new dataset-II to compare IFDroid with four recent state-
of-the-art Android malware familial classification methods.
They include: 1) FalDroid [8] analyzes frequent subgraphs
to represent the common behaviors of each malware fam-
ily and uses them to perform familial classification; 2)
AOM [21] uses Android-oriented metrics to identify An-
droid malware families; 3) MVIIDroid [22] uses a multiple
view information integration approach for Android mal-
ware detection and family identification; and 4) CDFG [23]
combines control flow graph with data flow graph to ac-
complish Android malware family classification. To further
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TABLE 4: Familial classification results (F1) of FalDroid (Fal
for short), AOM, MVIIDroid (MVI for short), CDFG, and
IFDroid on dataset-1I. wo and wi denote IFDroid without and
with contrastive learning, respectively.

Family Fal  AOM MVI CDFG| wo wi
adwo 90.5 832 853 91.6 91.7 935
airpush 763 649 70.1 82.3 785 925
dowgin 952 845 891 96.1 97.1 97.5
droidkungfu 947 804  89.1 96.2 98.7  99.5
feiwo 948 913 93 95.2 93.1 94.4
gingermaster 92.4 83.9 90.8 93.5 95.1 97.3
kuguo 925 893 911 93.6 93.1 94.9
leadbolt 952 933 941 96.7 98.8  99.4
plankton 9.1 914 952 98.6 98.2 99.1
startapp 904 872 903 95.7 99.2 100
umeng 903 825 871 92.1 90.3  93.2
utchi 100 100 100 100 100 100
waps 933 913 939 96.2 95.8  96.5
wooboo 924 883 902 97.3 97.1 98.2
youmi 784 735 771 83.6 85.9  88.7

examine the contribution of contrastive learning to general
malware classification, we implement another system that
does not use contrastive learning to learn an encoder first
but directly trains the encoder and classifier together in
training phase. We name this system IFDroid (wo) because
it differs from IFDroid in that it is trained without using
contrastive learning.

TABLE 5: Descriptions of 12 obfuscators used in our experi-
ments

Obfuscators Descriptions
ClassRename Change the package name and
rename classes
FieldRename Rename fields
MethodRename Rename methods
ConstStringEncryption Encrypt constant strings in code
AssetEncryption Encrypt asset files
LibEncryption Encrypt native libs
ResStringEncryption Encrypt strings in resources
Insert junk code that is composed by
ArithmeticBranch arithmetic computations and a branch
instruction
s Modify the control-flow graph
Callindirection without c%]langing the code s%mzntics
G Modify the control-flow graph by
oto .
adding two new nodes
No Insert random nop instructions within
P every method implementation
R Change the order of basic blocks of
eorder
the control-flow graph

The detailed classification results of 15 families are
shown in Table 4. Through the results, we observe that IF-
Droid performs better than FalDroid, AOM, MVIIDroid, and
CDFG on classifying most malware families. For example,
the F1 values of FalDroid, AOM, MVIIDroid, and CDFG on
classifying “startapp” family are 90.4%, 87.2%, 90.3%, and
95.7%, respectively. However, for IFDroid, it has the ability to
classify them into “startapp” family without any inaccura-
cies. Additionally, when we use contrastive learning to learn
our encoder first, the classification performance is always
better than without contrastive learning. For example, when
classifying malware samples with “airpush” family, the F1
value of IFDroid (wo) is only 78.5% while IFDroid with con-
trastive learning can maintain 92.5% F1. Such results suggest
that the use of contrastive learning can indeed enhance the
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TABLE 6: F1 values of FalDroid (Fal for short), AOM, MVIIDroid (MVI for short), CDFG, and IFDroid on classifying
obfuscated malware. wo and wi denote IFDroid without and with contrastive learning, respectively.

Obfuscators #Samples Fal AOM | MVI | CDFG wo wi
ClassRename 5,049 100.0 | 99.1 99.7 | 100.0 | 100.0 | 100.0
Rename FieldRename 5,297 100.0 | 984 99.8 | 100.0 | 100.0 | 100.0
MethodRename 5,271 100.0 | 98.6 99.6 | 100.0 | 100.0 | 100.0
AssetEncryption 5,477 93.8 82.1 91.2 96.5 98.1 100.0

) ConstStringEncryption 5,443 84.7 71.4 79.3 88.3 90.2 96.9
Encryption LibEncryption 5,391 94.5 87.1 91.9 96.8 96.9 | 100.0
ResStringEncryption 5,366 95.1 91.4 93.6 99.1 98.0 | 100.0
ArithmeticBranch 5,649 97.1 824 87.1 97.5 97.3 | 100.0
CallIndirection 5,571 732 624 69.3 77.1 77.3 91.1
Code Goto 5,546 92.3 82.1 90.4 92.6 94.8 | 100.0
Nop 5,529 95.8 90.2 90.8 95.6 97.7 | 100.0
Recorder 5,443 96.0 86.3 92.3 96.1 95.5 | 100.0

Apply 12 obfuscators 4,389 69.2 53.5 65.3 72.6 71.8 90.4

ALL 69,421 91.9 83.7 | 887 93.5 93.9 98.4

ability of IFDroid on classifying malware.

4.2.2 Effectiveness on Classifying Obfuscated Malware

Next, we evaluate the effectiveness of [FDroid on classifying
obfuscated Android malware. For this purpose, we use an
automatic Android apps obfuscation tool (Obfuscapk [51])
that provides certain obfuscators including typical obfus-
cations (e.g., class rename and method rename) and some
advanced code obfuscations (e.g., call indirection and goto).
Specifically, we first learn an encoder and train a classifier
by using samples in dataset-II. After completing the train-
ing phase, we randomly select 400 malware samples from
each family, and the final number of selected samples is
400+15=6,000.

We select a total of 12 different obfuscators provided
by Obfuscapk, including three rename obfuscators, four en-
cryption obfuscators, and five advanced code obfuscators.
Descriptions of these obfuscators are presented in Table 5. In
practice, Obfuscapk can not obfuscate some of our malware
samples due to certain errors. But fortunately, the failed
samples only occupy a small part. To further evaluate the
effectiveness of IFDroid, we apply 12 obfuscators together
to generate more complex obfuscated malware. Finally, we
obtain 69,421 obfuscated samples in total. We also conduct
comparative evaluations with FalDroid, AOM, MVIIDroid,
and CDFG on classifying these obfuscated malware. The
comparative results are shown in Table 6, which includes the
F1 values of IFDroid and comparative methods (i.e., FalDroid,
AOM, MVIIDroid, and CDFG).

Since the typical rename obfuscations (i.e., class rename,
method rename, and field rename) do not change the call
relationships between functions in an app. Both FalDroid,
CDFG, and IFDroid can correctly classify all obfuscated
apps into corresponding families. Furthermore, no matter
what kind of obfuscation it is for, IFDroid can perform
better when using contrastive learning. However, the F1
values of IFDroid without contrastive learning is only 77.3%
when we classify apps that are obfuscated by Calllndirection.
After our in-depth analysis, we find that the number of
nodes and edges in a function call graph change a lot after
applying Calllndirection. For example, a sample originally
has 8,135 nodes and 19,725 edges. After it is obfuscated by
Calllndirection, the number of nodes becomes 35,396, and
the number of edges increases to 58,407. This huge change

makes IFDroid make mistakes in classification. However,
when we adopt contrastive learning, the true positive rate
of IFDroid can be increased from 77.3% to 91.1%. This result
also shows that the encoder learned by contrastive learning
can extract more robust features to classify malware.

Moreover, when classifying samples that are obfuscated
by 12 obfuscators together, IFDroid can also achieve an
F1 of 90.4%. However, the F1 values of FalDroid, AOM,
MVIIDroid, and CDFG are only 67.9%, 50.1%, 61.6%, and
69.3%, respectively. On average, IFDroid maintains an F1 of
98.4% on classifying all generated obfuscated samples. Such
result suggests that IFDroid is more robust than FalDroid,
AOM, MVIIDroid, and CDFG.

Summary: IFDroid achieves higher accuracy than Dendroid,
Apposcopy, DroidSIFT, MudFlow, DroidLegacy, Astriod, Fal-
Droid, AOM, MVIIDroid, and CDFG on Android malware
classification. Using contrastive learning can not only improve
the accuracy but also enhance the robustness of IFDroid.
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Fig. 7: A real-world malware sample’s visualization of clas-
sification result

4.3 RQ2: Interpretability

As aforementioned, since Gradient-weighted Class Activation
Mapping++ (Grad-CAM++) [13], [14] performs better and
can generate visual explanations for any CNN-based net-
work without changing the architecture or retraining, we
use it as our visualization technique to interpret our clas-
sification results. These interpretations can help security
analysts understand why a malware sample is classified as
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Fig. 8: The most important sensitive API calls of two families obtained by analyzing the heatmaps

this family. Specifically, we use Grad-CAM++ to obtain the
corresponding heatmaps of malware samples. The red area
in the heatmap indicates that features in this area play more
important roles in classifying as this family. In other words,
sensitive API calls contained in these areas have higher
weights in identifying the malware as the family.

Figure 7 shows the visualization of a real-world malware
sample. This sample is correctly classified into droidkungfu
family by IFDroid. After applying Grad-CAM++ visualiza-
tion technique on the generated image, we can obtain the
corresponding heatmap as shown in Figure 7. The redder
the color in a heatmap, the more valuable the features in
the area. Therefore, we pay more attention to these red
areas. After completing the one-to-one correspondence of
three red areas from the original image, we can collect seven
sensitive API calls (i.e., getExternalStorageDirectory(), write(),
getLinelNumber(), getDevicelD(), createNewFile(), getCellLoca-
tion(), and connect()) from these areas. Through the result,
we can see that this malware collects users’ private data and
write them into created files. These files are then sent to the
network or saved on other external devices. Because of this
behavior, it is classified into “droidkungfu” family.
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Fig. 9: Visualization of six malware familial classification
results, four malware samples are displayed for each family.

To further analyze the interpretability of IFDroid, we
collect the most important sensitive API calls of each family
by analyzing their heatmaps. Due to space limitations, we
only show the details of two families (i.e., “dowgin” and
“plankton”) in Figure 8. From the results in Figure 8, we see
that the “dowgin” family behaves by displaying unwanted

or malicious advertisements and changing web settings in
undesirable ways. For malware of the ”plankton” family,
once a user installs it, it can collect a lot of sensitive
data such as device ID and send them to a remote server.
Meanwhile, the server replies with a URL that allows the
infected phone to download and install a JAR file containing
a dynamic payload. Such payload can have a huge impact
on users.
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similarity between heatmaps in 15

Finally, we conduct a survey to explore the effectiveness
of the interpretation of family classification by heatmaps.
Due to the limited space, we randomly present six fami-
lies” heatmaps in Figure 9, and four malware samples are
displayed for each family. Given heatmaps of all malware
samples, we compute the similarity of two heatmaps by
using Structural SIMilarity (SSIM) [52] technique one by
one. SSIM is widely used to measure the similarity of two
images.

After analyzing all heatmaps, the average similarity
between different families is calculated and presented in
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Figure 10. From Figure 9 and Figure 10, we observe several
phenomenons. The first phenomenon is that the heatmaps of
most malware in the same family are similar. It is reasonable
because malware samples of certain families are often just
repackaged applications with slight modifications [7]. In
other words, most malware samples in the same family
are polymorphic variants of other malware samples in
this family. Therefore, malware samples in the same fam-
ily always perform similar malicious actions, resulting in
similar heatmaps generated by visualization. The second
phenomenon is that the heatmaps of malware in different
families are basically different. This result is in line with
expectations since malware samples in different families
exhibit different malicious behaviors. Because of this, they
are classified into different malware families.

Summary: IFDroid can interpret the familial classification
results by using visualization techniques. We can even distinguish
the malware families directly through the heatmaps since the
heatmaps of most malware in the same family are similar and
heatmaps of malware in different families are basically different.

4.4 RQa3: Efficiency

In this step, we aim to study the runtime overhead of
IFDroid. To this end, we randomly select 8,000 samples
from dataset-II as our test target. Given a new malware
sample, I[FDroid performs four steps to classify it into the
corresponding family and interpret the classification result.

1) Static Analysis. The first step of IFDroid is to distill
the program semantics of a sample into a function call
graph based on static analysis. Figure 11 and Table 7 show
the runtime overhead of static analysis on dataset-II, for
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more than 80% samples we can extract the graphs in one
second. On average, it takes about 0.57 seconds for IFDroid
to complete static analysis on dataset-II.

2) Image Generation. The second step of IFDroid is to trans-
form the call graph into an image to avoid high-cost graph
matching. Specifically, we extract four different centralities
(i.e., degree centrality, katz centrality, closeness centrality,
and harmonic centrality) of sensitive API calls within the
graph to construct the image. As shown in Figure 11 and
Table 7, IFDroid requires about 1.21 seconds on average to
analyze the graph and complete the image generation step.

3) Familial Classification. The third step of IFDroid is to
classify the image into its corresponding family. We first per-
form contrastive learning to learn an encoder and then train
a classifier on generated images. The total runtime overhead
of contrastive learning and model training on these images
are shown in Figure 11. On average, it takes about 10.98
seconds and 5.94 seconds to finish a round of contrastive
learning and model training, respectively. After completing
the training phase, we leverage the learned encoder and the
trained classifier to complete the familial classification step
of IFDroid. As shown in Figure 11 and Table 7, this step is
the fastest step among all step in IFDroid. It consumes about
1.93 seconds to classify all images (i.e., 8,000 images) into
corresponding families.

4) Interpretation. The final step of IFDroid is to interpret
the classification results of 8,000 images. To this end, we
use Grad-CAM++ visualization technique to obtain the
corresponding heatmaps of these images. This step is the
most time-consuming, it requires 1.62 seconds on average
to accomplish the visualization of an image.

TABLE 7: Runtime overhead of different steps of IFDroid on
8,000 malware samples

Different Steps Total runtime | Average runtime
Static Analysis 4,792 0.57
Image Generation 10,172 1.21
Familial Classification 1.93 0.00023
Interpretation 13,619 1.62
ALL 28,585 1.78+1.62=3.4

In general, given a new malware sample, IFDroid con-
sumes about 1.78 seconds to complete the classification and
1.62 seconds to interpret the classification result. As for Fal-
Droid, AOM, MVIIDroid, and CDFG, they need to take about
11.5 seconds, 9.2 seconds, 12.4 seconds, and 26.9 seconds to
complete the classification of a malware sample. In other
words, if only from the overhead caused by classification,
IFDroid is about six times, five times, seven times, and 15
times faster than FalDroid, AOM, MVIIDroid, and CDFG.
Such high efficiency indicates that IFDroid can achieve large-
scale Android malware classification and interpretation.

Summary: On average, IFDroid requires about 1.78 seconds
to complete the classification and 1.62 seconds to interpret the
classification result of a malware sample.

5 DISCUSSIONS
5.1 Differences from MalScan

In our previous work (i.e., MalScan [12]), we use centrality
analysis to accomplish scalable Android malware detection.



The goal of MalScan is to distinguish malware samples from
benign apps while [FDroid aims to classify malware into
corresponding families. In reality, we also apply MalScan
to classify our dataset-II, but the result is not ideal. The
classification accuracy on 15 families is only 85.2%. In other
words, MalScan is not suitable for Android malware familial
classification. To address the issue, we develop IFDroid
which is a robust and interpretable Android malware fa-
milial classification system.

5.2 Why is IFDroid obfuscation-resilient?

The reasons are mainly three-fold. First, IFDroid uses sen-
sitive API calls to form the features and API calls are not
obfuscated. Second, IFDroid applies centrality analysis to
maintain the graph details which is robust against obfus-
cations. Last and most important, the learned encoder by
contrastive learning in IFDroid can extract robust features
from generated images. The goal of contrastive learning
is to maximize the agreement between positive data and
minimize the agreement between negative data. Actually,
the obfuscated malware can be regarded as one positive
sample of the original malware since the inherent program
semantics do not change after obfuscations. Therefore, when
we use contrastive learning to learn the encoder, it can
enlarge the similarity between obfuscated malware and
original malware, making it possible to classify the obfus-
cated malware into its correct family.

5.3 The Reasons of Image Generation

The reasons are mainly three-fold. First, CNN can support
large-scale image analysis. If we can transform a malware
sample into an image, then we can use the CNN model to
achieve large-scale malware analysis. Second, convolution
kernels of different sizes in CNN can automatically extract
features from images. In our generated image, each pixel
represents a certain centrality value for a sensitive API
call. When different sizes of convolution kernels are used,
different centrality values of different sensitive API calls can
be combined to find the most suitable combined features
for malware classification. Third, CNN can be interpreted
by some visualization techniques. If we can employ some
suitable visualization techniques, then we can interpret the
results of malware family classification, making it clear to
the security researcher why the sample is classified into this
family.

5.4 The Selection of Static Analysis

Compared with dynamic analysis, static analysis does have
some shortcomings. However, since different events need
to be generated to trigger different behaviors, it is very
expensive to dynamically analyze an app. Sometimes it
may take hours to analyze an app. Such a huge overhead
makes it unsuitable for large-scale malware analysis. In the
real world, according to the AV-TEST Institute report [24],
an average of about 9,000 Android malware samples were
detected every day in 2021. If we use dynamic analysis to
analyze the families of these malware samples, it is difficult
to achieve daily malware scanning. But the average runtime
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overhead of our proposed method IFDroid is only 3.4 sec-
onds. In other words, if we analyze 16 malware samples at
a time, we only need about half an hour to complete all the
analysis and interpretation of detection results. Moreover,
according to the results in our paper, IFDroid can achieve
ideal performance in analyzing obfuscated malware due to
the use of contrastive learning.

5.5 Limitations
5.5.1 Call Graph

To achieve efficient static analysis, we leverage Androguard
[25] to extract the function call graph of a malware sample.
This graph is a context- and flow-insensitive call graph.
Moreover, malware samples can use reflection [53] to call
sensitive API calls, in this case, we may miss the call
relationships between these methods. As shown in Table 6,
the Calllndirection obfuscator significantly lowers the scores
of all classifiers. The F1 of IFDroid with contrastive learning
is only 91.1% which is not good enough to distinguish
these obfuscated malware. In our future work, we plan
to use advanced program analysis [54] to generate more
accurate call graphs to maintain better robustness against
obfuscation.

5.5.2 Sensitive API calls

Sensitive API calls used in IFDroid consist of 426 API calls
that are highly correlated with malicious operations [37].
They occupy a small part of the whole sensitive API calls.
We plan to conduct statistical analysis to select more valu-
able sensitive API calls and use them to generate our images.

As API calls invoked by Android malware may evolve
over time, [FDroid may suffer from the issue. To resist false
positives and false negatives caused by the evolution of
Android malware, we will update our sensitive API calls
in real-time and adopt the technique in [55] to improve our
classification effectiveness.

5.5.3 Image Size

After extracting four centrality values of 426 sensitive API
calls, we can obtain a 426x4 vector representation. To make
our interpretation more intuitive, we crop the vector and
turn it into a square image. Specifically, we add 60 zeros at
the end and then reshape it as a 42x42 (i.e., 426x4+60=42x42)
vector. Although every pixel in our image is meaningful,
the centrality values of the same API call may be segmented
adjacent to the beginning and end of different lines. Such
case may affect the learning effectiveness of our model. In
our future work, we plan to select different image size to
commence our experiments. By this, we can find a more
suitable size and achieve more effective results. In addition,
we will also build a separate image for each centrality and
combine the four images to analyze Android malware.

5.5.4 Model

In MalScan, we have shown that centrality is not robust
enough against tailored adversarial attacks. In other words,
an attacker might adjust the frequency of some sensitive
API calls by adding some dead code, so that the model
incorrectly classifies samples into another family. However,
we choose four different centralities, each of which can



represent a kind of structural information of the call graph.
For example, degree centrality considers the degree of all
nodes within a network, while closeness centrality analyzes
the average shortest distance of all nodes. Therefore, when
an adversary attacks our model, he may consider four
different centrality extraction algorithms to craft adversarial
examples, which may result in a large attack overhead. In
the future, we plan to choose more different centralities to
preserve more graph details of the call graph, making it
more robust against adversarial attacks.

When faced with a new family of malware samples,
we cannot use the original model to classify them since
the model has not seen the family. However, instead of
retraining the model, we can use a single-task continuous
learning [56] approach to mitigate the limitation. Based on
the original model, we only need to use a small number of
new family samples to iterate the model in some steps, and
then the model can flag the new family.

6 RELATED WORK
6.1 Malware Familial Classification

Recently, many studies [15], [16], [17], [18], [19], [20], [8],
[571, [58], [59], [60], [22], [21], [23], [61], [62] have been
proposed to classify malware samples into corresponding
families. For example, Dendroid [15] applies text mining
techniques to analyze the code structures of Android mal-
ware and classify them into corresponding families. Ap-
poscopy [16] considers both data-flow and control-flow in-
formation of malware samples to classify them by perform-
ing heavy-weight program analysis. MudFlow [18] extracts
the source-and-sink pairs of malware samples and regards
them as features to classify malware. FalDroid [8] conducts
frequent subgraph analysis to extract common subgraphs
of each family and uses them to perform familial classifi-
cation. DroidSIFT [17] extracts the weighted contextual API
dependency graph to solve the malware deformation prob-
lem based on static analysis. These proposed approaches
consider different program information to achieve accurate
malware classification. However, heavy-weight program
analysis results in low scalability, making them can not scale
to large numbers of malware analysis. Moreover, most of
them only provide the corresponding labels (i.e., families) to
users and can not interpret the classification results.

6.2 Contrastive Learning

Contrastive learning was first introduced by Mikolov et
al. [63] in 2013 for natural language processing (NLP). In recent
years, it has been more and more popular on different NLP
tasks such as text representation learning [10], language
understanding [11], and cross-lingual pre-training [39]. In
practice, it has also been used in other domains. For exam-
ple, Dai et al. [64] propose a new method for image caption
through contrastive learning. SimCLR [65] is a simple frame-
work to use contrastive learning on image classification.
Compared with previous work, the accuracy of SimCLR is
improved by 7%. COLA [66] is a self-supervised pre-training
approach for learning a general-purpose representation of
audio and CVRL [67] uses contrastive learning to learn spa-
tiotemporal visual representations from unlabeled videos.
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The use of contrastive learning in most of the previous
studies is self-supervised, however, Khosla et al. [40] find
that the label information of training dataset can improve
the performance of the learned encoder. Therefore, in this
paper, to achieve better classification accuracy, we leverage
supervised contrastive learning to conduct Android mal-
ware familial classification.

7 CONCLUSION

In this paper, we propose to use contrastive learning to resist
code obfuscations of Android malware. To demonstrate
the effectiveness of contrastive learning, we implement an
obfuscation-resilient system (i.e., IFDroid) and the extensive
evaluation results show that [FDroid is superior to ten
state-of-the-art Android malware classification systems (i.e.,
Dendroid [15], Apposcopy [16], DroidSIFT [17], MudFlow [18],
DroidLegacy [19], Astroid [20], FalDroid [8], AOM [21], MVI-
IDroid [22], and CDFG [23]). Moreover, when analyzing
69,421 obfuscated malware samples, [FDroid can achieve a
98.4% F1 score. Such result also suggests that IFDroid can
achieve obfuscation-resilient malware analysis.
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