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Subnetwork-Lossless Robust Watermarking for
Hostile Theft Attacks in Deep Transfer Learning

Models
Ju Jia, Yueming Wu, Anran Li, Siqi Ma, and Yang Liu

Abstract—Recently, considerable progress has been made in providing solutions to prevent intellectual property (IP) theft for deep
neural networks (DNNs) in ideal classification or recognition scenarios. However, little work has been dedicated to protecting the IP of
DNN models in the context of transfer learning. Moreover, knowledge transfer is usually achieved through knowledge distillation or
cross-domain distribution adaptation techniques, which will easily lead to the failure of the IP protection due to the high risk of the
underlying DNN watermark being corrupted. To address this issue, we propose a subnetwork-lossless robust DNN watermarking
(SRDW) framework, which can exploit out-of-distribution (OOD) guidance data augmentation to boost the robustness of watermarking.
Specifically, we accurately seek the most rational modification structure (i.e., core subnetwork) using the module risk minimization, and
then calculate the contrastive alignment error and the corresponding hash value as the reversible compensation information for the
restoration of carrier network. Experimental results show that our scheme has superior robustness against various hostile attacks, such
as fine-tuning, pruning, cross-domain matching, and overwriting. In the absence of malicious jamming attacks, the core subnetwork
can be recovered without any loss. Besides that, we investigate how embedding watermarks in batch normalization (BN) layers affect
the generalization performance of the deep transfer learning models, which reveals that reducing the embedding modifications in BN
layers can further promote the robustness to resist hostile attacks.

Index Terms—IP protection, DNN watermarking, deep transfer learning models, reversibility and robustness, OOD guidance.
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1 INTRODUCTION

THE protection of intellectual property (IP) for deep
neural networks (DNNs) is attracting more and more

attention due to the expensive cost and technical complexity
for constructing these models. Following this trend, sev-
eral DNN watermarking methods have been proposed to
respond to the growing IP protection concern recently [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]. Con-
ceptually, DNN watermarking is implemented by injecting
certain behaviors into the model whose existence can be
easily verified when needed, usually by using a series of
key samples.

DNN watermarking can be divided into white-box and
black-box settings depending on whether demands full ac-
cess to the model during watermark insertion and authen-
tication. In the white-box setting, the model information is
required to be fully available, including the potential feature
mappings for extracting the watermarks, and the expected
behaviors can be embedded into the inherent structure or
potential space of the DNN model [1], [5]. While in the
black-box setting, the watermark is designed to correlate
the desired predictions to the key samples by using the
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application programming interface (API) in machine learn-
ing as a service (MLaaS) [2], [3], [8], [9], [11]. For example,
the attacker can first feed a large amount of input into the
model API and obtain the corresponding output. Then, the
attacker takes these input-output pairs as training samples
and constructs a reliable surrogate model, which is called
surrogate model attacks (SMAs) or model extraction attacks
(MEAs).

Many scientific studies have revealed the hidden vulner-
ability and fragile robustness of DNN watermarking [15],
[16], [17], [18]. The reasons can be attributed to two aspects.
On the one hand, some watermarking schemes are designed
based on simple backdoor techniques, which makes them
hard to be robust to adversarial samples and OOD samples
with complex patterns. On the other hand, it is difficult
for DNN watermarking to resist various advanced model
transformations only through identifying the verification
queries. For example, existing work usually either adds
a weight consolidation regularizer to the loss function to
guarantee the learned weights have some specific pat-
terns, or uses the verifiable prediction results of a series
of special indicator images as watermarks [1], [2], [3], [9],
[10]. Although these methods perform well to increase
the robustness within a certain range, they only consider
ideal classification settings and structure fault attacks like
fine-tuning or pruning, which hinders their application in
many mission-critical scenarios (e.g., transfer learning [19]
or domain adaptation [20]). Deep transfer learning aims to
substantially reduce the efforts to obtain high-performance
DNN models, which can largely ease the burden of ad-
versarial training, especially for those models with limited

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3194704

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2022 2

Fig. 1: Comparison of deep transfer learning models with traditional
machine learning models. Deep transfer learning models achieve
knowledge transfer by matching distributions between the source and
target domain, while traditional machine learning models fail to match
distributions across domains.

computational capabilities [21], [22], [23], [24]. Fig. 1 gives
an intuitive example of deep transfer learning models.
Therefore, it is considered as a promising machine learning
service technique in the real applications for the sake of
work efficiency [25]. However, deep knowledge transfer
operations would bring great challenges to the IP protection
for DNN models. Compared to common deep learning
models, deep transfer learning models tend to adopt knowl-
edge distillation or domain adaptation techniques to find a
shared distribution between the source and target domains,
which can easily lead to the traditional DNN watermarking
to lose the ownership information in such cases. Moreover,
ensuring the integrity of conventional DNN watermarking
will limit the generalization capability of the common deep
learning model on a specific task, which makes it difficult
to achieve the desired knowledge transfer from the seen
domain (i.e., source domain) to the unseen domain (i.e.,
target domain).

For DNNs, the functionality of the model is character-
ized by its weight parameters. To avoid permanent loss
in robust watermarking schemes, researchers exploit the
redundancy among the model weights to embed and extract
watermarks without compromising any weights. Such a
technique, called reversible watermarking (e.g., also known
as reversible data hiding or cover-lossless information hid-
ing), can successfully restore the original neural network
in case of no attack [26]. Guan et al. [27] utilized the
pruning theory of network compression to build a host
sequence guided for embedding reversible watermarking
information by histogram shift, which indicates that the
reversible watermarking can be used for the fragile au-
thentication. However, it is challenging in most practical
applications due to its sensitivity to the weight pruning or
updating operations. In the transfer learning settings that
DNN models require high fidelity in these areas, such as
medical image diagnosis, multimedia digital forensics, hy-
perspectral data processing, and high-precision navigation
tracking, the data loss and performance degradation caused
by information embedding are intolerable. As a result, a
cover-lossless robust DNN watermarking against hostile
theft attacks is developed to avoid losing the model integrity
due to embedding operations, which can be well applied to
deep transfer learning scenarios.

On the basis of the above analysis, we propose a novel
subnetwork-lossless robust DNN watermarking (SRDW)
framework for the copyright protection of deep transfer
learning models. The motivation comes from the fact that
the mapping relationships between the data and the model

Fig. 2: Our scheme embeds the watermark by seeking a core subnet-
work from the perspective of the matching relationship between the
data and model. The watermark embedded on the core subnetwork
can not only help the whole model resist common theft attacks, but also
resist various other attacks during the knowledge transfer. Moreover,
the core subnetwork can be recovered losslessly under the condition of
no malicious jamming attack.

can be leveraged to promote the reversibility and robustness
of watermarking through the sample generation (i.e., key
samples) and the subnetwork selection (i.e., core subnet-
work). Fig. 2 illustrates our solution for the IP protection
of deep transfer learning models. This scenario differs sig-
nificantly from the IP protection of traditional DNN models,
i.e., a subnetwork-lossless robust watermarking is required
for both source and target networks throughout the knowl-
edge transfer process. Specifically, considering the impact of
embedding operation and model capacity on the general-
ization behavior in the specific tasks, we use modular risk
minimization to hunt the most rational modification subnet-
work as a robust guarantee for watermark embedding. To
guarantee the reversibility of the watermark, we combine
the contrastive alignment error and the corresponding hash
value to design the reversible compensation information.
In this way, the embedding of the watermark can be flex-
ibly controlled by exploiting the reversible compensation
information to generate the final watermarked network.
Extensive experiments show that our proposed subnetwork-
lossless robust watermarking scheme can be effectively uti-
lized for the IP protection of deep transfer learning models.
The contributions of our paper are summarized as follows.

1) We present an OOD-guided data augmentation tech-
nique based on constrained variational autoencoder
(CVAE) to generate synthetic samples, which promotes
not only the robustness of the embedded watermark but
also the task-related performance of the model.

2) We introduce the module risk minimization to explore
the most suitable modification architecture (i.e., core
subnetwork), which achieves the watermark embedding
without sacrificing the model accuracy in an alternating
optimization manner.

3) We design the reversible compensation information con-
sisting of the contrastive alignment error and the corre-
sponding hash value to guarantee the reversibility of the
watermark. Moreover, the experimental results in Section
6.4 indicate that the core subnetwork can be recovered
losslessly under the condition of no malicious jamming
attack.

4) To the best of our knowledge, this is the first work to
propose a subnetwork-lossless robust DNN watermark-
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ing for the IP protection of deep transfer learning models.
We conduct extensive experiments to evaluate our pro-
posed SRDW on various deep transfer learning models.
The promising results clearly show the reversibility and
robustness of the proposed watermarking scheme.
The rest of the paper is organized as follows. Section

2 presents the related work and motivation. Section 3 in-
troduces the problem statement of this work. Section 4
describes the proposed SRDW for the copyright protection
of deep transfer learning models. The experimental setting
and implementation are given in Section 5. The effective-
ness of our watermarking scheme is demonstrated through
experimental evaluation results in Section 6. Finally, the con-
clusions and the future research directions are summarized
in Section 7.

2 RELATED WORK

2.1 DNN IP Protection
The powerful data processing and representation descrip-
tion capabilities of DNNs pose a potential security threat to
the IP of deep learning models. Early researchers tended
to focus on how to access the DNN model sufficiently
to enable a flexible watermark embedding and extraction
process [1], [5]. Following this, Fan et al. [6] presented an
interesting DNN ownership verification method to embed
the watermarks by exploiting the information in the “pass-
port” layers, where the corresponding network parameters
are essential to maintain the performance of the model. As
another representative work, Lin et al. [13] developed a
chaotic weight framework based on the chaotic map theory
to protect the IP of DNN with very low overhead. Since the
structures of DNN models are usually invisible in practical
applications, most existing approaches employ the idea of
backdoor attacks to force the triggers into the models [28],
which may undermine the integrity of the model and lead to
the performance degradation [2], [3], [8], [9], [11]. Inspired
by the reversible digital image watermarking techniques,
a reversible DNN watermarking framework was designed
to achieve model integrity authentication [27]. Despite their
success, most of these copyright protection schemes have
been proposed for classification or recognition tasks in the
matched distribution scenarios (i.e., simple modification-
based attacks). By contrast, few studies have designed IP
protection watermarks specifically for deep transfer learn-
ing models in the mismatched distribution scenarios (i.e.,
complex modification-based attacks). The recently proposed
null embedding technique to construct the piracy-resistant
DNN watermark shows its effectiveness in deep transfer
learning models to a certain extent [29]. Due to the large
number of fine-tuning operations in the process of knowl-
edge transfer, robustness and reversibility are crucial for the
watermarking of transfer learning models. Motivated by
these facts, we design a controllable watermarking frame-
work to ensure that specific patterns and embedded in-
formation are associated to make it robust and reversible
throughout the whole transfer learning process.

2.2 Data-Centric Robustness Enhancement
Data-centric learning is a promising technique based on data
augmentation that improves the robustness and generaliza-

tion of DNNs by generating high-quality datasets. For in-
stance, Ng et al. [30] proposed a data augmentation method
based on self-supervised manifolds to generate synthetic
training samples and improve out-of-domain robustness.
In addition, Hua et al. [31] dynamically allocated distinct
amounts of computation for generating corrupted samples
by their importance to facilitate the acquisition of robust
DNNs. Notably, the effect of pre-training data size, model
scale and data pre-processing pipeline was investigated in
the literature [32], whose results indicated that increasing
the training set and model sizes or simple changes in the
pre-processing (e.g., modifying the image resolution) can
promote the robustness and generalization of the model in
some cases. Another line of research [33] aimed to build a
generalizable model from biased domain knowledge, which
can reinforce the learning ability using a target dataset
close to the essence of the desired test data. Our proposed
scheme exploits data-centric learning algorithms to enhance
the OOD generalization of the model by preventing shortcut
cues, which can facilitate the implementation of watermark-
ing in specific regions (i.e., the core subnetwork). Moreover,
the robustness of DNN watermarking can be improved by
adjusting the generation of key samples and the magnitude
of modification operations. Based on the above observa-
tions, we draw on the data-centric perspectives to generate
key samples to improve the robustness of watermarking
by exploiting the relationships between source and target
samples in transfer learning.

2.3 Spurious Correlation Suppression

Deep transfer learning models (DTLMs) aim to transfer
knowledge from different but related source domains to
enhance the performance on target tasks by exploiting the
powerful generalization ability of DNNs. DTLMs have been
successfully applied in many real-world scenarios [34], [35],
[36]. It is worth noting that the knowledge transfer does not
always bring the positive effect on new tasks. If there is little
common ground between the source and target domains,
the knowledge transfer may be unsuccessful. Moreover, the
correlations across domains do not necessarily promote the
performance of transfer learning, because sometimes mod-
els are misled by spurious correlations. The literature [37]
has revealed that DNNs are prone to learn superficial
representations to make overconfident predictions, such as
relying on spurious correlations rather than the intrinsic
mechanisms of the task of interest. This phenomenon has
caused widespread concern among researchers because the
performance of the model deteriorates under the interfer-
ence of these spurious correlations. Therefore, it is desir-
able to avoid the influence of spurious modes on DNNs
while training models with data-centric techniques. Since
Arjovsky et al. [38] brought invariant predictors into more
realistic practical situations, a large number of studies have
achieved tremendous success in suppressing spurious corre-
lations and exploring stable representations. Following this
trend, Zhang et al. [39] exploited deep stable learning to
get rid of spurious correlations and thus concentrate more
on the true correlations between discriminative features and
labels. Recently, Zhan et al. [40] designed a boundary-aware
rectified linear unit (ReLU) to avoid spurious correlations by
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improving the reliability of DNNs, where an upper bound of
ReLU is selected to ensure the correctness of the final result.
Therefore, we adopt OOD awareness to remove spurious
correlations so that the generated samples are within a rea-
sonable region. In other words, the generated samples need
to satisfy the condition that they are neither easily perceived
(i.e., similarity) nor easily misclassified (i.e., discrepancy).

3 PROBLEM STATEMENT

Considering the protection of source model Ms and target
model Mt in deep transfer learning, we adopt an L-layer
feed-forward DNN to describe a general model M as fol-
lows:

M(·;α) :=
(
ML

αL
◦ML−1

αL−1
◦ · · ·M1

α1

)
(·), (1)

which is parameterized by α := {α1, ...,αL}. We utilize
M b to denote the b-th layer of the model M and employ
M (b1,b2) to represent the layers ranging from b1 to b2, i.e.,
M (b1,b2) := M b1 ◦ · · · ◦M b2 . The first b layers is denoted
as M (b) for shorthand. This paper mainly investigates the
deep knowledge transfer scenarios, where both the source
and target models may be subject to surrogate model attacks
and fine-tuning attacks during the entire transfer learning
process. To this end, we design a robust and reversible wa-
termark, which can provide a guarantee for the realization
of flexible and controllable integrity authentication. Specifi-
cally, the goal of reversible watermarking is to embed a T -
bit vector e (i.e., the substantive information of watermark)
into the source model Ms to generate the embedded source
model M ′s. Then, the source model with robust watermark
can be manipulated to obtain the target model with robust
watermark. In addition, the embedding information of the
watermark can be extracted completely without causing
damage to the model. Thus, the task can be expressed as:

M ′s = Emb(Ms, e), (2)

M ′t = Ada(M ′s), (3){
(Ms, e) = Ext(M ′s),

(Mt, e) = Ext(M ′t),
(4)

where Emb(·) and Ext(·) denote the embedding and ex-
traction algorithms, M ′s and M ′t represent the embedded
source and target models, and Ada(·) denotes an adaptation
function that transfers knowledge from a source model to
a target model. A proof is provided in Appendix A to
demonstrate that the embedded content is not affected by
Eq. (3) in the process of knowledge transfer.

The working principle of this paper is based on the
hypothesis that if a model M can perform well in the source
and target domains, then if a series of trigger samples can
be generated in the OOD region (i.e., neither the source nor
the target domain), M will also learn the knowledge in this
region as a specific pattern of the watermark, which can be
adopted for forensics. We summarize the characteristics of
copyright protection for deep transfer learning models:
• Against piracy: Both the source and target models need

to be protected because the target model may be easily
obtained according to the source model.

• Against corruption: The process of adapting the water-
marked source model to the target domain requires resis-
tance to various attacks, including fine-tuning, pruning,
and cross-domain matching.

• Against takeover: In the whole process of deep transfer
learning, it is possible to be subjected to replacement
attacks. Therefore, the watermark needs to be reversible
to provide integrity authentication.

In transfer learning scenarios, we make three assump-
tions about the adversary. First, the adversary intends to put
its own watermark on the source and target models or to
destroy the legitimate watermark. Second, the adversary is
not willing to sacrifice the functionality of the deep transfer
learning model, that is, if the attack significantly degrades
the performance of the model, it means that the attack fails.
Third, the adversary has limited source and target data,
as well as limited computational resources; otherwise, the
adversary can train its own deep transfer learning model
from scratch, which will cause the IP protection of the model
to become unimportant. Our goal is to make it sufficiently
difficult to break the watermark so that it is more cost-
effective for the adversary to pay reasonable licensing fees.

4 PROPOSED SRDW SCHEME

Based on the above analysis, we propose a subnetwork-
lossless robust watermarking scheme for deep transfer
learning models (DTLMs) as shown in Fig. 3, which can
effectively realize the IP protection of DTLMs. The pri-
mary goal is to generate key samples and embed them
successfully without updating the parameters related to the
inference performance of normal input data. Specifically, the
key samples have to satisfy three criteria:
1) Distinguishability of key samples: A reasonable degree

of differentiation (DOD) should be maintained between
the key and task samples. As a high DOD makes it easy
to perceive embedding operations, while a low DOD is
prone to misclassification.

2) Preservation of model functionality: The watermark
should have no negative impacts on the functionality of
DNNs in the process of embedding and extracting.

3) Control of labels: The labels of key samples should be
easily manipulated by the legitimate DNN model.
To fulfill these criteria, we present a novel OOD-guided

data augmentation, which can explore inherent distribution
relationships in the source and target data and guarantee the
synthetic samples located in reasonable regions. Therefore,
we generate new samples close to the boundary regions of
the source and target domains as key samples so that the
models can easily handle their labels with minor modifica-
tions. In addition, we design the reversible compensation
information to ensure that the watermark can be extracted
from the embedded source and target networks without
harming the carrier in the absence of malicious jamming
attacks. For a quick reference, Table 1 presents the notations
and their definitions used in this article. The details of each
step will be provided in the following sections.

4.1 OOD-Guided Data Augmentation
To obtain robust trigger samples and promote useful knowl-
edge transfer, we propose an OOD-guided data augmenta-
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Fig. 3: A novel subnetwork-lossless robust DNN watermarking framework for deep transfer learning models in this paper.

TABLE 1: Descriptions of notations used in this article.

Notation Definition
Ms Source model
Mt Target model
xs Source sample
ys Source data label
xt Target sample
yt Target data label
x̂ Generated sample
ŷ Generated data label
e Substantive information vector
M ′s Embedded source model
M ′t Embedded target model
z Potential coding vector
τ Domain label condition
θ Distribution parameter
φ Condition distribution parameters
µx Mean value of samples
σx Standard deviation of samples
ns Total number of source samples
nt Total number of target samples
ψ Variational posterior distribution parameters

γ1, γ2 Adjustable thresholds
η Modification function
Θ Model parameters
α Neural network layer parameters
λ Adjustable control parameter
Eca Contrastive alignment error
β1, β2 Balance parameter
ξ Margin value
H Hash value
Nd Original core subnetwork
Nw Original watermarked core subnetwork
Ñw Current watermarked core subnetwork
Na
w Attacked watermarked core subnetwork

tion model based on constrained variational autoencoder
(CVAE) to generate synthetic features through conditioned
domain labels rather than simple class labels.

As illustrated in Fig. 4, for an input sample x from either
the source or target data, the goal of the encoder is to sim-
ulate a distribution pθ(z) (i.e., approximated by qφ(z|x, τ)),
where the potential coding vector z can be selected and then
fed into the decoder to obtain the reconstructed input fea-
ture x̂. Concretely, θ and φ are the parameters that describes
the corresponding data distribution, and τ represents the
domain label condition (i.e. τ ∈ {s, t}). The decoder can

be parameterized through pθ(x|z, τ), so that the model is
expected to guide the generation of new data with the prior
knowledge of source and target samples. In basic CVAE, the
loss function consists of the following two components:

Lc(x;φ, θ) = Lre(x, x̂) +DKL(N (µx, σx)||N (0, I)), (5)

where µx and σx denote the mean and the standard devi-
ation, respectively. The first term Lre estimates the recon-
struction error and the second term DKL calculates the KL
divergence between the empirical distribution and the stan-
dard normal distribution. The KL divergence is a powerful
constraint term that can force the learned potential coding
vector z to follow the standard normal distribution. This
additional constraint allows the learned model to obtain the
ability to generate the desired data from the potential coding
vector z collected from the standard normal distribution.

To implement the OOD-guided data generation, we
modify the loss function and introduce the evaluation mech-
anism for synthetic samples. To this end, the improved loss
function can be given in the following form:

Lic(x;φ, θ) = Lre(xs, x̂s) + Lre(xt, x̂t)
+Lre(xs, x̂st) + Lre(xt, x̂ts),

(6)

where x̂st denotes the reconstructed source sample from the
target domain, and x̂ts is the reconstructed target sample
from the source domain. The first two terms calculate the
non-cross-domain reconstruction errors for the source and
target samples, while the last two terms measure the cross-
domain reconstruction errors. Subsequently, we evaluate the
generated data by introducing likelihood gap (LG), which
measures the underlying log likelihood improvement of
model configuration that makes the likelihood of a single
sample larger than the population likelihood.

Motivated by the following observations, if a genera-
tive model is well trained, given in-distribution (ID) test
samples, the current model configuration may be close to
the optimal one and the improvement of the likelihood is
relatively small, so that the LG will be low; however, given
OOD test samples, since the pre-trained model has not seen
similar samples, the current model configuration may differ
considerably from the optimal one and the improvement
of the likelihood is relatively large, so that the LG will be
high. Consequently, LG can serve as a basis for the region
division of synthetic samples. For a specific input sample x,
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Fig. 4: The diagram of OOD-guided data augmentation based on
constrained variational autoencoder. The encoder and decoder are
constrained by the domain label s or t. Given the source sample xs
or the target sample xt as the input, the model generates reconstructed
samples x̂s, x̂ts, x̂t, and x̂st, which can be divided into three categories
(i.e., available samples, key samples, and useless samples). The avail-
able samples can be utilized to improve the performance of the task
model, and the key samples are employed to implement watermark
embedding.

we use ψ(x, φ) to represent the sufficient statistics (µx, σx)
of qφ(z|x, τ). In this way, the loss function in Eq. (6) can be
expressed as Lic(x;ψ(x, φ), θ) to reveal the dependence on
ψ(x, φ). According to the variational evidence lower bound
(ELBO) [41], we train the CVAE to obtain optimal param-
eters (φ∗, θ∗) by minimizing the improved loss function
instead of maximizing the likelihood, i.e.,

(φ∗, θ∗) = argmin
(φ,θ)

1

ns + nt

ns+nt∑
i=1

Lic(xi;ψ(xi, φ), θ), (7)

where ns and nt are the total number of source and target
samples, respectively. Moreover, if the decoder parameters
θ∗ are fixed, the optimal configuration of the variational
posterior distribution parameters ψ̂(x, φ) can be found by
minimizing the improved loss function as follows:

ψ̂(x, φ) = argmin
ψ

Lic(x;ψ, θ∗). (8)

In other words, ψ̂(x, φ) is the optimal posterior distribution
of the potential coding vector z derived from the training
data in the case of the specific input x and the optimal
decoder θ∗. Therefore, the likelihood gap (LG) of the input
sample x can be defined as:

LG(x) = Lic(x; ψ̂(x, φ), θ∗)− Lic(x;φ∗, θ∗). (9)

LG can be interpreted as the difference between the likeli-
hood obtained from the generation model (CVAE) with the
optimal configuration and the likelihood obtained from the
CVAE learned on the training set.

The synthetic samples are mapped from a high-
dimensional feature space to a label space including three
categories, including available samples (e.g., denoted by
“0”), key samples (e.g., denoted by “1”), and useless sam-
ples (e.g., denoted by “2”). The corresponding label can be
recorded as:

ŷ =


0, if LG ≤ γ1,
1, if γ1 < LG ≤ γ2,
2, if γ2 < LG,

(10)

where γ1 and γ2 are the two adjustable thresholds. In
practice, the distribution of the generated data is compared

with the distribution of the available data to adaptively
adjust the threshold so that the generated samples fall in
a plausible region.

4.2 Alternating Optimization Embedding
In order to maintain the predictive capability of the original
model, we propose an alternating optimization embedding
based on module risk minimization to explore the most suit-
able modification space for robust watermark embedding.
The robust watermark is reflected in both the specific pat-
terns and the substantive contents. Specifically, the specific
patterns of the watermark are realized by key samples and
copyright verification labels. The substantive contents of the
watermark are composed of the embedding modification
and the compensation information. The embedding mod-
ification aims to implement the specific trigger-response
patterns, while the compensation information is designed
to achieve the lossless recovery of core subnetwork for
integrity authentication.

In functional lottery ticket hypothesis, the findings sug-
gest that a randomly initialized full network contains an ini-
tialized subnetwork, and it can achieve better OOD perfor-
mance (i.e., a wider recognition region) than the original full
network for a given functionality (e.g., handwritten digit
classification) when trained individually [42]. Our objective
is to ensure that the OOD performance can be generalized
to key sample regions.

Concretely, for a source model Ms(x;α), there exists a
modification function η guiding the model Ms(x;η(α

′))
with initialization parameter α′ to expand the OOD per-
formance to the region where the key samples are lo-
cated. Therefore, an ideal alternative is to characterize the
best modification function, i.e., the mapping from α to
the optimal parameter η∗(α). We capture the changes in
α through scaling and shifting the corresponding hidden
units of Ms(x;η(α)), which in turn requires the additional
parameters η′, denoted as Θ = {η(α),η′}. Given a loss
function l (e.g., cross entropy loss) and a regularization term
R(η,α) (e.g., squared L2-norm distance), we are interested
in

η∗(α) = argmin
η

E(x,y)∈Ds∪k [L(x, y;η,α)], (11)

L(x, y;η,α) = l(Ms(x;α), y) +R(η,α), (12)

where Ds∪k is the data region where the source and key
samples are located, and E(x,y)∈Ds∪k [·] represents the ex-
pectation that is uniformly distributed over Ds∪k.

By replacing the typical objective in Eq. (11), our desired
training objective can be defined as follows:

min
Θ

Eα∼p(α),(x,y)∈Ds∪k [L(x, y;Θ,α)], (13)

where p(α) denotes the distribution of the parameter α.
The main benefit of Eq. (13) is that a single training learns
a parametric relationship α → M Θ̂

s (x;α) between the
modification and performance, which approximates the de-
scription of M Θ̂

s for the parameters in the support of p(α).
We adopt p(α|ε) to represent a distribution with a bound of
ε containing the range α. The training process first performs
a stochastic gradient search on Θ and a joint sampling of
α ∼ p(α|ε) and (x, y) ∈ Ds∪k in Eq. (13). Subsequently, the
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tuning step implements a stochastic gradient update on ε by
minimizing the validation objective. Inspired by the varia-
tional inference [43], we introduce an entropy regularization
term T [·] controlled by λ to prevent p(α|ε) from changing
into a degenerate distribution, so the following equation can
be obtained:

min
ε

Eα∼p(α|ε),(x,y)∈Dval
s∪k

[
lval(M

Θ̂
s (x;α), y)− λT [p(α|ε)]

]
,

(14)

where Dvals∪k is the region where the source and key samples
are located in the validation data, lval denotes the loss
function (e.g., cross entropy loss) on the validation data, and
λ ≥ 0 is an adjustable control parameter.

By investigating the trigger response rules between the
data and the model, the regularized representations of key
samples are utilized to identify the core subnetwork, while
the embedding objective function is optimized to minimize
the modification loss. The success rate of watermark embed-
ding is enhanced by explicitly exploring the discriminative
direction of the core subnetwork instead of randomly select-
ing from the candidate key samples. Some hyperparameters
of the neural network (e.g., regularization parameters) can
be optimized by estimating the best response function. In
other words, a matching trigger response is implemented
by constructing a mapping from the hyperparameters to
the parameters of the neural network. Therefore, Eq. (14)
learns this mapping by tuning the parameters of the model
on the validation set, and the embedding of the watermark
is finally achieved by alternating optimization iterations.
Furthermore, we observe that the model subnetworks can
be regulated to achieve adaptive optimization while avoid-
ing fitting spurious correlations by imposing the necessary
parametric constraints, which have been verified in Section
6.6.

4.3 Reversible Compensation Information Acquisition

The reversible compensation information is obtained by
calculating the contrastive alignment error and the corre-
sponding hash value, which is an important guarantee to
achieve watermark reversibility. The contrastive alignment
error is utilized to measure the difference between the orig-
inal network and the watermarked network. We minimize
the contrastive alignment error to make the representations
of the aligned sublayers have a very small distance while
those of the unaligned sublayers have a large distance:

Eca(α) =
∑

(i,i′)∈M+

‖αi−αi′‖2+
∑

(j,j′)∈M−
β1[‖αj−αj′‖2−ξ]+,

(15)
whereM+ andM− denote the set of layers aligned and un-
aligned after the training of key samples, respectively. [ν]+
means to compare the element ν with 0 and take the larger
element as its value, i.e., [ν]+ = max(0, ν). β1 is a balance
parameter. The distance of unaligned layers is supposed to
be larger than a margin ξ, i.e., ‖αj − αj′‖2 > ξ. In this
way, the specific patterns and the substantive contents of
the watermark can be associated with each other to achieve
reversible embedding. In addition, the mathematical proof
for the recovery of the original parameters in the core
subnetwork can be seen in Appendix B.

In the knowledge transfer from source domains to tar-
get domains, the watermarked source models would be
attacked in an unavoidable way (e.g., fine-tuning the pre-
trained model parameters or pruning the redundant convo-
lution channels) or suffer from malicious design manipula-
tions such as removing the watermark through overwriting.
Therefore, it is necessary to authenticate the integrity of the
deep transfer learning model at the user terminal. To this
end, the robust watermarked network Nw1

(e.g., source or
target network) is hashed to produce a hash value H , which
is offered as part of the reversible compensation informa-
tion for fragile authentication. The reversible compensation
information is first compressed in a lossless way and then
embedded into the edge of the core subnetwork, which can
be isolated from the robust watermark embedding area.
Such a way is beneficial to ensure the reversibility and
reduce the impact on watermarking performance. However,
when the reversible compensation information is too large
to be fully embedded into the edge area, the remaining part
will be embedded into the frozen shallow layers (i.e., non-
core subnetwork).

The lossless compression aims to find a smaller net-
work that is locally equivalent to the original network. In
other words, the local equivalence for the underlying input
data is sufficient to guarantee that both networks have
the same performance in any test environments. To make
the core subnetwork more compact, we need to explore
the relationships between data inputs, network connections
and final outputs to embed more reversible compensation
information at the edge of the core subnetwork through the
lossless compression technique. We introduce a probabilistic
connection importance evaluation to determine whether the
connections are correlated with their outputs in a DNN.
Specifically, we adopt the probabilistic tensor product de-
composition [44] to split the association of two connected
nodes into two components, including correlated outputs
and uncorrelated outputs. If the strength of the component
is high, this component is retained. Otherwise, it is removed.
Meanwhile, the weights and biases of these layers are ad-
justed accordingly.

Since the reversible embedding process can be regarded
as an additive blending operation while the watermark
message is embedded into the core subnetwork, the embed-
ding operation of reversible compensation information in
the non-core subnetwork has little effect on the watermark.
Our proposed subnetwork-lossless robust watermarking is
summarized in Algorithm 1. Specifically, to preserve the
functionality of the model, we find the most suitable embed-
ding modification space based on module risk minimization
to update the space-specific parameters, instead of all pa-
rameters. We adjust the sample sizes between key samples
and task samples during training to rectify the learning bias
to achieve the robust DNN watermarking, as shown in steps
8-14. Afterwards, we verify the existence of the watermark
in the model by observing the specific trigger-response pat-
terns and by extracting the substantive contents. On the one
hand, we generate key samples through the OOD-guided
data augmentation technique to make the model output the
corresponding copyright verification labels, which can be
used to verify whether the model contains a watermark. On
the other hand, a more accurate approach is to effectively
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Algorithm 1 Subnetwork-Lossless Robust Watermarking

Input: source datasets Ds = {(xis, yis) (i = 1, 2, ..., ns)},
target datasets Dt = {(xjt , y

j
t ) (j = 1, 2, ..., nt)}, pre-

training parameters Θpre, number of iteration T ;
Output: number of key samples nk, watermarked model
Mw;

1: Initialize δ = 0;
2: While δ < T do;
3: δ ← δ + 1;
4: Train the encoder and decoder usingDs andDt according

to Eq. (6);
5: Search the optimal configuration of variational parame-

ters by minimizing the loss function in Eq. (7);
6: Assign the corresponding labels for synthetic samples

using Eq. (10);
7: End while
8: For ζ = 1, 2, ..., nk (Optimization Embedding) do
9: If ζ = 0, initialize parameters Θ′ = Θpre, otherwise,

Θ′ = Θζ−1, where Θζ−1 represents the set of parameters
for the model when the embedding number of key samples
is ζ − 1;

10: Explore the most suitable modification space for robust
watermark embedding by Eq. (11) and Eq. (12);

11: Guide the update of parameters during the watermark
embedding based on Eq. (14);

12: Calculate the contrastive alignment error Eca and the
corresponding hash value H ;

13: Embed the reversible compensation information into the
edge of the core subnetwork through lossless compression;

14: End for

extract the substantive information of the watermark and
then determine the existence of the watermark by integrity
authentication. Moreover, we show how to verify whether
the model contains a watermark through experiments in
Section 6.2 and Section 6.4.

4.4 Content Integrity Authentication
In this section, we explore the feasibility to realize the
integrity authentication by the application of hash value.
Note that we verify the integrity between the source and
target core subnetworks, not the entire model. We record
Ñw2

as the current version of the final watermarked network
Nw2

. To authenticate the integrity of the core network after
knowledge transfer, we first obtain the hash value H1 using
the same reversible watermarking technique. Subsequently,
the core subnetwork Ñw1

is recovered and the correspond-
ing hash value H2 will be calculated. If the hash values H1

and H2 are identical, we assume that there is no malicious
attack during knowledge transfer or model deployment,
and the original core subnetwork can be recovered loss-
lessly. Otherwise, it means that the network Nw2

is subject
to a malicious attack, which results in the permanent loss
of the network. In this case, the watermark can be directly
extracted from the network Ñw2

for robust authentication.
The details of extracting the robust watermark and recover-
ing the original core subnetwork will be presented.

a) Extraction under non-attack conditions
As mentioned above, we can effectively extract the ro-

bust watermark and simultaneously recover the original
core subnetwork if the model is not attacked. The process
of watermark extraction and original core subnetwork re-
covery is described as follows.

1) Extraction of the reversible compensation information:
At the user terminal, we have Ñw2

= Nw2
if there is no

malicious jamming attack. In this way, we can accurately
extract the reversible compensation through the same water-
marking technique. Subsequently, the robust watermarked
subnetwork Nw1

can be recovered.
2) Extraction of the watermark: Under the condition of

no malicious jamming attacks, the watermark information
can be extracted by using Eq. (14) in alternating optimiza-
tion to determine the embedding position and calculate the
substantive content.

3) Recovery of the original core subnetwork: After ex-
tracting the robust watermark, the reversible compensation
information is utilized to recover the original core subnet-
work from watermarked network according to Eq. (15).
Following the description in Section 4.3, the extracted con-
trastive alignment error Eca will be applied to compensate
the network Ñd (d ∈ {s, t}) to recover the original core
subnetwork Nd, which can be expressed as:

Ñd = Nd + Eca. (16)

b) Extraction under attack conditions
We denote the network Na

w2
as the attacked version of

the watermarked network Nw2 . Although the original core
subnetwork cannot be recovered under the attack scenarios,
the embedded watermark is still be effectively extracted be-
cause the subnetwork determined by alternate optimization
based on module risk minimization has strong robustness
against the attacks of fine-tuning and pruning operations.

Similar to the embedding process of watermarking, the
watermark extraction is performed using the differences
between before and after the embedding modifications by
Eq. (14). Through the calculation of reversible compensation
information via Eq. (15), we estimate the magnitude of the
contrastive alignment error to accomplish accurate extrac-
tion of the watermark. In this way, we effectively extract
the embedded substantive watermark information in case
of malicious jamming attacks, which can be applied for the
content integrity authentication. Specifically, by imposing
the necessary parametric constraints, the model subnetwork
is adjusted using Eq. (14) to achieve adaptive optimization,
while eliminating the risk of fitting spurious correlations.
Subsequently, the contrastive alignment error contained in
the reversible compensation information needs to be com-
puted by Eq. (15) during the watermark embedding pro-
cess. In the process of watermark extraction, the legitimate
copyright owner can exploit the prior knowledge to obtain
the reversible compensation information in a specific area.
Moreover, the original parameters of the core subnetwork
can be recovered by the contrastive alignment error, for
which we provide a detailed mathematical proof in Ap-
pendix B. After recovering the original parameters, it is
easy to obtain the substantive embedding information of
the watermark to complete the extraction of the watermark.
Therefore, both the extraction of the watermark by Eq. (14)
and the calculation of the reversible compensation informa-
tion by Eq. (15) do not require the original model.
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5 EXPERIMENTAL SETTING AND IMPLEMENTATION

5.1 Datasets and Models
In our experiments, we evaluate the SRDW on the popular
datasets, including the Rotated MNIST, CIFAR-10 & STL-10,
and PACS. The detailed information about these datasets
is summarized in Table 2. We adopt four typical deep
transfer learning architectures (i.e., standard knowledge
distillation (SKD) [45], domain-adversarial neural network
(DANN)1 [46], multi-source distilling domain adaptation
(MDDA)2 [47], and robust feature adaptation (RFA)3 [48])
on these datasets to complete knowledge transfer.

In the OOD-guided data augmentation process, we gen-
erate key samples, as well as auxiliary source and target
samples, by the procedure described in Section 4.1. In the
robust reversible watermark embedding process, we seek
the most rational modification structure (i.e., core subnet-
work) by the alternating optimization mechanism based
on module risk minimization to achieve the watermark
embedding. In the process of adapting the source model
to the target domain tasks, we execute the corresponding
attack strategies according to different transfer learning
schemes. Ultimately, we perform integrity authentication by
extracting the substantive content and recovering the core
subnetwork in the presence or absence of attacks. Here,
we provide the implementation details of the datasets and
related models in our evaluation:
• Rotated MNIST: It is a modified version of MNIST pro-

duced by rotating the original grayscale hand-written
digits from 0◦ to 90◦ with an interval of 15◦. As a
baseline comparison, we first train a deep transfer learn-
ing network using standard knowledge distillation tech-
niques [45]. Specifically, we take LeNet-5 as the teacher
model. The shadow model contains two convolution lay-
ers (i.e., 32 and 64 channels) and two fully-connection
layers (i.e., 1024 and 10 channels) to construct the student
model developed by the user. Subsequently, following the
setting of [46], we compose the feature extractor with two
or three convolutional layers and then pick their exact
configurations by parameter optimization. We use the
domain adapter with three fully connected layers and the
stochastic gradient descent (SGD) with a momentum of
0.9. The initial learning rate is set to 10−3 which is scaled
by a factor of 10 at 50k iterations.

• CIFAR-10 & STL-10: Both CIFAR-10 and STL-10 are 10-
class image datasets consisting of 60,000 32 × 32 color
images and 13,000 96×96 color images, respectively. These
two datasets are similar but only one class is different.
Therefore, we employ the common nine classes in our
experiments. In the data preprocessing phase, we resize
the image in STL-10 to the size of 32 × 32. We adopt
Alexnet as our backbone. The last layer is employed as
a classifier and the other layers are utilized as encoders.
According to [47], we set the balancing coefficient to 10
empirically. We use these deep transfer learning settings
to evaluate our proposed SRDW scheme.

• PACS: It contains seven categories (dog, elephant, giraffe,
guitar, horse, house, person) and four different domains:

1. https://github.com/fungtion/DANN/
2. https://github.com/daoyuan98/MDDA/
3. https://awaisrauf.github.io/robust uda

i.e., Art paintings (A), Cartoon (C), Photo (P) and Sketch
(S). We use the ResNet-50 architecture as the backbone
model and RFA [48] as the knowledge transfer algorithm,
with the exception of the weight decay setting as 10−5 and
the learning rate setting as 10−4. The training iteration
is determined as 1,200 with a batch size of 128 samples,
and the learning rate is decayed by a factor of 0.1 at
900 iterations. We implement our scheme using this deep
transfer learning network trained on PACS.

TABLE 2: Summary of the datasets in our evaluation exper-
iments.

Datasets Source Domains Target Domains

Rotated MNIST
15◦-30◦-45◦-60◦ 0◦-90◦

15◦-45◦-60◦-75◦ 0◦-90◦

30◦-45◦-60◦-75◦ 0◦-90◦

CIFAR-10 & STL-10
CIFAR-10 STL-10

STL-10 CIFAR-10

PACS

C-P-S A
A-P-S C
A-C-S P
A-C-P S

5.2 Hostile Attacks
We evaluate the effectiveness of the proposed scheme
against the following four commonly-considered hostile
attacks in deep transfer learning scenarios.

Fine-Tuning. The adversary can remove the watermark
while maintaining the model accuracy by fine-tuning part of
the network layers on the original data (i.e., task samples).
In our experiment, the watermarked models are fine-tuned
using the corresponding validation data.

Pruning. The pruning is a powerful technique to com-
press well-trained models, which can be misused by adver-
saries to alter the embedded watermarks. We employ the
technique from [49] to implement the pruning attack.

Cross-Domain Matching. Cross-domain matching aims
to bridge the distribution gap between the source and target
domains by using the original watermarked network as a
pre-trained model. In this way, the watermarked network
will suffer from various complex processing operations
based on the corresponding distribution matching tech-
niques. In Section 6.4, we verify that it is feasible to extract
the watermarked substantive content and recover the core
subnetwork completely in the absence of malicious jamming
attacks.

Watermark Overwriting. The adversary attempts to se-
lect a new set of key samples and then use the proposed
scheme to embed a second watermark for the purpose
of overwriting the first watermark without compromising
the inference accuracy. The second watermark is randomly
selected in our experiments.

5.3 Evaluation Metrics
We adopt the following four evaluation metrics to discuss
the performance of the proposed scheme.

Fidelity is measured by the embedding success rate
Re, the accuracy loss Rl, and the number of updated
parameters. Specifically, Re calculates the percentage of
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key samples that are successfully embedded in the deep
transfer learning networks. We desire a high embedding
success rate Re and a low accuracy loss rate Rl, so that
the watermarked network preserves the performance on
normal test data. Concretely, the corresponding calculation
equations are defined as follows:

Re =
Nse
Nk

, (17)

Rl = Accbe −Accae, (18)

where Nse denotes the number of key samples successfully
embedded, Nk is the total number of key samples, Accbe
represents the accuracy before embedding (i.e., accuracy
of original model), and Accae denotes the accuracy after
embedding (i.e., accuracy of watermarked model).

Robustness is evaluated against various hostile attacks.
We use the pattern retention rate Rp to quantify the pre-
served embedding capability of watermark. Similarly, the
functionality retention rate Rf is employed to estimate the
retained prediction capability of model, which is tested on
the validation dataset. The embedded watermark should
be difficult to remove when the Rf of the task-related
inputs remains high. To be specific, the relevant evaluation
equations are expressed as follows:

Rp =
Ne
Nse

, (19)

Rf =
Accaa
Accae

, (20)

where Ne is the number of key samples that remain effec-
tive after the hostile attack, and Accaa denotes the model
accuracy after the hostile attack.

Capacity is the maximum amount of information (i.e.,
number of key samples) that the proposed scheme can em-
bed into a deep transfer learning network without violating
other constraints.

Reversibility is an important guarantee used for in-
tegrity authentication. Our scheme can extract the water-
mark and losslessly recover the core subnetwork in case of
no malicious jamming attack.

6 EXPERIMENTAL RESULTS

In the experiments, our evaluation aims to answer the
following research questions:

• RQ1: What are the embedding success rate and accuracy
loss rate of SRDW under various attacks in the process of
knowledge transfer?

• RQ2: Whether our SRDW is robust against the common
hostile attacks, such as fine-tuning, pruning, cross-domain
matching, and watermark overwriting.

• RQ3: What is the capacity of our proposed watermarking
scheme on different deep transfer learning networks?

• RQ4: Whether the integrity authentication can be effec-
tively performed by extracting the watermark and recov-
ering the core subnetwork?

6.1 Evaluation on Fidelity (RQ1)
We validate the fidelity of the proposed SRDW on a va-
riety of datasets and models. Table 3 shows the average
embedding success rate and accuracy loss rate calculated
from multiple runs of the experiments. From the results,
it can be seen that most of the selected key samples can
be successfully identified under the condition of different
numbers of given key samples. For example, our DNN
watermarking scheme can effectively embed 40 key samples
into Rotated MNIST (SKD) with an accuracy loss rate of
less than 0.09%. In addition, Fig. 5 shows the percentage
of modified parameters when the watermark embedding
is performed on the deep transfer learning networks. We
observe that the algorithm tunes less than 0.05% weights on
the core subnetwork of the RFA model trained on the PACS
dataset, while achieving a high embedding success rate and
a low prediction accuracy loss rate.

Fig. 5: Percentage of modified parameters for deep transfer learning
networks under different number of key samples.

6.2 Evaluation on Robustness (RQ2)
We utilize the four hostile attacks mentioned in Section 5.2 to
evaluate the robustness of the proposed scheme as follows.

1) Fig. 6 shows the performance of SRDW against fine-
tuning attacks. The results indicate that our scheme exhibits
robustness in the fine-tuning process. Specifically, although
the functionality retention rate decreases after several fine-
tuning tests, the pattern retention rate still remains stable
during the entire process.

2) Fig. 7 presents the effect on the embedding ability of
the watermark and the inference ability of the model with
an increasing pruning rate. It is revealed that there is no
loss in the prediction accuracy even using a pruning rate of
40%. However, as the pruning rate continues to increase, the
prediction accuracy starts to decrease sharply. Moreover, we
observe that SRDW performs better on a more complicated
deep transfer learning network, which is attributed to the
larger parameter space that can provide a more suitable and
robust core subnetwork.
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TABLE 3: Results of embedding success rate and accuracy loss rate in various deep transfer learning models.

Number
Rotated MNIST (SKD) Rotated MNIST (DANN) CIFAR-10 & STL-10 (MDDA) PACS (RFA)
Re Rl Re Rl Re Rl Re Rl

10 100% 0.00% 100% 0.01% 100% 0.05% 100% 0.04%
20 100% 0.04% 100% 0.03% 100% 0.07% 100% 0.06%
30 100% 0.06% 100% 0.07% 100% 0.06% 100% 0.08%
40 100% 0.09% 100% 0.11% 99.2% 0.12% 98.5% 0.14%

Fig. 6: Pattern retention rate and functionality retention rate in the
process of fine-tuning on validation datasets.

Fig. 7: Pattern retention rate and functionality retention rate under the
condition of various pruning rates.

3) Table 4 demonstrates the impact on the embedding
ability of the watermark (i.e., measured by pattern retention
rate Rp) and the prediction ability of the model (i.e., mea-
sured by functionality retention rate Rf ) during the process
of knowledge transfer using various cross-domain match-
ing strategies (e.g., knowledge distillation and distribution

adaptation). From the results, it can be seen that the embed-
ding ability of the watermark and the prediction ability of
the model are not affected before and after the knowledge
transfer. This is due to the fact that our scheme utilizes
the distribution relationships between source and target
samples to guide the generation of key samples, which is
a data-centric perspective that can essentially match the
data and the model perfectly to achieve robust deep transfer
learning network watermarking.

TABLE 4: Robustness of our scheme against cross-domain
matching manipulations in the process of knowledge trans-
fer.

Models Source→Target Expanded Domains Rp Rf
SKD 15◦-30◦-45◦→0◦-90◦ 60◦ 100% 100%

DANN 30◦-45◦-60◦→0◦-90◦ 75◦ 100% 100%
RFA A-P→ C S 100% 100%
RFA C-P→ S A 100% 100%

4) We evaluate the robustness of the proposed scheme
against watermark overwriting attacks, where an adversary
attempts to insert an additional watermark into the model
that disables the original legitimate watermark. From the re-
sults in Fig. 8, it can be found that our scheme is consistently
stable against overwriting attacks on different deep transfer
learning models. Moreover, the watermark embedding is
more robust on relatively complex networks. Notably, the
opposite results in Fig. 6 and Fig. 8 are caused by two
aspects. On the one hand, the difference in the type of attack
causes the discrepancy in the results. For example, Fig. 6
shows the results of the proposed scheme against the fine-
tuning attack, while Fig. 8 shows the results of the proposed
scheme against the watermark overwriting attack. On the
other hand, the difference in the unit scale of the vertical
coordinates also leads to a significant impact on the results.

6.3 Capacity Measurement (RQ3)

We present the variation trend of embedding success rate
and functionality retention rate with different numbers of
key samples in Fig. 9. Specifically, as the number of embed-
ded key samples increases, the embedding success rate and
functionality retention rate decrease, which is due to the fact
that embedding more key samples requires modifying more
weights. However, our proposed OOD-guided key sample
generation considers the distribution relationships between
the source and target domains to explore the suitable core
subnetwork for watermark embedding through module
risk minimization. In this way, the proposed watermarking
algorithm has little influence on the prior learned knowl-
edge of the network. Therefore, our scheme can achieve a
satisfactory embedding success rate (i.e., more than 92%)
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Fig. 8: Pattern retention rate and functionality retention rate in the
process of overwriting attacks.

and functionality retention rate (i.e., at least 97.5% when
embedding 90 key samples).

Fig. 9: Embedding success rate and functionality retention rate with
different numbers of key samples.

6.4 Content Integrity Authentication (RQ4)

We evaluate the application of the proposed SRDW scheme
for content integrity authentication. We first determine the
location of the core subnetwork, and then use the hash
algorithm (e.g., secure hash algorithm 256) to obtain the rep-
resentation of the entire core subnetwork. The characteristics
of the hash algorithm are employed to judge whether the
model is subject to malicious jamming attacks, i.e., the hash
value will change no matter where the attacker modifies
the core subnetwork. In the absence of malicious jamming
attacks, we adopt reversible compensation information to
extract the substantive watermark content and recover the
core subnetwork without loss. Similarly, in the case of
malicious jamming attacks, only the watermark substantive
content is extracted, and the results are provided in Table
5. All experiments indicate that our scheme can effectively
extract the embedded watermark. Moreover, the core sub-
network can be recovered losslessly under the condition of
no malicious jamming attack.

6.5 Impact of Reversible Compensation Information

We perform a set of experiments to evaluate the influence
of reversible compensation information on the performance
of the model. The simulation experiments are conducted
using the lossless compression technique to observe the
trend of model performance with the embedding amount
of reversible compensation information. Fig. 10 shows the
variation curve of model performance with the embedding
amount of reversible compensation information. From the
experimental results, it can be seen that as the embedding
amount of reversible compensation information increases,
the change curve of model performance can be divided into
three stages. Namely, the model performance remains stable
at first, then the model performance decreases slowly, and
finally the model performance decreases sharply. Therefore,
the embedding amount of reversible compensation informa-
tion would not affect the performance of the model within
a certain range. Moreover, when the embedding amount
keeps increasing and the embedding cannot be completed
in the edge area of core subnetwork, the remaining part
will be embedded in the frozen shallow layer of non-core
subnetwork, which will cause the performance of the model
to degrade slowly. However, if the embedding amount is
too large to embed in the edge area and the frozen shallow
layer, the performance of the model decreases sharply. In ad-
dition, it can also be observed from the experiments that the
embedding capacity of reversible compensation information
using the lossless compression technique is about 300 bits to
600 bits.

Fig. 10: Results of functionality retention rate with different embedding
amounts of reversible compensation information.

6.6 Ablation Study

We conduct ablation experiments to investigate the follow-
ing contents: 1) the influence of the threshold selection on
our proposed scheme; 2) the impact of the batch normaliza-
tion (BN) layer modification rate on the resistance to hostile
attacks.
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TABLE 5: Evaluation results of content integrity authentication under 30 key samples. “0” indicates without attack, while
“1” denotes with attack. “Yes” means that the core subnetwork can be losslessly recovered, while “No” represents that the
core subnetwork is irreversible.

Models Source Domains Target Domains Attacks Reversibility Length of Watermark (Bits)

SKD 15◦-30◦-45◦-60◦ 0◦-90◦
0 Yes

7648
1 No

DANN 30◦-45◦-60◦-75◦ 0◦-90◦
0 Yes

5290
1 No

MDDA STL-10 CIFAR-10
0 Yes

9735
1 No

RFA A-C-S P
0 Yes

13260
1 No

Effect of threshold settings. We observed that the
threshold setting is crucial for OOD-guided key sample
generation. In the following experiments, we investigate
the impact of key samples generated by different thresh-
old selections on embedding success rate and functionality
retention rate with MDDA model on CIFAR-10 & STL-10
dataset. Our thresholds can divide the synthesized sam-
ples into three categories, including available samples (i.e.,
source or target samples), key samples, and useless samples
(i.e., interference samples). We select five threshold settings
under a given number of embedded key samples (e.g., 30
key samples), as shown in Fig. 11. From the experimental re-
sults, it can be seen that the appropriate threshold selection
is beneficial to improving the embedding success rate and
functionality retention rate. The reason is that the proper
threshold setting can promote the quality of the generated
samples, which can keep the key samples and task samples
with a reasonable distinguishability. Specifically, for CIFAR-
10 → STL-10 task, a threshold setting of (0.4, 0.8) enables
our scheme to exhibit superior performance.

Fig. 11: Results of embedding success rate and functionality retention
rate with different threshold settings on CIFAR-10 & STL-10 dataset.

Effect of BN layer modification rate. For the models
using knowledge distillation strategies, we evaluate the
impact of the BN layer modification rate on the resistance to
hostile attacks (e.g., pruning attacks). We draw the curve of
pattern retention rate and functionality retention rate with
BN layer modification rate on three tasks (i.e., Task1: 15◦-
30◦-45◦-60◦→0◦-90◦, Task2: 15◦-30◦-45◦-60◦→0◦-90◦, and
Task3: 15◦-30◦-45◦-60◦→0◦-90◦) using a fixed pruning rate
(e.g., 30% or 60%), as shown in Fig. 12. It can be found
that as the increase of the BN layer modification rate, the
performance of our scheme to resist the pruning attack grad-
ually decreases. The reason may be attributed to the fact that
the BN layers are correlated with the discriminative power

of spurious correlations, which will result in a decrease
in the inference ability of the model due to the excessive
modification of BN layers.

6.7 Analysis and Discussion
We summarize a comparison table according to the prop-
erties of DNN watermarks, as shown in Table 6. Here
we classify the watermarks into four categories, includ-
ing non-robust irreversible, robust irreversible, non-robust
reversible, and robust reversible. For non-robust irre-
versible watermark, which is similar to steganographic
techniques [50], [51], the DNN model can be regarded
as a carrier to achieve covert communications. For robust
irreversible watermark, it is mainly applied for copyright
protection. For non-robust reversible watermark, it can be
utilized for global integrity authentication (i.e., the entire
network can be recovered losslessly). For robust reversible
watermarking, it can be deployed for local integrity au-
thentication (i.e., the core subnetwork can be recovered
losslessly).

Most of the existing approaches aim to embed key sam-
ples into specific regions to achieve robust watermarking,
which ignores reversibility and results in a failure of in-
tegrity authentication. In this way, it is easily corrupted by
attacks during knowledge transfer because these methods
cannot seek the most suitable parameter space for em-
bedding. Although it is intuitive to consider white-box-
based embedding for reversible watermarking, the poor
robustness restricts its practical application. Moreover, there
are multiple complex network modification attacks during
knowledge transfer, which can severely damage the global
integrity of the model. Therefore, the watermarking of deep
transfer learning model requires to be able to achieve the
local integrity authentication. Our scheme essentially im-
plements robust and reversible embedding of watermarks
by considering the matching relationship between the data
and model. From the experimental results in Section 6.2, it
is clear that our scheme is effective for cross-domain match-
ing attacks (e.g., knowledge distillation and deep domain
adaptation) during the knowledge transfer. Meanwhile, in
order to realize the reversibility, our scheme needs to restrict
the embedding operations into the core subnetwork, which
causes the proposed scheme to exhibit some limitations
in terms of watermarking capacity. However, as analyzed
and discussed above, our watermarking scheme can pro-
vide competitive results, such as fidelity, robustness and
reversibility on deep transfer learning models.
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Fig. 12: Results of pattern retention rate and functionality retention rate with different BN layer modification rates under the condition of pruning
attacks.

TABLE 6: Qualitative comparison for four different DNN watermarks according to the characteristics of DNN watermarks.

Properties of DNN Watermarks Robustness Capacity Reversibility Deep Transfer Learning Scenarios Application
Non-Robust & Irreversible × Large × × Secret Communications

Robust & Irreversible
√

Small × × Intellectual Property Protection
Non-Robust & Reversible × Medium

√ × Global Integrity Authentication
Robust & Reversible (Ours)

√
Medium

√ √
Local Integrity Authentication

7 CONCLUSION

Intellectual property protection for deep transfer learning
models is an intriguing but challenging issue due to the un-
certainty of knowledge transfer. Motivated by the reversible
media watermarking and the excellent generalizability of
DNNs, we innovatively propose a subnetwork-lossless ro-
bust watermarking for hostile theft attacks in deep transfer
learning models. The following conclusions can be derived
from this research work: 1) the OOD-guided data augmenta-
tion based on constrained variational autoencoder can gen-
erate samples to reveal the predictive relationships between
the data and the model, which provides a crucial guidance
to ensure that the synthetic key samples fall in a reasonable
region; 2) a module risk minimization is introduced to find
the most suitable modification space for robust watermark
embedding, which can preserve the predictive capability
of the original model in alternating optimization manner;
3) this paper presents a new DNN watermarking solution
with reversibility and robustness for deep transfer learning
models that can losslessly recover the core subnetwork for
content integrity authentication in the absence of malicious
jamming attacks; and 4) extensive empirical results indicate
that our proposed scheme achieves superior performance
on a wide range of settings and deep transfer learning ar-
chitectures, and can further the facilitate robustness against
hostile attacks by reducing the embedding modifications in
batch normalization layers.

There are still some interesting issues that need to be
addressed in the near future. For example, although a large
number of samples are generated with an OOD-guided
technique, it is worthy to investigate how to evaluate these
samples to improve both the robustness of the watermark
and the generalization of the model. In addition, since the
size of the core subnetwork limits the embedding length of
the watermark, it is necessary to design an adaptive sub-
network selection criterion that can enhance the embedding
capability to a certain extent.
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