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mVulPreter: A Multi-granularity Vulnerability
Detection System with Interpretations
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Abstract—Due to the powerful automatic feature extraction, deep learning-based vulnerability detection methods have evolved
significantly in recent years. However, almost all current work focuses on detecting vulnerabilities at a single granularity (i.e., slice-level
or function-level). In practice, slice-level vulnerability detection is fine-grained but may contain incomplete vulnerability details.
Function-level vulnerability detection includes full vulnerability semantics but may contain vulnerability-unrelated statements.
Meanwhile, they pay more attention to predicting whether the source code is vulnerable and cannot pinpoint which statements are
more likely to be vulnerable. In this paper, we design mVulPreter, a multi-granularity vulnerability detector that can provide
interpretations of detection results. Specifically, we propose a novel technique to effectively blend the advantages of function-level and
slice-level vulnerability detection models and output the detection results’ interpretation only by the model itself. We evaluate
mVulPreter on a dataset containing 5,310 vulnerable functions and 7,601 non-vulnerable functions. The experimental results indicate
that mVulPreter outperforms existing state-of-the-art vulnerability detection approaches (i.e., Checkmarx, FlawFinder, RATS,
TokenCNN, StatementLSTM, SySeVR, and Devign).

Index Terms—Vulnerability Detection, Deep Learning, Interpretable AI, Graph Neural Network.
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1 INTRODUCTION

Most cyber-attacks [1], [2], such as hacker ransomware
and botnet attacks, originate from software vulnerabilities,
which have caused vast harm in our daily life [3]. Therefore,
security researchers have invested much energy in devel-
oping various vulnerability prediction and detection tools.
In general, source code vulnerability detection methods can
be classified into similarity-based [4], [5], [6], [7], [8] and
pattern-based [9], [10], [11], [12], [13], [14], [15], [16], [17].
Similarity-based methods can detect vulnerabilities caused
by code reuse, but they suffer from high false negatives for
newly emerging vulnerabilities. Traditional pattern-based
methods require human experts to define vulnerability
features to represent vulnerabilities, leading to high false
positive rates. Therefore, an ideal vulnerability detection
method requires less labor and achieves low false positive
and false negative rates.

Automated approaches, especially deep learning, have
received extensive attention due to their powerful mod-
eling and intelligent pattern learning capabilities. There-
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fore, security researchers have applied them to vulnerabil-
ity detection. According to the code granularity processed
by the models, current deep learning-based vulnerability
detectors can be classified into two main categories, that
is, function-level [14], [18], [19] and slice-level [12], [13],
[20]. At function-level, a complete function is labeled and
used as a training sample. At slice-level, the training slices
are generated by the data-dependent analysis starting from
vulnerability interesting points (i.e., sensitive APIs, pointer
usages, array usages, and integer usages) that frequently
introduce vulnerabilities. In practice, a vulnerable function
can cover the complete vulnerability feature but introduce
many vulnerability-unrelated statements. A slice can better
capture a vulnerability with less noise than the function [21].
However, the criterion of slices is the root cause of the vul-
nerabilities, which does not guarantee that slicing will cover
their trigger location. So some of the necessary vulnerability
features may be absent in a vulnerable slice. Moreover, most
of these studies cannot interpret the vulnerability detection
results. They focus on predicting the program source code
as either vulnerable or not, but cannot pinpoint which lines
of code are more likely to be vulnerable.

In this paper, we aim to combine the fine-granularity of
the slice-level with the complete semantics of the function-
level to construct an accurate and interpretable vulnerability
detector. Specifically, we mainly address two challenges.

• How to combine the advantages of slice-level and function-
level vulnerability detection to reduce false positives and
false negatives?

• How to give a detailed interpretation of the vulnerability
detection results?

To address the first challenge, we leverage two deep
neural networks to perform vulnerability detection at both
function-level and slice-level. Given the source code of a
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function, we first apply static analysis to extract the Pro-
gram Dependency Graph (PDG). Then we split PDG into
subgraphs (i.e., slices) via program slicing based on the
interesting points of vulnerabilities. These slices will be fed
into a trained slice-level detection model to calculate their
predicted probabilities. The lower the probability, the less
likely it is to contain vulnerable code. Therefore, we discard
those slices with the lowest probability. Based on this, we
can purify the function semantics to achieve more accurate
vulnerability detection at function level.

To address the second challenge, we incorporate an
attention mechanism into the function-level vulnerability
detection model to determine the weight of each slice.
Meanwhile, we also consider the probability of the slice
predicted by the slice-level vulnerability detector. After
combining the weight with the probability, we can compute
a specific score for each slice. In this way, each statement is
assigned a score by accumulating the slice scores to which
it belongs. The higher the score of the statement, the more
likely it is a vulnerable statement.

We implement mVulPreter and evaluate it on a dataset
consisting of 5,310 vulnerable and 7,601 non-vulnerable
functions. The experimental results report that mVulPreter
is superior to three rule-based tools (i.e., Checkmarx [9],
FlawFinder [11], and RATS [10]) and four deep learning-
based systems (i.e., TokenCNN [17], StatementLSTM [22],
SySeVR [23], and Devign [14]). Additionally, the detection re-
sults of mVulPreter can be interpreted by the attention mod-
ule and slice-level vulnerability detector, which achieve the
best performance compared to current SOTA interpreters
(i.e., GNNExplainer [24] and PGExplainer [25]). We also con-
duct a case study to examine the ability of mVulPreter to
scan vulnerabilities in real-world open-source products. As
a result, mVulPreter discovers 28 new vulnerabilities that are
not reported in National Vulnerability Database (NVD). We
have reported them to their vendors and hope that they can
be patched as soon as possible.

In summary, our paper makes the following contribu-
tions:

• To the best of our knowledge, we are the first to com-
bine the function-level and slice-level vulnerability
detection models to achieve effective vulnerability
detection.

• We design mVulPreter1, a novel multi-granularity
graph-based vulnerability detector that can give de-
tailed interpretations of the detection results.

• We conduct an extensive evaluation to demonstrate
the effectiveness of mVulPreter. Through the results,
we find that mVulPreter outperforms seven state-of-
the-art vulnerability detection methods (i.e., Check-
marx [9], FlawFinder [11], RATS [10], TokenCNN [17],
StatementLSTM [22], SySeVR [23], and Devign [14]).

• We perform a case study on more than 25 million
lines of code to check the practicability of mVulPreter
on real-world vulnerability scanning. Through the
results, we discover 28 new vulnerabilities that are
not reported in NVD.

1. https://github.com/tao7777/mVulPreter

2 MOTIVATION

To illustrate the limitations of existing method and motivate
the idea of our approach, we adopt a real-world vulnera-
bility (CVE-2012-0850 [26]) from FFmpeg [27] as a running
example, which is a buffer errors vulnerability (CWE-119).

Fig 1 shows the vulnerable function and corresponding
slices of CVE-2012-0850. Through manual analysis, we can
infer that the vulnerability is introduced by an incorrect
control condition (i.e., the root cause). In detail, the branch
condition in the vulnerable function is *v_off==0 (line 6).
So the decreasing shift operation *v_off-=128>div in the
else branch (line 11) will be handled when *v_off is not
equal to 0. It may lead to a negative value of v in the
forward data dependency of *v_off (lines 21-22, 31-32),
resulting in buffer underflow when accessing the array v,
thus triggering a buffer error vulnerability.

Based on the vulnerability description above, we can
learn that a code sample can only capture the vulnerabil-
ity when it covers both the root cause (line 6) and the
vulnerability trigger location (lines 21-22, 31-32). At slice-
level, the slices containing the deletions in the patch (i.e.,
vulnerable slices) extracted from this function are S1, S2,
and S3, as shown in Fig 1. However, none of these three
slices can contain both the causes and the trigger location of
the vulnerability. Specifically, S1 and S3 cover the trigger
positions, while S2 is related to the root cause. Besides,
there are some non-vulnerable slices extracted (S4-S9). For
example, S4 shows a slice performed from the integer vari-
able saved_samples as a criterion. At function-level, the
function contains the comprehensive vulnerability features,
but it also includes many statements that are not related
to the vulnerability. Too much noise within the training
samples makes it difficult for the model to learn the accurate
vulnerability feature.

The above analysis shows that when slicing a vulnera-
ble function, the vulnerability semantics may be split into
different slices so that some slices only contain part of
the vulnerable code. In other words, a slice containing
vulnerable code may not be able to represent complete
vulnerability knowledge, resulting in inaccuracies in slice-
level vulnerability detection. Moreover, some slices from
a vulnerable function may be non-vulnerable slices, which
means a vulnerable function may contain normal behaviors.
Normal behaviors in the function may confuse the function-
level detector, making the detection less accurate.

In short, slice-level vulnerability detection is fine-grained
but may contain incomplete vulnerability semantics. How-
ever, function-level vulnerability detection includes full vul-
nerability semantics but may contain normal behaviors.
In this paper, we aim to combine the fine-granularity of
slice-level methods with the full semantics of function-level
detectors to achieve more accurate vulnerability detection.
To this end, we design mVulPreter, a novel multi-granularity
graph-based vulnerability detection system.

3 SYSTEM ARCHITECTURE

This section introduces mVulPreter, a novel multi-
granularity vulnerability detection system that combines
function-level with slice-level learning models.
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1         static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
                                       float *out, float X[2][38][64],
                                       float mdct_buf[2][64],
                                       float *v0, int *v_off, const unsigned int div){         
2        int i, n;
3        const float *sbr_qmf_window = div ? sbr_qmf_window_ds :                

sbr_qmf_window_us;
4        float *v;
5        for (i = 0; i < 32; i++) {
6            if (*v_off == 0) {
7                int saved_samples = (1280 - 128) >> div;
8                memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, 

                saved_samples * sizeof(float));
9               *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
10          } else {
11             *v_off -= 128 >> div;
12          }
13           v = v0 + *v_off;
14           if (div) {
15               for (n = 0; n < 32; n++) {
16                  X[0][i][   n] = -X[0][i][n];
17                  X[0][i][32+n] =  X[1][i][31-n];
18               }
19              mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
20              for (n = 0; n < 32; n++) {
21                   v[     n] =  mdct_buf[0][63 - 2*n];
22                   v[63 - n] = -mdct_buf[0][62 - 2*n];
23                }
24             } else {
25                for (n = 1; n < 64; n+=2) {
26                X[1][i][n] = -X[1][i][n];
27             }
28            mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
29            mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
30            for (n = 0; n < 64; n++) {
31                 v[      n] = -mdct_buf[0][63 -   n] + mdct_buf[1][  n    ];
32                 v[127 - n] =  mdct_buf[0][63 -   n] + mdct_buf[1][  n    ];
33              }
34          }
35         dsp->vector_fmul_add(out, v, sbr_qmf_window , zero64, 64 >> div);

 ...
46         out += 64 >> div;
47      }
48    }
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2       int i, n;
15     for (n = 0; n < 32; n++) {
16      X[0][i][   n] = -X[0][i][n];
17      X[0][i][32+n] =  X[1][i][31-n];
20      for (n = 0; n < 32; n++) {
21      v[     n] =  mdct_buf[0][63 - 2*n];
22      v[63 - n] = -mdct_buf[0][62 - 2*n];
25      for (n = 1; n < 64; n+=2) {
26      X[1][i][n] = -X[1][i][n];
30      for (n = 0; n < 64; n++) {
31      v[      n] = -mdct_buf[0][63 -   n] + mdct_buf[1][  n    ];
32      v[127 - n] =  mdct_buf[0][63 -   n] + mdct_buf[1][  n    ];
35   dsp->vector_fmul_add(out, v, sbr_qmf_window , zero64, 64 >> div);

1      static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
                                       float *out, float X[2][38][64],
                                       float mdct_buf[2][64],
                                       float *v0, int *v_off, const unsigned int div){ 
35   dsp->vector_fmul_add(out, v, sbr_qmf_window , zero64, 64 >> div);
46   out += 64 >> div;

7      int saved_samples = (1280 - 128) >> div;
8      memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, 

                saved_samples * sizeof(float));
9     *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
11   *v_off -= 128 >> div;
13   v = v0 + *v_off;
35   dsp->vector_fmul_add(out, v, sbr_qmf_window , zero64, 64 >> div);

1      static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
                                       float *out, float X[2][38][64],
                                       float mdct_buf[2][64],
                                       float *v0, int *v_off, const unsigned int div){ 
3     const float *sbr_qmf_window = div ? sbr_qmf_window_ds :                

sbr_qmf_window_us;
7     int saved_samples = (1280 - 128) >> div;
9     *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
11   *v_off -= 128 >> div;
46    out += 64 >> div;

1      static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
                                       float *out, float X[2][38][64],
                                       float mdct_buf[2][64],
                                       float *v0, int *v_off, const unsigned int div){ 
21   v[     n] =  mdct_buf[0][63 - 2*n];
22   v[63 - n] = -mdct_buf[0][62 - 2*n];
31   v[      n] = -mdct_buf[0][63 -   n] + mdct_buf[1][  n    ];
32   v[127 - n] =  mdct_buf[0][63 -   n] + mdct_buf[1][  n    ];
35   dsp->vector_fmul_add(out, v, sbr_qmf_window , zero64, 64 >> div);

1    static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
                                       float *out, float X[2][38][64],
                                       float mdct_buf[2][64],
                                       float *v0, int *v_off, const unsigned int div){ 
6     if (*v_off == 0) {
13   v = v0 + *v_off;
35   dsp->vector_fmul_add(out, v, sbr_qmf_window , zero64, 64 >> div);

1      static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
                                       float *out, float X[2][38][64],
                                       float mdct_buf[2][64],
                                       float *v0, int *v_off, const unsigned int div){ 
16            X[0][i][   n] = -X[0][i][n];
17            X[0][i][32+n] =  X[1][i][31-n];
19            mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
26            X[1][i][n] = -X[1][i][n];
28            mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
29            mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);

2            int i, n;
5           for (i = 0; i < 32; i++) { 
16            X[0][i][   n] = -X[0][i][n];
17            X[0][i][32+n] =  X[1][i][31-n];
26            X[1][i][n] = -X[1][i][n];
28            mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
29            mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);

1    static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
                                       float *out, float X[2][38][64],
                                       float mdct_buf[2][64],
                                       float *v0, int *v_off, const unsigned int div){ 
8      memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, 

                saved_samples * sizeof(float));13   v = v0 + *v_off;
13   v = v0 + *v_off;
35   dsp->vector_fmul_add(out, v, sbr_qmf_window , zero64, 64 >> div);
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Fig. 1: The vulnerable function and slices of CVE-2012-0850
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void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        /* POTENTIAL FLAW: 

Possible buffer overflow if data 

is larger than sizeof(dest)-

strlen(dest)*/

        strncat(dest, data, 

strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Source Code of a Function

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, 

strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Step 1: Remove comments

void bad()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = badSource(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        printLine(VAR1);

    }

}

Step 2: Map user-defined variables

void FUN1()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = FUN2(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        FUN3(VAR1);

    }

}

Step  3: Map user-defined functions

char * VAR1;

char VAR2[100];

VAR1 = VAR2;

VAR1 = FUN2(VAR1);

 char VAR3[50] = "";

strncat(VAR3, VAR1, strlen(VAR1));

VAR3[50-1] = '\0'; 

FUN3(VAR1);

VAR2

VAR3

VAR1

VAR1

VAR1

VAR3

Step 4: Extract program dependency graph

char * VAR1;

char VAR2[100];

VAR1 = VAR2;

VAR1 = FUN2(VAR1);

 char VAR3[50] = "";

strncat(VAR3, VAR1, strlen(VAR1));

VAR3[50-1] = '\0'; 

FUN3(VAR1);
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Step 4: Extract program dependency graph
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Fig. 2: System overview of mVulPreter

3.1 Overview

As shown in Fig 2, mVulPreter consists of three main phases:
Data Preprocessing, Slice Purification, and Vulnerability De-
tection. The input to mVulPreter is the source code of the
target function, and the output is whether the function is
vulnerable and the critical vulnerable statements.

• Data Preprocessing: Given the source code of a
function, we first perform code normalization on it
and then extract the PDG of the normalized function.

• Slice Purification: Given the PDG, we first split it
into multiple slices via program slicing. Next, we
filter them with low relevance to the vulnerability
according to the output (i.e., predicted probability) of
the pre-trained slice-level detector.

• Vulnerability Detection: Our final phase is designed
to output the detection results of functions and corre-
sponding interpretations. We first train an attention-
based function-level model to detect vulnerability,
and then interpret the detection results by combining
attention weights with the predicted probabilities of
the slice-level detector.

3.2 Data Preprocessing

mVulPreter is targeted to detect function-level vulnerabil-
ities, which is an appropriate granularity as it contains
more comprehensive vulnerability features than slice-level
and less noise than file-level. Before extracting the graph
representation of a function, we first abstract and normalize
the source code. In particular, we utilize three levels of
normalization, which make mVulPreter resilient to common
code modifications while preserving program semantics.

Steps 1-3 in Fig 3 illustrate the detailed normalization
process of a function at different levels.

• Step 1: Remove comments that do not affect the
semantics of the program.

• Step 2: Map user-defined variables one by one to
symbolic names (i.e., VAR1).

• Step 3: Map user-defined functions one by one to
symbolic names (i.e., FUN1).

To obtain a complete representation of the dependencies
within a function, we resort to the PDG. It is constructed
based on the nodes of the Abstract Syntax Tree (AST), part
of which are connected by data-dependence and control-
dependence edges. As for implement, mVulPreter utilizes
Joern [28], [29], an open-source code analysis platform for
C/C++, to extract the PDG of the abstracted function.

3.3 Slice Purification

In this phase, mVulPreter splits the PDG of a function into
slices. With the help of a slice-level GNN model, the slices
within a function that have little contribution to vulnerabil-
ity detection are filtered out.
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void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        /* POTENTIAL FLAW: 

Possible buffer overflow if data 

is larger than sizeof(dest)-

strlen(dest)*/

        strncat(dest, data, 

strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Source Code of a Function

void bad()

{

    char * data;

    char dataBuffer[100];

    data = dataBuffer;

    data = badSource(data);

    {

        char dest[50] = "";

        strncat(dest, data, 

strlen(data));

        dest[50-1] = '\0';         

        printLine(data);

    }

}

Step 1: Remove comments

void bad()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = badSource(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        printLine(VAR1);

    }

}

Step 2: Map user-defined variables

void FUN1()

{

    char * VAR1;

    char VAR2[100];

    VAR1 = VAR2;

    VAR1 = FUN2(VAR1);

    {

        char VAR3[50] = "";

        strncat(VAR3, VAR1, 

                   strlen(VAR1));

        VAR3[50-1] = '\0'; 

        FUN3(VAR1);

    }

}

Step  3: Map user-defined functions

char * VAR1;

char VAR2[100];

VAR1 = VAR2;

VAR1 = FUN2(VAR1);

 char VAR3[50] = "";

strncat(VAR3, VAR1, strlen(VAR1));

VAR3[50-1] = '\0'; 

FUN3(VAR1);

VAR2

VAR3

VAR1

VAR1

VAR1

VAR3

Step 4: Extract program dependency graph

char * VAR1;

char VAR2[100];

VAR1 = VAR2;

VAR1 = FUN2(VAR1);

 char VAR3[50] = "";

strncat(VAR3, VAR1, strlen(VAR1));

VAR3[50-1] = '\0'; 

FUN3(VAR1);

VAR2

VAR3

VAR1

VAR1

VAR1

VAR3

Step 4: Extract program dependency graph
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Fig. 3: An example to illustrate the detailed phases of mVulPreter

3.3.1 Slice Extraction

As shown in Step 5 of Fig 3, mVulPreter performs program
slicing from the interesting points of vulnerabilities to ex-
tract slices based on the PDG of a target function.

First, we introduce the interesting points of vulnerabil-
ities, i.e., the root causes of vulnerabilities summarized by
manual analysis. Previous work [23] has demonstrated four
code features that often lead to vulnerabilities, including
sensitive APIs, arrays, integers, and pointers. Therefore,
mVulPreter also regards the above features as the interesting
points of vulnerabilities, which are starting points for pro-
gram slicing. For example, the identified interesting points
are * data (pointer), dataBuffer (array), dest (array),
and strncat (sensitive API) in the example of Fig 1.

After identifying above interesting points, we set each of
them as a slicing criterion. In detail, we perform forward-
and backward- slicing [30], [31] on the PDG of the function.
Then the forward and backward slices are concatenated to
generate the program slices, which exclude vulnerability-
unrelated statements while preserving the source code
structure information. S1-S4 of Step 5 in Fig 3 are the slices
we obtained. Each slice generated in this step contains two
parts of information: nodes (i.e., node code) and edges (i.e.,
the dependencies between nodes). Red lines and blue lines
show the data flows and control flows between the code
lines within the function, respectively. To display the PDG
of the vulnerability more clearly, we replace each line of

code with a numbered circular node. Eight lines of code
correspond to eight circular nodes, as shown in Fig 3.

Note that program slicing from various code lines for the
same variable may generate different slices. For example,
the variable n is an integer variable considered a vulnera-
bility interesting points in Fig 1. S1 is a slice generated by
data dependency analysis on the variable n starting from
line 2. However, when extracting slices for the variable n
starting from line 15, the generated slice S1’ contains lines
15-17. Obviously, all the nodes within the S1’ are included
in the S1. In this case, after obtaining all the slices, we
perform simple preliminary filtering on them. For the slices
with inclusion relations, only retain those that contain the
most lines of code. That is, for S1 and S1’ we filter out
S1’. In contrast to S3 and S4, since they are extracted from
different variables, it is not necessary to filter out S4 even if
S3 contains all the nodes of S4.

3.3.2 Slice Filtering
In this part, we introduce the slice-level model that is used
to filter a part of slices within a function. Each slice extracted
from a function can be regarded as a behavior. Those behav-
iors unrelated to vulnerabilities contribute little and even
interfere with the function’s vulnerability detection. So this
phase of mVulPreter is designed to filter out these ”useless”
slices within a function.

Node Embedding Module. For each slice, we first pro-
cess them into a proper data structure to train the Graph
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Neural Network (GNN) [32] model. We treat a line of code
as a sentence and apply sentence embedding to transform it
into a fixed-length vector. Specifically, we choose a widely
used method, Sent2Vec [33], to complete our node embed-
ding. It adopts a simple but efficient unsupervised objective
to train distributed representations of sentences. Each slice
is presented by a feature matrix V ′′

i after node embedding,
whose length is m × n, where m denotes the number of
nodes within the slice and n indicates the dimension of the
embedding vector, which is 100 in this paper.

Slice Embedding Module. To better capture the struc-
ture of a graph, we leverage a graph-based model to embed
the slices further. The reason is that the graph-based model
regards the source code as graphs with comprehensive syn-
tactic and semantic information. Moreover, there are various
kinds of graph-based networks whose insights are aggregat-
ing neighborhood information [34], [35], [36]. Among them,
Gated Graph Recurrent Network (GGNN) is more adaptive for
our task of detecting vulnerability based on structured and
semantically informative graph information. So we adopt
GGNN for slice embedding.

For the node feature matrix V ′′
i of the slice, GGNN

converts it into a slice feature matrix by embedding each
node with its neighborhoods. The output is V ′

i , whose the
length is m× n′, where n′ means the dimension of the slice
feature matrix, here we set it to 200.

Slice Detecting and Filtering Module. This module is
designed to detect vulnerabilities at slice-level and filter out
the “useless” slices based on the detection results.

The slice-level detector fuses further the matrices
(V ′

i , V
′′
i ) extracted by the previous modules and maps them

into a score, i.e., the final binary detection result. In detail,
we perform convolutions for V ′

i and (V ′
i , V

′′
i ), respectively.

After each convolution layer, we employ Relu [37] as the ac-
tivation function and then use Maximum Pooling to generate
Yi and Zi. Finally, Yi and Zi are fed into a Fully Connected
Layer for dot product operation with a Sigmoid function after
Averaging Pooling. Moreover, the loss function for penalizing
the incorrect classification is Binary Cross Entropy (BCELoss).
We train the model with Adam [38] with a learning rate of
0.0001. The output is the predicted probability of the slice,
as illustrated in Step 6 of Fig 3.

In practice, the slices with the lowest predicted probabil-
ity are considered the least relevant to the vulnerability and
are referred to as “useless” slices. They contribute little to
the results of function-level vulnerability detection. There-
fore, we rank each slice’s predicted probability p from a
function and discard a certain percentage of slices according
to a set threshold (set to 25% in this paper). For example, we
drop out the slice S4 with the lowest value of probability in
Step 6 of Fig 3.

Note that we train the slice-level detector before using it
to complete the filtering task. To this end, we first annotate
the slices in the same way as in previous work [23] [12],
i.e., the slice that contains the deletions in the vulnerability
patch is labeled as a 1 (vulnerable). Otherwise it is 0 (not
vulnerable). Then we use them for training our slice-level
vulnerability detector. Additionally, the slice whose value
of predicted probability p is greater than 0.5 is regarded as
vulnerable when evaluating the effectiveness of the slice-
level detector.

3.4 Vulnerability Detection

This phase is designed to detect vulnerabilities and output
the interpretations. We leverage an attention-based GNN
model as a functional-level detector. In addition, the inter-
pretation is derived by combining the attention weight with
the predicted probability of slice-level detector.

3.4.1 Vulnerability Prediction
The GNN model with the attention mechanism improves
detection effectiveness and provides a coarse-grained expla-
nation for the detection results.

GNN Model. In this part, we introduce the overall
structure of the function-level detector, as shown in Step
7 of Fig 3. The input is the remaining slices of the function
filtered by the slice-level detector. Similar to the process in
Step 6, we first generate the node feature matrix (i.e., V ′′

i ,
whose length is m × n) and then generate the slice feature
matrix (i.e., V ′

i , whose length is m× n′) via GGNN.
To simply the slice feature matrices, we employ pooling

operations. In detail, we perform Average Pooling on the
node feature matrix V ′′

i and corresponding slice feature ma-
trix V ′

i of the remained slices within a function, respectively.
Then we concatenate them into a matrix Vi, which presents
the slice’s feature. A function is comprised of all the slice
representations (Vi, i ∈ [1, k]), where k denotes the number
of slices after filtering.

Attention Module. Given the slice representations, we
utilize the Attention Mechanism to strengthen the impact of
important slices and assign the attention score for each slice
within a function.

Specifically, the slice representation Vi is regarded as key
and query. We multiply the key and query 1, whose result is
used for weight calculation 2. After that, the product of query
and weight is connected with key, and the attention weight s
is the output after linear and activation layers 3. The formulas
are as follows:

x = key × queryT (1)

weight =
exp(xi)∑k
i=1exp(xi)

(2)

s = tanh(linear(weight ∗ query, key)) (3)

In addition, the Attention Mechanism helps to aggregate
all the slice representations Vi within the function into a
vector V . Then, it is fed into the function-level model to
generate the prediction result of the function, as shown in
Step 7 of Fig 3. Since the structure of the function-level
detector is the same as that of the slice-level one, it will
not be described in detail due to the page limitation. Finally,
the output of the function-level detector is detection results,
showing whether the targeted function is vulnerable or not,
and the attention weight for each slice.

3.4.2 Result Interpretation
In this part, we describe the process of interpreting the
results of vulnerability detection.

To obtain the importance score for each code line, we
rely on the slice’s predicted probability p outputted by the
slice-level detector and each slice’s attention weight s within
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a function outputted by the function-level detector. The
predicted probability p represents the probability that this
slice is vulnerable. The weight s indicates the importance of
this slice in the detection of the overall function.

For each statement, we calculate its importance score W ,
which is the sum value of each slice’s score containing this
statement. The initial value of W is set to 0. First, we scan
all slices for this statement. For each slice i that includes
this statement, we calculate the slice’s importance score Wi

by s × p. Note that the case of p <= 0.5 means the slice
is not vulnerable; thus, the importance of this statement is
weakened by W = W − Wi. Conversely, p > 0.5 implies
that the slice is vulnerable and contains statements that
contribute to the function detection result. Therefore, the
importance of this statement is reinforced by W = W +Wi.

To better describe the interpretation method, we give
a detailed example to illustrate the importance score W
calculation for line 13 of the function in Fig 1. Its predicted
probability p and the attention weight s of each slice within
the function are shown in Table 1. We can see that line
13 appears in S2, S4, and S7. Among them, the predicted
expectation of S2 is greater than 0.5, whereas that of S4 and
S7 are less than 0.5. According to the above formula, the
final importance score W of line 13 can be calculated by
W2−W4−W7 (0.572×0.336−0.395×0.028−0.451×0.052),
whose value is 0.157680, as shown in Fig 6.

After performing the above calculation, we can obtain
the importance score of each statement within the function.
The top-ranked ones are the explanations of the vulnerabil-
ity detection results after sorting the importance scores of all
statements. In other words, these statements are considered
to be ones that make a significant contribution to whether
the function is vulnerable or not.

4 EXPERIMENTS

In this section, our experiments are centered on answering
the following Research Questions (RQs):

• RQ1: What is the detection performance of mVul-
Preter on detecting source code vulnerability?

• RQ2: Can mVulPreter give an accurate interpretation
for the vulnerability detection results?

• RQ3: Can mVulPreter be used to scan for vulnerabili-
ties in real-world products?

4.1 Experiment Settings
4.1.1 Dataset
We conduct all experiments on a subset of the widely used
dataset Big-Vul [39]. We adopt it for our experiments for two
reasons. First, it is a high-quality vulnerability dataset con-
sisting of real vulnerability functions. Specifically, it covers
CVE entries from 2002 to 2019 in 348 different open source
projects, with a total of 11,834 vulnerable functions and
253,096 non-vulnerable functions. Second, it is necessary to
have vulnerability patches and the corresponding functions
before and after being patched, which are used to annotate
samples at function-level and slice-level. Big-Vul provides
those that satisfy our needs.

It should be noted that the Big-Vul dataset crawls all
the functions in the source files where the vulnerability

patches are present. Then, the functions before the patch are
labeled as vulnerable, and those after the patch are labeled
as non-vulnerable. Moreover, the functions without any
modifications are also kept and labeled non-vulnerable. Due
to the limitations of the slice annotation approach described
in Section 3.3.2, we have to remove functions without any
deletions. Finally, our vulnerability dataset consists of 5,310
vulnerable and 7,601 non-vulnerable functions, obtaining
20,485 vulnerable slices and 164,110 non-vulnerable slices.

4.1.2 Implementations
We run all experiments on a machine with 128G RAM, 16
cores of CPU and a GTX 5000 GPU. Phases of mVulPreter
are implemented with Joern [40], sent2vec [33], and PyTorch
[41]. For the dataset, we randomly split the dataset accord-
ing to the number of function samples into a training set, a
validation set, and a test set, with a ratio of 8:1:1, which is
similar to the common approaches [12]. Finally, the training
set has 10,329 functions with 147,590 slices; the validation
set has 1,291 functions consisting of 18,395 slices; and the
test set has 1,291 functions including 18,610 slices. It should
be noted that the above three subsets are not only used for
the slice-level detector but also for the function-level one.

4.1.3 Metrics
The metrics used to measure the effectiveness of mVulPreter
are the same as others [8], [12], [14].

• True Positive (TP): the number of samples correctly
predicted as vulnerable.

• True Negative (TN): the number of samples correctly
predicted as non-vulnerable.

• False Positive (FP): the number of samples incorrectly
classified as vulnerable.

• False Negative (FN): the number of samples incor-
rectly classified as non-vulnerable.

• Accuracy=(TP+TN)/(TP+TN+FP+FN)
• Recall=TP/(TP+FN)
• Precision=TP/(TP+FP)
• F1=2∗Precision∗Recall/(Precision+Recall)

4.2 RQ1: Detection Effectiveness
We first present the detection performance of mVulPreter
under different thresholds to filter “useless” slices. Specif-
ically, we select nine thresholds (0%, 5%, 10%, 15%, 20%,
25%, 30%, 35%, and 40%) to commence our evaluations. 0%
denotes that we do not filter any slices, which is a general
function-level vulnerability detection process. 5% means
that we discard the slices with the predicted probability in
the last 5% and only keep the first 95% of that for subsequent
function-level vulnerability detection. The predicted proba-
bility is the output of the trained slice-level vulnerability
detector. In detail, we train and validate the detector using
the slices from the training and validation sets (as Section
4.1.2), respectively. And it achieves an F1 score of 78.8%
in the test. The final experimental results (i.e., function-
level detector’s output) are presented in Fig 4. We see that
the threshold is positively correlated with the detection
performance at first. The higher the threshold, the better
the detection performance. This suggests that our slice-level
model can indeed filter some slices that do not contain
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Fig. 4: The detection effectiveness of mVulPreter with differ-
ent thresholds to filter program slices

vulnerable code, which helps to reduce the noise within the
function. As a result, it makes the subsequent function-level
vulnerability detection better. When the threshold increases
to 25%, the model can obtain the best detection performance.
However, if we continue to increase the filtering threshold,
the detection performance of the model will decrease as
the threshold increases. It is reasonable because more slices
will be discarded if the threshold is set too high. But
some of those may be vulnerable, reducing the detection
performance. Overall, mVulPreter achieves the best detection
performance when we choose to filter slices with predicted
probability in the bottom 25% as shown in Fig 4 .

We then compare mVulPreter with several vulnerability
detection tools, including one commercial static vulnerabil-
ity detector (i.e., Checkmarx [9]), two static analysis systems
(i.e., FlawFinder [11] and RATS [10]), and four deep learning-
based vulnerability detection methods2 (i.e., TokenCNN [17],
StatementLSTM [22], SySeVR [23], and Devign [14]).

As for the commercial tool (i.e., Checkmarx) and two static
analysis systems (i.e., FlawFinder and RATS), the detection
performance in Fig 5 shows that their precision, recall, and
F1 are not ideal. For example, the recall of Checkmarx is only
31.9%, which means that Checkmarx can only detect 31.9%
of vulnerabilities in the experimental dataset. They depend
on rules or patterns defined by human experts. However,
it is impossible for the experts to define all patterns of
vulnerabilities, resulting in poor detection performance.

As for deep learning-based detectors, we compare mVul-
Preter with four state-of-the-art ones (i.e., TokenCNN [17],
StatementLSTM [22], SySeVR [23], and Devign [14]).

With token-based method. TokenCNN first transforms
the source code into a token sequence by lexical analysis and
then embeds it into a vector, which is input for Convolutional
Neural Network (CNN) model. Obviously, TokenCNN regards
the source code as plain text, which lacks consideration of
the semantic and structural information of the source code.
It leads to a weaker performance in vulnerability detection
than mVulPreter.

2. For convenience, we name the unnamed models based on their
code representations (e.g., token) and neural networks (e.g., CNN).
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Fig. 5: The detection effectiveness of Checkmarx, FlawFinder,
RATS, TokenCNN, StatementLSTM, SySeVR, Devign, and
mVulPreter

With statement-based method. StatementLSTM treats
each line of code as a sentence and embeds it into a fixed-
length vector representation. Then they are fed into a Long
Short-Term Memory (LSTM) model for training a vulnerabil-
ity detector. Similar to TokenCNN, StatementLSTM does not
consider any program structure details, resulting in poor
detection performance compared with that of mVulPreter.

With slice-based method. At slice-level, SySeVR is one
of the most representative works. It performs slicing on the
targeted program to generate the code gadgets and then
embeds them into corresponding vector representations.
Unlike methods at other levels, the extraction of slices
purifies the training samples, i.e., it removes many irrelevant
statements with vulnerabilities. However, the entire slice is
also treated as a piece of text. So the dependencies between
code lines are not captured in the slice, resulting in poor
detection performance.

With graph-based method. As for Devign, it first applies
complex program analysis to extract a graph representation
(i.e., Code Property Graph (CPG)) and then uses a general
graph neural network to detect vulnerability. The represen-
tation of the CPG enables the training sample to contain
comprehensive semantic and syntactic information about
the code. However, such complex graph also contains cer-
tain normal behaviors, making the detector can not perform
as well as mVulPreter.

Summary: mVulPreter can achieve the best performance when
we discard the slices with the predicted probability in the last
25%. At this time, the detection performance of mVulPreter is
better than that of Checkmarx, FlawFinder, RATS, TokenCNN,
StatementLSTM, SySeVR, and Devign.

4.3 RQ2: Interpretability

An Interpretation Example. First, we take the Fig 1 as an
example to illustrate that how mVulPreter interprets the de-
tection results. Table 1 presents the output of the two models
of mVulPreter. The column “Slice-level model prediction”
shows the predicted probability value of each slice within
the function, which is the output of the slice-level model.
And the column “Function-level model attention weight”
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TABLE 1: The output of mutiple-granularity models for the slices in Fig 1

Criterion
line number

Variable
name

Vulnerability
interesting points

type

Slice-level
model

prediction

Function-level
model attention

weight
Lines within the slice

S1 2 n integer 0.547 0.186 2,15,16,17,20,21,22,25,26,30,31,32,35
S2 1 v off pointer 0.572 0.336 1, 6, 13, 35
S3 1 mdct buf pointer 0.553 0.197 1, 21, 22, 31, 32, 35
S4 7 saved sample integer 0.395 0.028 7, 8, 9, 11, 13, 35
S5 2 i integer 0.466 0.068 2, 5, 16, 17, 26, 28, 29
S6 1 X integer 0.472 0.075 1, 16, 17, 19, 26, 28, 29
S7 1 v0 integer 0.451 0.052 1, 8, 13, 35
S8 1 div integer 0.410 0.035 1, 3, 7, 9, 11, 46
S9 1 out pointer 0.446 0.023 1, 35, 46

shows the weight value of the slices output by the function-
level model. The score of each code line is calculated by
accumulating the values of the above two columns, as de-
scribed in Section 3.4.2. Finally, the scores of code lines in the
function are ranked, where higher scores represent a higher
probability of being vulnerable. This ranked list of statement
scores interprets the detection results and provides security
researchers with a guideline for vulnerability analysis.

35    dsp->vector_fmul_add(out, v, sbr_qmf_window , zero64, 64 >> div); 0.358105
21    v[     n] =  mdct_buf[0][63 - 2*n]; 0.210683
22    v[63 - n] = -mdct_buf[0][62 - 2*n]; 0.210683
31    v[      n] = -mdct_buf[0][63 -   n] + mdct_buf[1][  n    ]; 0.210683
32    v[127 - n] =  mdct_buf[0][63 -   n] + mdct_buf[1][  n    ]; 0.210683
1      static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct, 0.206613
                 float *out, float X[2][38][64],
                 float mdct_buf[2][64],
                 float *v0, int *v_off, const unsigned int div) {
6      if (*v_off == 0) { 0.192192
13    v = v0 + *v_off; 0.157680
15    for (n = 0; n < 32; n++) { 0.101742
25    for (n = 1; n < 64; n+=2) { 0.101742

Fig. 6: The interpretation results for Fig 1

For the scores of all code lines within the function in Fig
1, we select the top 10 for display (see Fig 6). The value
shown in red on the right side denotes its corresponding
final importance score. According to the analysis in Section
2, the statements related to the vulnerability are line 6 (i.e.,
the root cause) and lines 21-22, 31-32 (i.e., trigger location).
As shown in Fig 6, the top-scoring statements are lines 35,
21-22, 31-32, 1, and 6, where all the interpretation results we
expect are included. This proves that mVulPreter can provide
a valid interpretation for the vulnerability detection.

Aside from the correct interpretation, some intriguing
phenomena merit our attention. The statement at line 35
obtains the highest score, whose type is a function-call.
Multiple parameters are passed in it, such as out, v, and
sbr_qmf_window. Since function-call statements generally
have more variables than others, they tend to have more
data dependencies with others. In other words, the number
of slices that contain function-call statements is greater than
other types of statements, resulting in a higher importance
score than others. To avoid “false positives” caused by
function-call statements, we recommend ignoring them if
they are not sensitive APIs.

In addition, the statement at line 1 obtaining a high
score is a function header statement (i.e., Joern parsed as
METHOD type), which is also a type with multiple pa-
rameters. Therefore, at least one slice is derived from each

parameter when conducting data dependency analysis. It
means that many slices cover this statement, resulting in it
achieving a high score. However, we rarely consider func-
tion header statements as vulnerability-related statements.

Comparisons. In this part, we pay attention to accuracy
and time performance of mVulPreter and two comparative
interpreters. As shown in Table 2, the evaluation metrics,
accuracy, is adopted by [42]. Specifically, [42] has mentioned
that if an interpretation result has an overlap with any
statement in the code changes that fix the vulnerability, it
is considered correct. And accuracy can be calculated as a
ratio between the number of correct interpretations over
the total number. They also have proven that when the
number of statements is higher than 5, the accuracy of
interpreters increases more slowly. Thus, we evaluate the
accuracy of the top 5 most important statements in the
interpreted results of each interpreter. For scalability, we
randomly select 500 functions from our dataset to estimate
runtime. Therefore, the time performance reported in Table
2 is the seconds required for each interpreter to interpret
above 500 functions.

TABLE 2: The accuracy and runtime of interpretation

GNNExplainer PGExplainer mVulPreter
Accuracy 0.53 0.55 0.65
Scalability 10595.3s 167.5s 0.98s

For accuracy, PGExplainer [25] performs slightly better
than GNNExplainer [24]. GNNExplainer is designed to ex-
plain a single instance. Its explanation result is not learned
from the model being explained, so it may be affected
by the suboptimal generalization performance. In contrast,
PGExplainer uses a parametric interpreter that considers the
structure of the model being explained, making its expla-
nation result accurate. Among them, mVulPreter achieves
the best interpretation performance. Unlike the above two
comparative tools that are common interpreters designed
for GNN, mVulPreter’s interpretation is derived from the
analysis of vulnerability characteristics. That is, mVulPreter
believes that a statement derived from a vulnerable slice
may contribute more to function-level vulnerability detec-
tion and is more likely to be a vulnerable statement. More-
over, the weights assigned to each slice by the attention-
based function-level detector also indicate its contribution.
Therefore, by intelligently combining the probabilities with
weights of the slices, the importance score of each statement
can be obtained. The higher the score is achieved, the more
the statement contributes to vulnerability detection. Thus,
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for the interpretation of vulnerability detection, mVulPreter
is superior as it is an interpreter designed based on vulner-
ability features.

For scalability, the runtime of mVulPreter is significantly
less than the two comparative tools. GNNExplainer must
be retrained for each interpreted instance, so it is time-
consuming when interpreting a large number of nodes. In
contrast, PGExplainer is trained to parameterize the inter-
preter, making it directly interpret data. As a result, it takes
less time than GNNExplainer. However, mVulPreter is not
an additional interpretation model and therefore does not
require any high overhead training process. It only requires
a simple arithmetic operation on each statement’s weights
and probabilities to obtain the importance score, whose
interpretation consumes a short time.

Summary: By combining the predicted probabilities of the
slice-level vulnerability detector with the attention weights of
the function-level vulnerability detector, mVulPreter can interpret
the detection results and has the ability to pinpoint vulnerable
statements. Moreover, the effectiveness and scalability of mVul-
Preter outperform state-of-the-art interpreters (GNNExplainer
and PGExplainer).

4.4 RQ3: Case Study
In this subsection, we perform a case study to examine
the practicability of mVulPreter on real-world vulnerability
discovery. Specifically, we download four popular programs
as our targets: Libav [43], Xen [44], Openssl [45], and Thun-
derbird [46]. The versions of these products include one old
version and the latest version. Table 3 presents the summary
of our collected products. The total number of functions that
can be successfully analyzed by Joern [28] in these products
is 635,451. In other words, mVulPreter analyzes a total of
635,451 functions, with a total of more than 25 million lines
of code. Moreover, it costs mVulPreter 92.9 minutes to detect.

TABLE 3: The details of our selected open-source products

OpenSource Products #Files #Function #Lines of code
Libav-11.12 1,343 9,807 552,768
Libav-12.3 1,509 10,760 625,034
Xen-4.14.0 5,151 71,230 2,872,957
Xen-4.15.1 5,453 74,524 2,942,773

Openssl-1.0.0s 912 5,360 324,060
Openssl-3.0.0-beta2 1,335 11,713 519,096
Thunderbird-80.0b5 17,297 223,838 8,603,285
Thunderbird-91.3.2 17,678 228,219 8,851,564

Total 50,678 635,451 25,291,537

In practice, our scanning results are also encouraging
since we discovered 28 vulnerabilities. Specifically, we first
train mVulPreter using the experimental dataset used in the
former subsections. After completing the training phase, we
feed 635,451 functions from eight products into the trained
mVulPreter and collect the corresponding predictions. To
check if the predicted vulnerabilities are real vulnerabilities
or not, we then apply further manual analysis to compare
them with our collected real vulnerabilities. If the two are
found to belong to the same pattern, it will be judged to be
a real vulnerability.

The analysis result shows that 28 predicted functions
correspond to patterns of known vulnerabilities in NVD.
Table 4 presents the details of our detected vulnerabilities,

including the corresponding CVE ID in NVD, vulnerable
products reported in NVD, and so on. From four old ver-
sions of our selected products, we detect 17 vulnerabilities.
From the four latest versions of these products, mVulPreter
discovers 11 vulnerabilities.

Summary: mVulPreter discovers 28 real-world vulnerabilities
by scanning eight open-source products. Such results demonstrate
the capability of mVulPreter in real-world vulnerability detection.

5 DISCUSSION

5.1 Threats to Validity

Filtering “useless” slices to purify the function semantics
for accurate vulnerability identification may cause some
inaccuracies. We mitigate the threat by adopting a com-
prehensive evaluation based on nine different thresholds
to find a suitable candidate. Also, inaccuracies in detecting
vulnerabilities in open-source products (i.e., Libav, Xen,
Openssl, and Thunderbird) are inevitable since mVulPreter
may cause some false positives. The threat is mitigated by
deeply comparing the pattern of detected vulnerabilities
with the pattern of real-world vulnerabilities in NVD.

5.2 Future Work

In practice, the most time-consuming phase of mVulPreter is
PDG extraction of functions. In our future work, we plan to
design a new static analysis tool or try other static analysis
tools (e.g., Frama-C [47]) to achieve more efficient PDG
generation. Moreover, since most vulnerability detection
systems are closed source, we only compare mVulPreter with
seven tools. In the future, we will conduct detailed compar-
ative analyses on additional systems. Although mVulPreter
can maintain better effectiveness than comparative tools, its
TNR is not ideal. In other words, some of our detected vul-
nerabilities may be false positives. For interpretation, mVul-
Preter employs a simple formula to calculate the importance
scores of the statements. It can also be further enhanced by
further experiments to optimize the method that combines
weight and predicted probability. In our future work, we
plan to leverage directed fuzzing [48], [49] on our detected
vulnerabilities to mitigate the situation.

6 RELATED WORK

Deep Learning-based Vulnerability Detection. There are
two main granularity models for deep learning-based vul-
nerability detection: function-level and slice-level. Function-
level ones have the advantage of covering relatively com-
plete vulnerability features. But they introduce more irrele-
vant statements and have a coarser granularity of detection
(e.g., [50], [14], [51], [18]). For example, Feng et al. design
a tree-based vulnerability detector. They first apply static
analysis to extract the AST of programs and then apply a
preorder traversal search algorithm to convert them into
sequences. Finally, these sequences are used to train a
Bidirectional Gated Recurrent Unit (BGRU) model to detect
vulnerability. Devign [14] applies a general GNN to detect
vulnerability. It contains a novel convolutional module to
extract useful features from the learned rich node represen-
tation for graph-level classification. Conversely, slice-level
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TABLE 4: 28 Vulnerabilities discovered by mVulPreter from eight real-world products

Target product CVE ID Vulnerable product reported Vulnerability
release date Vulnerable file in the target product

Newest version of
target product
patched or not

Libav 11.12

CVE-2011-3893 Google Chrome 11/11/2011 libavcodec/vorbis.c Not patched

CVE-2014-8543 FFmpeg 11/5/2014 libavcodec/smc.c Patched

CVE-2015-8662 FFmpeg 12/23/2015 libavcodec/jpeg2000dwt.c Not patched

CVE-2018-12460 FFmpeg 6/15/2018 libavcodec/mpegvideo.c Not patched

Libav 12.3

CVE-2011-3893 Google Chrome 11/11/2011 libavcodec/vorbis.c Not patched

CVE-2015-8662 FFmpeg 12/23/2015 libavcodec/jpeg2000dwt.c Not patched

CVE-2018-12460 FFmpeg 6/15/2018 libavcodec/mpegvideo.c Not patched

Openssl-1.0.00s

CVE-2015-0205 OpenSSL 1/8/2015 crypto/asn1/x name.c Not exist

CVE-2017-3737 OpenSSL 12/7/2017 crypto/asn1/tasn dec.c Patched

CVE-2018-0737 OpenSSL 4/16/2018 crypto/x509/x509 cmp.c Patched

CVE-2019-1563 OpenSSL 9/10/2019 crypto/cms/cms smime.c Patched

Openssl-3.0.0-beta2 CVE-2018-0737 OpenSSL 4/16/2018 crypto/conf/conf ssl.c Not patched

Thunderbird-80.0b5

CVE-2007-5947 Mozilla Firefox, SeaMonkey 11/13/2007 docshell/base/nsDocShell.cpp Patched

CVE-2014-1494 Mozilla Firefox 3/19/2014 ./prefetch/nsOfflineCacheUpdate.cpp Not exist

CVE-2015-0818 Mozilla Firefox, Firefox ESR,
SeaMonkey 3/23/2015 ./base/nsDocShell.cpp Patched

CVE-2017-14062 Libidn2 8/31/2017 netwerk/dns/punycode.c Not patched

CVE-2019-12904 Libgcrypt 6/19/2019 ./cipher/rijndael.c Patched

Thunderbird-91.3.2

CVE-2007-5947 Mozilla Firefox, SeaMonkey 11/13/2007 .base/nsDocShell.cpp Not patched

CVE-2016-1952 Mozilla Firefox, Firefox 3/13/2016 dom/console/Console.cpp Not patched

CVE-2017-14062 Libidn2 8/31/2017 netwerk/dns/punycode.c Not patched

CVE-2018-5156 Thunderbird, Firefox ESR,
Firefox 10/18/2018 ./html/HTMLMediaElement.cpp Not patched

Xen-4.14.0

CVE-2013-4533 QEMU 11/4/2014 ./hw/pxa2xx.c Patched

CVE-2016-10028 QEMU 2/27/2017 ./vhost-user-gpu/virgl.c Patched

CVE-2017-7471 QEMU 7/9/2018 ./9pfs/9p-proxy.c Not patched

CVE-2017-8309 QEMU 5/23/2017 ./audio/audio.c Patched

Xen-4.15.1

CVE-2012-2652 QEMU 8/7/2012 .qemu-xen-traditional/block.c Not patched

CVE-2014-9801 Android 7/10/2016 ./libfdt/fdt rw.c Not patched

CVE-2017-7471 QEMU 7/9/2018 ./9pfs/9p-proxy.c Not patched

vulnerability detection has the advantage of fine granularity.
They regard manually summarized vulnerability points as
the slicing criterion [52], [20], [23], [13], [18]. For example,
VulDeePecker [12] first extracts the program slices of a pro-
gram and then trains a detector using bidirectional long short-
term memory (BLSTM). muVulDeePecker [13] improves the
implementation of VulDeePecker. It introduces the concept
of code attention and uses it to help VulDeePecker complete
multiclass vulnerability detection. However, not all vulnera-
bilities are related to the above vulnerability points, so sliced
samples may contain incomplete vulnerability information.

In contrast to the previous work, mVulPreter intend to
combine the fine-granularity of slice-level vulnerability de-
tection with the full semantics of function-level vulnerability
detection to achieve more effective vulnerability detection.

Vulnerability Detection Interpretation. Interpreting de-
tection is an important research problem for deep learning-
based vulnerability detection. Zou et al. [53] propose an
interpretable framework that enables the identification of
a small number of tokens that contribute significantly to the
vulnerability prediction of the detector, which perturbs the
samples near the decision boundary by applying perturba-

tions to them to find out the significant token combinations
in the samples to obtain important features. Similarly, Li
et al. [42] leverage GNNExplainer [24] to give an interpre-
tation (i.e., subgraphs of PDG) of prediction results for
graph neural network-based vulnerability detection models,
where GNNExplainer is also a perturbation-based model in-
terpretation method. Specifically, it selects the most relevant
subgraph structures to the prediction results by perturbing
the graph structure and features.

These approaches rely on an additional interpreter to ex-
plain the results of vulnerability detection. However, the in-
terpretation and detection models work in serial, increasing
the time overhead. Conversely, mVulPreter’s interpretation is
based on the characteristics of the vulnerability, which relies
on the vulnerability detection model itself and therefore
does not require additional time and computational effort.

7 CONCLUSION

In this paper, we propose to use slice-level vulnerability
detection to assist function-level vulnerability detection.
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By this, we design a novel multiple granularity graph-
based vulnerability detector namely mVulPreter. To demon-
strate the effectiveness of mVulPreter, we perform evalu-
ations on a dataset containing 5,310 vulnerable functions
and 7,601 non-vulnerable functions. The experimental re-
sults suggest that mVulPreter is superior to Checkmarx [9],
FlawFinder [11], RATS [10]), TokenCNN [17], StatementL-
STM [22], SySeVR [23], and Devign [14]. Meanwhile, mVul-
Preter can pinpoint which statements are more likely to be
vulnerable and outperform two state-of-the-art interpreters
(i.e., GNNExplainer [24] and PGExplainer [25]). Finally, to
validate the ability of mVulPreter on real-world vulnerability
detection, we conduct a case study on more than 25 million
lines of code. Through the scanning results, we discover 28
new vulnerabilities that are not reported in NVD.

ACKNOWLEDGMENTS

This work is supported by the Key Program of National
Science Foundation of China under Grant No. U1936211.

REFERENCES

[1] “What is wannacry ransomware?” https://www.kaspersky.com/
resource-center/threats/ransomware-wannacry, 2021.

[2] “The exactis breach: 5 things you need to know,”
https://blog.infoarmor.com/individuals-and-families/
the-exactis-breach-5-things-you-need-to-know, 2020.

[3] “Cyber security vulnerabilities and their business impact,”
https://www.verizon.com/business/resources/articles/s/
cyber-security-vulnerabilities-and-their-business-impact/, 2021.

[4] J. Jang, A. Agrawal, and D. Brumley, “Redebug: Finding un-
patched code clones in entire os distributions,” in Proceedings of
the 2012 IEEE Symposium on Security and Privacy (S&P’12), 2012,
pp. 48–62.

[5] S. Kim, S. Woo, H. Lee, and H. Oh, “Vuddy: A scalable approach
for vulnerable code clone discovery,” in Proceedings of the 2017
IEEE Symposium on Security and Privacy (S&P’17), 2017, pp. 595–
614.

[6] N. H. Pham, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen,
“Detection of recurring software vulnerabilities,” in Proceedings of
the 2010 International Conference on Automated Software Engineering
(ASE’10), 2010, pp. 447–456.

[7] J. Li and M. D. Ernst, “Cbcd: Cloned buggy code detector,” in Pro-
ceedings of the 34th International Conference on Software Engineering
(ICSE’12), 2012, pp. 310–320.

[8] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “Vulpecker: An
automated vulnerability detection system based on code similarity
analysis,” in Proceedings of the 32nd Annual Conference on Computer
Security Applications (ACSAC’16), 2016, pp. 201–213.

[9] “Checkmarx,” https://www.checkmarx.com/, 2022.
[10] “Rough audit tool for security,” https://code.google.com/

archive/p/rough-auditing-tool-for-security/, 2022.
[11] “Flawfinder,” http://www.dwheeler.com/flawfinde/r, 2022.
[12] Z. Li, D. Zou, S. Xu, X. Ou, and Y. Zhong, “Vuldeepecker: A deep

learning-based system for vulnerability detection,” in Proceedings
of the 2018 Network and Distributed System Security Symposium
(NDSS’18), 2018, pp. 1–15.

[13] D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin, “µvuldeepecker:
A deep learning-based system for multiclass vulnerability de-
tection,” IEEE Transactions on Dependable and Secure Computing,
vol. 18, no. 5, pp. 2224–2236, 2021.

[14] Y. Zhou, S. Liu, J. K. Siow, X. Du, and Y. Liu, “Devign: Effec-
tive vulnerability identification by learning comprehensive pro-
gram semantics via graph neural networks,” in Proceedings of the
32nd Annual Conference on Neural Information Processing Systems
(NeurIPS’19), 2019, pp. 10 197–10 207.

[15] G. Lin, J. Zhang, W. Luo, L. Pan, and Y. Xiang, “Poster: Vulnera-
bility discovery with function representation learning from unla-
beled projects,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (CCS’17), 2017, pp. 2539–
2541.

[16] X. Duan, J. Wu, S. Ji, Z. Rui, T. Luo, M. Yang, and Y. Wu, “Vul-
sniper: Focus your attention to shoot fine-grained vulnerabilities,”
in Proceedings of the 2019 International Joint Conference on Artificial
Intelligence (IJCAI’19), 2019, pp. 4665–4671.

[17] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. McConley, “Automated vulnerability de-
tection in source code using deep representation learning,” in
Proceedings of the 17th IEEE International Conference on Machine
Learning and Applications (ICMLA’18), 2018, pp. 757–762.

[18] X. Duan, J. Wu, S. Ji, Z. Rui, T. Luo, M. Yang, and Y. Wu, “Vul-
sniper: Focus your attention to shoot fine-grained vulnerabilities,”
in Proceedings of the 28th International Joint Conference on Artificial
Intelligence (IJCAI’19), S. Kraus, Ed., 2019, pp. 4665–4671.

[19] R. L. Russell, L. Y. Kim, L. H. Hamilton, T. Lazovich, J. Harer,
O. Ozdemir, P. M. Ellingwood, and M. W. McConley, “Automated
vulnerability detection in source code using deep representation
learning,” in Proceedings of the 17th IEEE International Conference on
Machine Learning and Applications (ICMLA’18), 2018, pp. 757–762.

[20] X. Cheng, H. Wang, J. Hua, G. Xu, and Y. Sui, “Deepwukong:
Statically detecting software vulnerabilities using deep graph
neural network,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 30, no. 3, pp. 1–33, 2021.

[21] Y. Xiao, B. Chen, C. Yu, Z. Xu, Z. Yuan, F. Li, B. Liu, Y. Liu,
W. Huo, W. Zou et al., “{MVP}: Detecting vulnerabilities using
{Patch-Enhanced} vulnerability signatures,” in Proceedings of the
29th USENIX Security Symposium (USENIX Security’20), 2020, pp.
1165–1182.

[22] G. Lin, W. Xiao, J. Zhang, and Y. Xiang, “Deep learning-based
vulnerable function detection: A benchmark,” in Proceedings of
the 21st International Conference on Information and Communications
Security (ICICS’19), 2019, pp. 219–232.

[23] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “Sysevr: A frame-
work for using deep learning to detect software vulnerabilities,”
IEEE Transactions on Dependable and Secure Computing, 2021.

[24] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gn-
nexplainer: Generating explanations for graph neural networks,”
in Proceedings of the 32nd Annual Conference on Neural Information
Processing Systems (NeurIP’19), 2019, pp. 9240–9251.

[25] H. Yuan, H. Yu, S. Gui, and S. Ji, “Explainability in graph neural
networks: A taxonomic survey,” arXiv preprint arXiv:2012.15445,
2020.

[26] “CVE-2012-0850,” https://nvd.nist.gov/vuln/detail/
CVE-2012-0850., 2022.

[27] “Ffmpeg,” http://www.ffmpeg.org/, 2021.
[28] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and

discovering vulnerabilities with code property graphs,” in Proced-
dings of the 2014 IEEE Symposium on Security and Privacy (S&P’14),
2014, pp. 590–604.

[29] “Open-source code analysis platform for c/c++ based on code
property graphs,” https://joern.io/, 2021.

[30] M. Weiser, “Program slicing,” in Proceedings of the 5th International
Conference on Software Engineering (ICSE’81), pp. 439–449.

[31] J. Silva, “A vocabulary of program slicing-based techniques,”
ACM computing surveys (CSUR), vol. 44, no. 3, pp. 1–41, 2012.

[32] “What are graph neural networks?” https://venturebeat.com/
2021/10/13/what-are-graph-neural-networks-gnn/, 2021.

[33] M. Pagliardini, P. Gupta, and M. Jaggi, “Unsupervised learning of
sentence embeddings using compositional n-gram features,” arXiv
preprint arXiv:1703.02507, 2017.

[34] M. S. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolu-
tional networks,” in The Semantic Web - 15th International Confer-
ence, ESWC 2018, Heraklion, Crete, Greece, June 3-7, 2018, Proceedings,
ser. Lecture Notes in Computer Science, vol. 10843. Springer, 2018,
pp. 593–607.

[35] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” stat, vol. 1050, p. 20, 2017.

[36] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel, “Gated graph
sequence neural networks,” in Proceedings of the 4th International
Conference on Learning Representations (ICLR’16), 2016.

[37] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep neu-
ral networks for LVCSR using rectified linear units and dropout,”
in Proceedings of the 38TH IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP’13), 2013, pp. 8609–8613.

[38] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proceedings of the 3rd International Conference on Learning
Representations (ICLR’15), Y. Bengio and Y. LeCun, Eds., 2015.

https://www.kaspersky.com/resource-center/threats/ransomware-wannacry
https://www.kaspersky.com/resource-center/threats/ransomware-wannacry
https://blog.infoarmor.com/individuals-and-families/the-exactis-breach-5-things-you-need-to-know
https://blog.infoarmor.com/individuals-and-families/the-exactis-breach-5-things-you-need-to-know
https://www.verizon.com/business/resources/articles/s/cyber-security-vulnerabilities-and-their-business-impact/
https://www.verizon.com/business/resources/articles/s/cyber-security-vulnerabilities-and-their-business-impact/
https://www.checkmarx.com/
https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://code.google.com/archive/p/rough-auditing-tool-for-security/
http://www.dwheeler.com/flawfinde/r
https://nvd.nist.gov/vuln/detail/CVE-2012-0850.
https://nvd.nist.gov/vuln/detail/CVE-2012-0850.
http://www.ffmpeg.org/
https://joern.io/
https://venturebeat.com/2021/10/13/what-are-graph-neural-networks-gnn/
https://venturebeat.com/2021/10/13/what-are-graph-neural-networks-gnn/


12

[39] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “A C/C++ code
vulnerability dataset with code changes and CVE summaries,” in
Proceedings of the 17th International Conference on Mining Software
Repositories (MSR’2020), 2020, pp. 508–512.

[40] “Open-Source Code Querying Engine for C/C++.” https://joern.
io/, 2020.

[41] “Tensors and Dynamic neural networks in Python with strong
GPU acceleration (PyTorch),” https://pytorch.org., 2022.

[42] Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with
fine-grained interpretations,” in Proceedings of the 29th ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE’21), D. Spinellis,
G. Gousios, M. Chechik, and M. D. Penta, Eds., pp. 292–303.

[43] “Libav,” https://libav.org/, 2021.
[44] “Xen,” https://xenproject.org/xen-project-archives/, 2021.
[45] “Openssl,” https://www.openssl.org/, 2021.
[46] “Thunderbird,” https://www.thunderbird.net/, 2021.
[47] “Frama-c,” http://frama-c.com/, 2021.
[48] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and Y. Liu, “Hawk-

eye: Towards a desired directed grey-box fuzzer,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security (CCS’18), 2018, pp. 2095–2108.
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