MalScan: Android Malware Detection Based on

Social-Network Centrality Analysis
Yueming Wu, Wenqi Suo, Siyue Feng, Deqing Zou, Wei Yang, Yang Liu, and Hai Jin, Fellow, IEEE

Abstract—Malware scanning of an app market is expected to be scalable and effective. However, existing approaches use
syntax-based features that can be evaded by transformation attacks or semantic-based features which are usually extracted by
expensive program analysis. Therefore, to address the scalability challenges of traditional heavyweight static analysis, we propose a
graph-based lightweight approach MalScan for Android malware detection. MalScan considers the function call graph as a complex
social network and employs centrality analysis on sensitive application program interfaces (APIs) to express the semantic
characteristics of the graph. On this basis, machine learning algorithms and ensemble learning algorithms are applied to classify the
extracted features. We evaluate MalScan on datasets of 104,892 benign apps and 108,640 malwares, and the results of experiments
indicate that MalScan outperforms six state-of-the-art detectors and can quickly detect Android malware with an f-value as high as
99%. In addition, there are also significant improvements in the robustness of Android app evolution and robustness to obfuscation.

Finally, we conduct an exhaustive statistical study of over one million applications in the Google-Play app market and successfully
identify 498 zero-day malware, which further validates the feasibility of MalScan on market-wide malware scanning.

Index Terms—Android Malware, Lightweight Feature, API Centrality, Market-Wide

1 INTRODUCTION

The openness of the Android system significantly enriches
the capabilities of Android smartphones and propelled the
rapid expansion of the Android market. However, the open-
ness of Android applications also makes it a prime target
for malicious software attacks. In 2022, Kaspersky’s mobile
products and technology detected a total of 1,661,743 mali-
cious installation packages, which is a decrease of 1,803,013
compared to the previous year [1]. While the quantity of
Android malware has shown a decline, research indicates
that attacks are becoming increasingly intricate in terms of
both malware functionality and delivery methods. As the
preferred platform for users to download Android applica-
tions, application markets are being exploited by attackers
to widely disseminate malicious software and infect users’
devices. Consequently, conducting comprehensive scans for
mobile malware across the entire market is an urgent neces-
sity to curb the rapid proliferation of malicious software.
Existing Android malware detection techniques fall into
two main categories: dynamic analysis and static analysis.
Current methods of detecting malware based on dynamic

o Y. Wu, W. Suo, S. Feng, and D. Zou are with National Engineering
Research Center for Big Data Technology and System, Services Computing
Technology and System Lab, Hubei Engineering Research Center on
Big Data Security, School of Cyber Science and Engineering, Huazhong
University of Science and Technology, Wuhan, 430074, China. S. Feng
and D. Zou are corresponding authors. E-mails: {fengsiyue, deqging-
zou }@hust.edu.cn.

o Y. Wu and D. Zou are also with Jinyinhu Laboratory, Wuhan, 430074,
China.

o W. Yang is with University of Texas at Dallas, United States.

Y. Liu is with Nanyang Technological University, Singapore.

e H. Jinis with National Engineering Research Center for Big Data Technol-
ogy and System, Services Computing Technology and System Lab, Cluster
and Grid Computing Lab, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, 430074, China.

analysis [2], [3], [4], [5], [6] generally execute the application
in a sandbox, thereby tracking and monitoring the behavior
of the application. Dynamic analysis allows for a more
accurate acquisition of program features and behaviors, but
it is time-consuming and requires a lot of system resources.
In addition, the APIs in Android malware may cause harm
to the computer during the execution of dynamic analysis.
Malware detection methods based on static analysis can be
primarily categorized into two main types: syntax-based
and semantic-based. Syntax-based approaches [7], [8], [9],
[10], [11] enable efficient Android malware detection, for
instance, Drebin [8] extracts information such as applied
permissions and specific APIs to detect malware. How-
ever, since syntax analysis only retrieves specific strings
(e.g., certain sensitive APIs) and does not consider program
semantics, many attack techniques can easily circumvent
program behavior through obfuscation and encryption. To
overcome the lack of syntax analysis leading to misclas-
sification, semantic-based approaches [12], [13], [14], [15],
[16] detect malware by distilling the program’s semantics
into graph form through graph matching. Due to the large
size of most applications, such analysis is time-consuming
and difficult to apply on a large scale. In addition, these
techniques perform graph matching by similarity to existing
malware graphs, which has poor system performance for
new malware [14], making it difficult to perform large-scale
detection in today’s world of evolving malware. MaMaDroid
[15] makes an effort to employ coarse-grained information,
divides the graph into subgraphs, and significantly in-
creases the detection’s robustness. However, due to the high
memory usage and lengthy processing, it is not appropriate
for malware to scan an application market.

In summary, all of these methods have limitations and
are difficult to apply widely in the malware detection mar-
ket. To address these limitations, our previous work [17]

proposes a semantic-based lightweight approach, which ini-

tiates by extracting succinct function call graphs, followed

by centrality analysis on sensitive API calls. This approach
not only ensures semantic information retention but also
significantly reduces the time required for graph analysis.

This paper is an extension of our previous work, and we

supplement our present work with a substantial amount of

new material.

Firstly, our previous work utilized more than 20,000 sen-
sitive APIs. However, during the analysis of feature vectors,
we discover that only a part of sensitive APIs are mean-
ingful. To reduce feature dimensions and minimize memory
and space consumption, we select the most meaningful sen-
sitive APIs as features. Secondly, to improve the accuracy of
malware detection, we expand the training data set, encom-
passing 101,913 benign applications and 109,945 malware.
Thirdly, to underscore the significance of vertices in social
networks, we add three centrality analysis algorithms (i.e.,
eigenvector centrality, pagerank centrality, and authority
centrality) to extract structural features of the graph. Addi-
tionally, we employ four machine learning algorithms (i.e.,
Adaboost, Decision Tree, GBDT, and XGBoost) to extend
the classification algorithm. Additionally, we introduce the
concept of ensemble learning to integrate predictions from
multiple classifiers, thereby constructing an exceptional and
comprehensive strong supervised model. Finally, we also
incorporate evaluations of adversarial code obfuscation and
case study experiments to provide a more comprehensive
assessment of Malscan’s performance.

In summary, we make enhancements to our prior work
to establish a comprehensive and stable market-wide mal-
ware scanning system, MalScan [17], which preserves se-
mantic features. We consider function call graphs as in-
tricate social networks and employ centrality analysis of
sensitive APIs to extract semantic information effectively. In
experimentation, we randomly select datasets spanning the
years 2017 to 2021 from AndroZoo [18], evaluating MalScan’s
detection performance from five distinct angles. In addition,
we compare MalScan to six advanced Android malware
detection tools to provide a more intuitive assessment of
MalScan’s detection capabilities. Finally, we scan millions
of applications on Google-Play application market with
MalScan and successfully identify 498 instances of zero-day
malware. This accomplishment solidly attests to MalScan’s
competence in real-world malicious software detection.

In conclusion, we make the following contributions:

o We propose a novel approach for identifying Android
malware, achieved through conducting centrality analysis
on critical API calls within the application’s function call
graph.

« We devise an efficient and accurate system MalScan for
Android malware detection. Based on the original work,
we further improve the effectiveness and robustness of
detection through ensemble learning algorithms.

e We conduct comparative evaluations on a dataset of
104,892 benign apps and 108,640 malicious apps. Exper-
iments indicate that MalScan is superior to Drebin [8],
MaMaDroid [15], HomDroid [19], Xmal [20], RAMDA [21],
MSDroid [22].

o We scan millions of applications on the Google-Play ap-
plication market with Malscan and recognize 498 zero-

day malware samples. They are downloaded more than

97 million times. We have reported them to Google and

hope they can cope with the issue as soon as possible.
Paper organization. The remainder of the paper is orga-
nized as follows. Section 2 presents the preliminary study on
the degree centrality of Android apps. Section 3 introduces
our system. Section 4 reports the experimental results. Sec-
tion 5 discusses future work. Section 6 describes the related
work. Section 7 concludes the present paper.

2 PRELIMINARY STUDY OF CENTRALITY

Social network is a network system composed of social
relationships between individual members of a society. The
source code of an application consists of a series of functions
with diverse call relationships between them. Therefore, the
application’s function call graph can be perceived as a social
network, likening functions to distinct members and call
connections to social interactions. Centrality is a commonly
used concept in social network analysis. It refers to the
extent to which the nodes in a social network are centered in
the whole network and serves as an indicator for evaluating
the importance and influence of the nodes in the network.
Centrality analysis assists in identifying pivotal elements
and their roles across various systems, and it is widely
employed in network analysis across diverse fields [23], [24],
[25], [26], [27]. Different interpretations of the importance
of nodes lead to diverse metrics for determining centrality.
As a result, many different centrality measures have been
proposed, such as degree centrality [28], closeness centrality
[28], katz centrality [29], betweenness centrality [30], pager-
ank centrality [31], percolation centrality [32], cross-clique
centrality [33], dissimilarity-based centrality [34].

In social networks, centrality is a measure of the impor-
tance or influence of nodes within the network structure.
In the context of sensitive API calls, benign software and
malware may exhibit distinct behavioral patterns. Benign
software typically employs sensitive APIs extensively to
perform legitimate, normal operations. This results in a
relatively dispersed distribution of their sensitive API calls,
covering multiple functional domains, thereby leading to
lower centrality within the network. In contrast, malware
may have more specialized objectives, selectively invok-
ing sensitive APIs to carry out malicious activities. Con-
sequently, these API calls become concentrated in specific
functionalities, resulting in higher centrality of malware
within the network. Building upon this observation, we
propose a concept: Analyzing the centrality of sensitive API
calls can unveil distinctive behavioral patterns that differentiate
benign software from malicious entities.

To verify the suggested hypothesis, we initially choose
a random sample of 500 benign applications and 500 ma-
licious applications from AndroZoo [18] and extract the
call graphs. Following this, we perform centrality analysis
specifically on sensitive API nodes (according to a security-
sensitive method list [35]). Subsequently, we perform initial
frequency analysis on the top 10 frequently utilized sensitive
APIs, aiming to assess whether centrality analysis could
effectively distinguish intrinsic differences between benign
and malicious applications. Given page constraints, we pro-
vide a partial representation of the results within Figure
1. As shown in Figure 1, it becomes apparent that there

0.08 T T

0.074

0.05+

o
£

0.03

0.024 .

Degree Centrality
Degree Centrality

0.014 % 4 y
—_—] i

-0.024

0.00

-0.014

0,05 J
0.044 —
0,03
0.024
0,01 .
1 s
- 0.004 i

-0.01

Degree Centrality

T T
Benign Malware

(a) API;: Method.invoke()

T
Benign

(b) APIy: Class.forName()

T T
Benian Malware

(c) API3: Class.getDeclaredMethod()

T
Maware

Fig. 1: Distributions of sensitive API calls” degree centrality

exists a notable disparity in the degree centrality of sensitive
API calls between malicious and benign applications. This
robustly underscores the viability of employing centrality
analysis on sensitive APIs for malicious software detection.
Building upon this insight, we leverage centrality analysis
on sensitive API calls within the call graph to develop a
lightweight Android malicious software detection system.

3 SYSTEM ARCHITECTURE
3.1 System Overview

Mlustrated in Figure 2, MalScan involves four main phases:
Static Analysis, Centrality Analysis, Classification, and Ensem-
ble Learning.

e Static Analysis: The objective of this phase is to derive
the function call graph of an application through static
analysis. The input of this phase is the apps and the
output is the corresponding function call graphs.

o Centrality Analysis: This phase aims to compute the
centrality of sensitive API calls within the graph to ob-
tain the corresponding feature vectors. The input of this
phase is the function call graph and the output is the
corresponding feature vectors.

o Classification: This phase employs machine learning clas-
sifiers to categorize the application into benign or mali-
cious. The input of this phase is the feature vectors and
the output is the prediction results of the classifier.

e Ensemble Learning: This phase aims to integrate the
prediction results of multiple classifiers and improve the
accuracy of the model. The input of this phase is the
prediction results for different classifiers and the output
is the final prediction result of Ensemble Learning.

3.2 Static Analysis and Centrality Analysis

We design a market-wide graph-based malicious software
detection system. Aiming to achieve a lightweight objec-
tive, our research focuses on efficiently accomplishing ap-
plication processing and graph analysis. Therefore, dur-
ing the process of static analysis, we employ the Android
reverse analysis tool Androguard [36] to extract succinct
function call graphs. The analysis approach of Androguard
centers around lightweight objectives, primarily focusing
on context-insensitive and flow-insensitive analysis. This
signifies that it doesn’t need to consider the specific code
execution order and contextual details, thereby reducing
the complexity and cost of analysis. Given that Android
applications interact with the operating system’s function-
alities and system resources through API calls, these API
invocations convey the behavior of Android applications. In

particular, malicious Android software frequently exploits
certain security-related API calls to carry out their malicious
behavior. For example, getLinelNumber() can retrieve phone
numbers, and getLastKnownLocation() can access geographi-
cal location information. Hence, when describing the char-
acteristics of malicious behavior, we place a strong emphasis
on sensitive API calls.

However, due to the vast number of sensitive APIs,
a large portion of irrelevant APIs not only wastes com-
putational resources but also reduces detection efficiency.
According to the experiments in the recent work [35],
tracking all APIs and tracking only the selected 426 highly
representative security-related sensitive APIs resulted in
precision/recall rates of 91.6%/90.2% and 96.8%/93.7%,
respectively. Tracking fewer APIs achieved higher precision
and recall compared to tracking all APIs. This improvement
can be attributed to the fact that most APIs are seldom or
rarely invoked by Android applications, and an excessive
number of features leads to model overfitting. Therefore,
we select 426 highly representative security-related sensitive
APIs, as identified in the study, to accurately characterize
malicious behavior. It consists of three different API call
sets. The first API call set is the top 260 API calls with the
highest correlation with malware, the second API call set is
112 API calls that relate to restrictive permissions, and the
third API call set is 70 API calls that are relevant to sensitive
operations. Finally, 426 sensitive API calls are obtained by
computing the union set of these three API call sets’.

In Section 2, we demonstrate the feasibility of centrality
analysis of function call graphs to extract semantic features.
Therefore, we adopt different centrality analysis methods
for sensitive APIs to achieve efficient graph analysis. We
select seven different centralities to commence our experi-
ments.

o Degree centrality [28] refers to the number of edges directly
connected to a node, which is essentially the node’s
degree. The degree centrality values are normalized by
dividing them by the maximum potential degree (i.e., IV -
1) in a simple graph, where NN represents the number of
nodes in the graph. deg(v)

Cr) =§F 3
Note that deg(v) refers to the degree of node v.

o Closeness centrality [28] of a node measures the average
shortest path length from the node to other nodes. The

)

1. The detailed list of the 426 critical framework APIs can be accessed
at https:/ /apichecker.github.io/.

Static Centrality

. . Classification Ensemble Learning
Analysis Analysis
Closeness_1NN
Harmonic
N — — — -
Closeness_
XGBoost
Call Graph
Authority_3NN

Authority_

XGBoost o I ﬁ.

prediction

Fig. 2: System architecture of MalScan

value of closeness centrality is the sum of the shortest path
lengths between the node and other nodes, which is then
normalized by dividing it by N-1, where N represents the
overall count of nodes.
N -1
Cev) = s @
22y d(t,v)

Note that d(¢,v) stands for the shortest path length be-
tween nodes v and ¢.
Harmonic centrality [37] reverses the sum and reciprocal
operations in the closeness centrality definition.

t; d(f/lav)
Cn() = "1 ®

Note that d(t,v) is the distance between nodes v and ¢
and N is the number of nodes in the graph.

Eigenvector centrality [38] is a function of neighboring
node centrality, meaning that if a node is connected to
neighbors with higher centrality, its own centrality will
also increase. Let A be the adjacency matrix of a graph
and the element a;; = 1 if vertex i is linked to vertex j, and
a;; = 0 otherwise.

Cp(i) = % > aiiCr(j) @)
=1

Note that C'g is the eigenvector of the matrix and constant
A is its corresponding eigenvalue.

Katz centrality [29] can be viewed as a variant of eigen-
vector centrality. It gives each node a small amount of
centrality (3 for free to work around the problem of null
eigenvector centrality score. Hence, each node has a min-
imum, positive amount of centrality that it can transfer to
other nodes by referring to them.

Cr(i) =a) _ a;i;(Ck(j) + B))
j=1

Note that « is an attenuation factor in (0,1) and S is a
constant. If o = Aiaz and 8 = 0, then Katz centrality
is equivalent to eigenvector centrality, where)4, is the
largest eigenvalue of the adjacency matrix A.

o Pagerank centrality [31] further considers the out-degree of
the neighbor nodes of the current computational node on
the basis of Katz centrality. The contribution of neighbor
nodes with high out-degree to the current computation
node should be penalized to some extent. It assigns nu-
merical weights to nodes based on their out-degree with
the purpose of measuring their relative importance.

Cp(i) = dz aj CLP(EJ)) + 1;77(1 (6)
j=1

Note that L(j) signifies the count of neighbors that node
j has, while d represents the damping factor.

o Kleinberg centrality [39] proposes the hyperlink-induced topic
search (HITS) algorithm to quantify the authority and
hubs attributes of nodes. Nodes with high authorities
scores contain contributed original information and are
followed by many other hub nodes; nodes with high hub
scores summarize a lot of information and point to many
authorities nodes. Let x; and y; represent the authority
centrality and hub centrality of node 4, respectively.

Ti=QY ani Yk @)
k

Yi = 52%1« Ty 8)
k

Note that o and § are constants. considering the function
call graph as a social network, sensitive API function
nodes are important because they contain valuable con-
tent, rather than linking to other important vertices, which
are more in line with the characteristics of authorities
nodes and perform poorly in hub centrality feature extrac-
tion. Therefore, we choose authority centrality to measure
the importance of the sensitive API in the function call
graph.

3.3 Classification

The purpose of this session is to label whether the app is ma-

licious or benign with single machine learning algorithms

and centrality algorithms. We select seven different machine

learning algorithms which are the most commonly used

algorithms for classification algorithms: 1-nearest neighbor
(1-NN), 3-nearest neighbor (3-NN), decision tree (DT), ran-
dom forest (RF), AdaBoost, GBDT, and XGBoost to complete
classification. Each machine learning model is trained sepa-
rately using seven different feature vectors obtained in var-
ious centrality analysis stages, resulting in 7*7=49 classifier
models. Thus, when performing classification on the input
dataset, each app in the dataset will get 49 predictions from
distinct classifiers. All the experimental results are presented
in Section 4 by performing 10-fold cross-validation on our
datasets.

3.4 Ensemble Learning

In the final phase, to further improve the accuracy of mal-
ware detection, we employ ensemble learning to synthesize
multiple models trained in the classification phase. Dur-
ing the classification phase, we employ machine learning
algorithms with the aim of obtaining a stable and well-
performing classifier in all aspects. However, due to the
differences in the emphasis on centrality analysis and the
principles of classifier algorithms, only multiple weakly
supervised models with preferences are obtained. Hence,
it can be a challenge to achieve an impartial and robust
supervised model by relying only on a single centrality
analysis algorithm and a single machine learning algorithm.
Ensemble learning combines multiple weakly supervised
models in order to obtain a superior and more comprehen-
sive strongly supervised model. In this manner, the other
weak classifiers can correct the error back even if a weak
classifier makes an inaccurate prediction.

Following the classification phase, 49 prediction results
are obtained for each APK file. Each classifier has a specific
focus and gets varying results. Consequently, applying the
ensemble learning concept to aggregate the predictions of
individual classifiers to obtain a more comprehensive and
strongly supervised model is an effective means to improve
accuracy. To obtain the final malware detection results, we
employ deep neural network (DNN) on the results generated
in the classification phase to perform binary prediction.
We evaluated DNN architectures with varying numbers of
layers and determined that a three-layer DNN was sufficient
to meet our experimental requirements. Therefore, we select
the three-layer DNN as the final architecture for our ensem-
ble learning network. We select the cross-entropy function
as the loss function and choose the Adam optimizer with
a learning rate of 0.0001. We set the hyperparameters Batch
Size to 32 and epoch to 50. In the classification phase, a ten-
fold cross-validation method is employed to maximize the
utility of the dataset and to minimize model evaluation er-
rors arising from uneven data distribution and randomness.
Specifically, the dataset is divided into ten subsets, where
nine subsets are used as training data and one subset as
testing data in a rotating manner. In the ensemble phase, the
predicted outcomes from the ten rounds of test data for each
classifier model are combined to form the final prediction
result for that classifier. Subsequently, the prediction results
from the 49 classifier models in the classification phase
are integrated to create a dataset for training the ensemble
learning model DNN.

4 EXPERIMENTAL EVALUATION
In this section, we mainly answer the following questions:

TABLE 1: Details of the experimental dataset

Dataset Benign Malware Total Average Size (MB)
2017 21,000 21,000 42,000 2.49
2018 21,000 20,955 41,955 3.73
2019 20,985 20,999 41,984 6.56
2020 20,993 23,324 44,317 7.15
2021 20,914 22,362 43,276 8.35
Total 104,892 108,640 213,532 6.17

e RQ1: What is the malware detection performance of MalScan
with different methods?

e RQ2: How effective is MalScan trained with the old dataset in
detecting new samples?

e RQ3: What is the performance of MalScan in classifying
obfuscated Android malware?

o RQ4: What is MalScan’s runtime overhead while identifying
Android malware?

e RQ5: Can MalScan achieve large-scale Android malware detec-
tion?

4.1 Experimental Settings
4.1.1 Dataset

We extend the dataset to improve the accuracy of mal-
ware detection and the detail of the dataset is available in
githubz, from which researchers are able to conduct repeat-
able experiments. AndroZoo [18] platform hosts an extensive
collection of over nine million APK files, each of which
has undergone comprehensive scrutiny by various antivirus
software on VirusTotal [40]. We crawl a subset of 104,892
benign applications and 108,640 malicious applications from
AndroZoo to form our dataset. It's important to note that
Android malware is in a constant state of flux, with attackers
continuously creating new variants and techniques to evade
existing security measures. Therefore, in order to compre-
hensively assess the robustness and reliability of Malscan,
we have chosen datasets from different time periods (2017-
2021) to validate the performance of the Android malware
detection system, Malscan. By utilizing datasets that span
multiple time intervals, we can gain a better understanding
of Malscan’s performance across different periods and eval-
uate its resilience in addressing various forms of malicious
code evolution. Table 1 presents the specific details of the
datasets.

4.1.2 Implementation

We run all experiments on a server with 32 cores of CPU.
In the static analysis process, we utilize the tool Andro-
guard [36] to parse Android apps and generate function call
graphs. In the centrality analysis process, we treat the func-
tion call graph as a social network and leverage the python
library networkx [41] to extract distinct centrality vectors.
In the classification phase, the machine learning models
(e.g., 1I-NN, 3-NN, DT, RF, Adaboost, XGBoost, GBDT) are
implemented with the python library scikit-learn [42]. In the
ensemble learning phase, we construct and train a DNN
model based on PyTorch [43].

4.1.3 Comparision

All experiments are compared with the following advanced

Android malware detection methods:

e Drebin [8]: Drebin utilizes comprehensive static analysis to
extract as many diverse features as possible from applica-
tions, and then embeds these features into a unified vector

2. https:/ / github.com/MalScanCodes/MalScan.

space, thereby achieving the categorization of malicious
software.

o MaMaDroid [15]: MaMaDroid employs Markov chains to
construct behavioral models from the extracted API call
sequences within the function invocation graph. It uti-
lizes the state transition probabilities within the model as
feature vectors for classification purposes.

o HomDroid [19]: HomDroid employs community detection
to partition an application’s function call graph into sub-
graphs, utilizes homophily analysis to identify the most
suspicious subgraph, and subsequently extracts features
to apply machine learning classifiers for malware detec-
tion.

o Xmal [20]: Xmal extracts API calls and permissions from
APK files and inputs them as features into a multi-layer
perceptron (MLP) to predict whether an application is
malicious. The MLP classifier integrates an attention layer
to learn and weigh the features’ significance.

e« RAMDA [21]: RAMDA employs a variational autoencoder
(FD-VAE) to extract static features such as permission re-
quests, intent action declarations, and sensitive API calls
from APK files, generating corresponding binary vector
representations. These representations are subsequently
fed into a multilayer perceptron (MLP) for Android mal-
ware detection.

e MSDroid [22]: MSDroid decomposes the function call
graph into subgraphs rooted in sensitive API calls and
employs graph encoding techniques to represent the code
attributes and domain knowledge of these subgraphs.
Subsequently, graph neural networks (GNNS5s) are utilized
to process these subgraphs, enabling g malware detection.

4.1.4 Metrics

We introduce the metrics TP (True Positive), TN (True Neg-
ative), FP (False Positive), and FN (False Negative) to mea-
sure the results of classifier recognition. The first letter of
the two metrics indicates whether the classifier’s recognition
result is correct, with correct being denoted by the initial T
of True and incorrect by the initial F of False. The second
letter indicates the result of the classifier’s determination,
with P indicating that the classifier determined a malicious
sample and N indicating that the classifier determined a
benign sample. Therefore, TP, TN, FP, and FN respectively
represent samples correctly classified as malicious, samples
correctly classified as benign, samples incorrectly classified
as malicious, and samples incorrectly classified as benign.
Based on the number of samples counted by TP, TN, FP,
and FN, metrics are calculated to evaluate the model. The
definitions of the metrics and the corresponding formulas

are as follows: Precision (P), Recall (R), and F-measure (F1).
P = TP R = TP Fl = 2xPxR
TP+FP’ TP+FN’ P+R °

4.2 RQ1:Detection Effectiveness

To demonstrate the performance of different centrality mea-
sures and machine learning algorithms in MalScan, we con-
ducted experiments on datasets spanning five years (2017-
2021) as shown in Table 1. Table 2 presents the F-measure
results achieved by MalScan on the datasets from each
year, using various centrality analysis methods and machine
learning algorithms. Furthermore, in order to provide a
clearer depiction of MalScan’s overall performance on each

dataset, the table also presents the average f-measure values
when MalScan classifies datasets from the years 2017 to
2021. To validate the efficacy of various centrality measures
in the identification of Android malware, we carry out
seven distinct centrality experiments. In particular, for each
centrality-derived feature, we employ seven different ma-
chine learning algorithms for classification. In other words,
according to different features and classification algorithms,
we evaluate MalScan by conducting 7*7=49 experiments on
each dataset per year.

Table 2 shows that the experimental effects vary across
datasets and MalScan consistently maintain a high f-
measure above 98% for almost experiments. Furthermore,
the detection performance exhibits variation based on the
chosen centrality measures and machine learning algo-
rithms. For instance, when 1NN is chosen as the classifier to
classify the 2021 dataset, the f-measure is 92.08% when we
select eigenvector centrality while is 98.70% when we select
degree centrality. The primary reason for this occurrence is
the differing definitions of the selected centrality metrics. In
contrast, when opting for degree centrality to derive feature
vectors, the f-measure reaches 98.13% with Decision Tree as
the chosen classifier for the 2020 dataset, while it achieves
99.29% with the selection of XGBoost. Table 2 indicates that
detection is optimal when the pagerank centrality analysis
algorithm and XGBoost machine learning algorithm are
selected, ranking first in 2018-2021 datasets (F1 values of
98.2%, 99.3%, 99.2%, and 99.0%, respectively) and second
(F1 value of 98.2%) in 2017 dataset.

MalScan introduces improvements over the original de-
sign methodology. To more clearly demonstrate its effective-
ness in malware detection, we conduct comparative experi-
ments between MalScan, the original method (referred to as
MalScan_origin in this paper), and six selected benchmark
tools, using datasets spanning five years (2017-2021). Table 3
presents the F1 scores from these comparative experiments.
The ensemble of different centrality and different algorithms
are applied in the ensemble learning phase. We integrate the
prediction results generated by 49 individual classifiers in
the classification stage and combine these prediction results
with the corresponding labels as datasets feeding into DNN
for binary classification training. Table 2 and Table 3 indicate
that MalScan achieves F1 scores of 98.58%, 98.48%, 99.44%,
99.33%, and 99.27% in the 2017 to 2021 datasets, respectively.
These scores outperform the best-performing models in the
classification stage in each dataset, whose F1 scores are
98.3%, 98.2%, 99.3%, 99.2%, and 99.0%. The improvement
of ensemble learning is not significant because the orig-
inal baseline effects are excellent. In summary, compared
to experiments based on a single centrality and a single
algorithm, ensemble learning has the best experimental
performance on all datasets. It is more stable among each
dataset due to the more comprehensive features of ensemble
learning. As a result, we employ the ensemble learning
method for subsequent overall effectiveness experiments.

The experimental results presented in Table 3 indicate
that MalScan outperforms other comparative methods in
malware detection within the 2017 to 2021 datasets. This
superiority can be attributed to our ability to capture the
significant features of nodes in the graph structure through
a multidimensional centrality analysis of sensitive APIs

TABLE 2: The F1 of MalScan using different methods and datasets

Dataset 2017 2018 2019

Metrics |[INN 3NN RF DT ADA GBDT XGB|INN 3NN RF DT ADA GBDT XGB|INN 3NN RF DT ADA GBDT XGB

Degree 974 972 981 971 978 974 982|974 974 98.0 974 979 978 982[99.0 989 992 989 99.2 99.1 99.3
Closeness | 97.2 972 98.1 971 978 974 982|974 972 981 974 980 977 982|98.6 989 992 989 992 99.0 993
Harmonic | 97.1 972 982 973 979 975 983|974 97.0 979 973 978 976 98.0]98.0 980 983 98.1 983 982 984

Katz 97.7 977 98.1 973 979 976 982|979 977 98.0 973 979 975 98.1|99.2 99.0 99.1 98.7 99.1 98.8 99.2
Eigenvector | 90.4 90.6 879 87.7 878 878 929|879 90.6 88.6 882 883 883 93.8|89.0 934 865 864 864 864 941
Pagerank |97.5 974 981 970 978 973 982|975 975 978 972 976 974 982|987 989 984 981 984 981 99.3
Authority | 97.3 972 98.0 972 978 974 982|972 971 978 97.0 976 973 982|989 987 984 981 984 983 99.3

Dataset 2020 2021 Mean

Metrics |[INN 3NN RF DT ADA GBDT XGB|INN 3NN DT ADA GBDT XGB|INN 3NN RF DT ADA GBDT XGB

Degree 98.8 98.7 99.1 98.7 99.1 989 99.2 1987 982 99.0 98.6 989 987 99.0| 983 98.1 98.7 982 98.6 984 98.8
Closeness | 98.9 98.8 99.1 988 99.1 989 992|983 977 99.0 985 989 98,6 99.0|98.1 979 987 98.1 98.6 983 98.8
Harmonic | 98.6 98.6 98.9 98.6 989 988 99.0|979 973 984 98.0 984 981 984|978 976 984 979 983 98.0 984

Katz 98.8 98.8 99.1 98.8 99.1 989 99.1|98.6 98.0 99.0 98.6 99.0 98.7 99.0|984 982 986 981 986 983 987
Eigenvector | 941 943 90.6 904 90.5 905 949|921 925 917 916 917 917 93.4]90.7 923 89.0 89 839 889 938
Pagerank | 98.7 98.7 989 98.6 988 98.7 992|986 979 99.0 986 989 98.6 99.0 982 981 984 979 983 980 98.8
Authority | 98.7 98.6 989 98.6 988 988 99.1 981 974 987 983 986 984 989 |98.0 978 983 97.8 982 98.0 98.7

TABLE 3: The F1 Score of MalScan, Drebin, MaMaDroid,
MalScan_origin, HomDroid, Xmal, RAMDA and MSDroid
classification with datasets from the same year

Dataset 2017 2018 2019 2020 2021
MalScan 98.58 98.48 99.44 99.33 99.27
Drebin 9425 9532 9541 9852 97.14
MaMaDroid 9733 9717 96.63 98.61 97.82
MalScan_origin 97.39 9741 9898 98.83 98.70
HomDroid 98.02 9738 97.63 98.73 98.59
Xmal 9791 9729 9715 98.87 9826
RAMDA 94.06 9447 9488 96.72 96.86
MSDroid 93.85 9431 9502 9711 9643

in the function call graph. Such a comprehensive feature
representation enhances the model’s capability to recognize
critical behavioral patterns. Furthermore, the integration
strategy that combines multiple machine learning classi-
fiers further improves the robustness and generalization of
the classification process. This multi-level, multi-algorithm
integration framework effectively enhances detection per-
formance against complex malware patterns, highlighting
the advantages of this approach in feature extraction and
classification processes.

Compared to the original method MalScan_origin,
MalScan demonstrates significant advantages in the richness
of feature representation, the capture of global structure,
and the robustness of classification by employing multi-
dimensional centrality extraction for sensitive APIs and
integrating multiple classifiers. This enhanced approach fa-
cilitates more efficient detection of malware. Drebin, Xmal,
and RAMDA extract diverse features from programs, in-
cluding permissions, intents, and API calls. However, the
homogeneity of their feature vectors is insufficient to cap-
ture the structural semantics of complex malware sam-
ples. Additionally, MaMaDroid may produce potential false
positives during the abstraction of API calls. For instance,
API calls such as TelephonyManager.getDeviceld() and Sms-
Manager.sendTextMessage() can be abstracted under the same
package and family, namely android.telephony and android,
respectively. Both HomDroid and MalScan focus on the in-
vocation of sensitive APIs and analyze features through
graphical structures. However, HomDroid employs a single
community detection algorithm and machine learning clas-
sifier, which limits its capacity for comprehensive evaluation
of potential malicious behaviors within programs. Although
MSDroid also utilizes graph-based malware detection, it
focuses on local code fragments rooted in sensitive API calls,

which may overlook critical information within the over-
all program logic. Additionally, the performance of graph
neural networks (GNNSs) in processing graph data is highly
dependent on the quality and diversity of the input features,
which may result in a decline in classification performance
if feature selection is suboptimal.

Summary: For a single classifier, MalScan’s effectiveness
performs best when the pagerank centrality analysis algorithm
and XGBoost machine learning algorithm are selected. In ad-
dition, MalScan’s ensemble learning phase achieves excellent
F1 scores and outperforms the best-performing models in the
classification stage in each dataset. MalScan exhibits superior
malware detection capabilities compared to six advanced meth-
ods when trained and tested on samples originating from the
same year.

J

4.3 RQ2:Robustness against Android Evolution

To gauge the adaptability of MalScan to the evolving dy-
namics of Android malware, we devise and execute a series
of experiments encompassing four distinct scenarios. Each
scenario involves training the system model on datasets
from different years and subsequently classifying samples
from the remaining years. Specifically, these four scenar-
ios employ datasets from the years 2017, 2017-2018, 2017-
2019, and 2017-2020 for training. Subsequently, the trained
models are employed to classify samples from the years
2018-2021, 2019-2021, 2020-2021, and solely the year 2021,
respectively. In particular, to maintain consistency across
these four scenarios, the training sample sizes for the sub-
sequent three scenarios matched that of the 2017 dataset,
comprising 20,000 benign applications and 20,000 malicious
applications.

To investigate the overarching efficacy of employing
an outdated dataset for training in the context of detect-
ing more recent samples, Table 4 presents the average F1
scores obtained during the classification phase of MalScan,
focusing on the detection of more recent datasets spanning
from one to four years. According to the table, the detec-
tion performances vary according to the chosen centrality
measures, machine learning algorithm and time interval of
the datasets. In general, MalScan performs relatively well
in cross-year experiments, achieving F1 values above 80%
for most experiments. However, there is always a poor

TABLE 4: F1 Values of MalScan to perform detection on more recent samples by training an outdated dataset

Dataset one year two year
Metrics INN 3NN RF DT ADA GBDT XGB | INN 3NN RF DT ADA GBDT XGB
Degree 9341 9364 9492 9278 9493 9324 9498 | 8830 8893 9024 70.71 90.56 70.85 89.93
Closeness | 9285 9330 9481 91.98 9459 9237 9519 | 8797 8833 90.64 8591 8975 69.62 90.32
Harmonic | 9270 9291 9453 88.01 9216 91.31 9465 | 88.09 8776 90.69 57.84 8373 8448 90.35
Katz 9387 9405 9479 9248 9374 9329 9482 | 89.13 88.34 9021 8658 89.13 88.80 90.61
Eigenvector | 86.83 8821 81.50 80.83 81.04 81.02 9031 | 8148 8179 6998 6622 6768 67.06 7625
Pagerank 93.15 9336 9450 91.90 93.61 9230 9512 | 8886 8888 9023 68.06 89.19 69.52 90.04
Authority | 9327 9350 9451 80.14 9376 9324 9497 | 8771 8624 8995 7366 9276 88.77 90.76
Dataset three year four year
Metrics INN 3NN RF DT ADA GBDT XGB | INN 3NN RF DT ADA GBDT XGB
Degree 8744 8776 90.06 49.24 90.78 4947 8837 | 87.06 86.74 8645 986 9240 10.78 7894
Closeness | 77.80 76.32 90.04 8561 8930 4830 90.20 | 82.00 7875 86.71 88.05 8293 29.06 90.56
Harmonic | 85.83 86.25 91.31 1756 60.12 48.02 9276 | 79.24 7890 93.62 1187 86.87 10.67 8831
Katz 8745 8452 89.73 8765 8893 8837 9023 | 85.69 8378 8557 8827 9151 90.62 85.76
Eigenvector | 80.67 80.90 56.87 47.78 50.57 4943 6289 | 7585 7578 6515 5824 59.81 5695 65.64
Pagerank 86.15 8489 89.63 4753 8887 4853 89.04 | 8037 7779 8546 8.69 85.08 879 84.85
Authority | 86.36 8495 89.71 90.66 90.00 91.02 89.84 | 8625 8571 86.03 8326 8693 83.05 89.93
. . . . TABLE 5: Descriptions of 12 obfuscators used in our experi-
96 . = MaScan . ments
—e— Drebin Obfuscator Descriptions
951 —A—MaMaDroid | Change the package name and rename
¥— MalScan_origin ClassRename classes
94 4] Q;r;Drmd . FieldRename Rename fields
< N MethodRename Rename methods
S » RAMDA . .
S e MSDroid 4 AssetEncryption Encrypt asset files
5 P ConstStringEncryption Encrypt constant strings in code
B g0 =y = '*\\ | LibEncryption Encrypt native libs
E‘ AN = ResStringEncryption Encrypt strings in resources
014 N i Insert junk code that is composed by
ArithmeticBranch arithmetic computations and a branch
instruction
904 S \ ; 7 CallIndirection Modify the.control-ﬂow graph Without
changing the code semantics
89 1 A . G Modify the control-flow graph by adding
oto
T T T T two new nodes
one year two year three year four year No Insert random nop instructions within
Dataset Gap P every method implementation
Reorder Change the order of basic blocks of the

Fig. 3: Average F1 scores of MalScan, Drebin, MaMaDroid,
MalScan_origin, HomDroid, Xmal, RAMDA and MSDroid for
classifying recent samples using old training data

performance of partial centrality and the results obtained
are unstable. For instance, when Decision Tree is chosen
as the classification algorithm and harmonic centrality is
used to extract features, the mean value of f-measure for
the datasets with a time interval of three years is 17.56%.
This is primarily attributed to the enhanced adaptability of
abstracted API calls to the evolving dynamics of Android
applications. When centrality and the machine learning
algorithm are fixed, the F-values of most experiments show
a slight decrease as the time span increases. For example,
when katz centrality is chosen to extract features and the
random forest is used for classification, the F-values of
classification are 94.79%, 90.21%, 89.73%, and 85.57% respec-
tively with increasing time span.

Table 4 reveals the best-performing classifiers vary across
datasets with different time spans, and it is difficult to find
a stable single classifier model to resist Android app evolu-
tion. The phase of ensemble learning abates the instability
of MalScan to a certain extent and achieves better F1 values
across data sets with different time spans (95.05%, 90.10%,
90.61%, 91.65%, respectively). To more significantly observe
the change in F-values with time span, Figure 3 uses a line
graph to show the mean values for different time spans.

To investigate the overall performance of detecting new

control-flow graph

samples when training with outdated datasets, we present
the average f-measure of MalScan alongside selected com-
parison tools when detecting new datasets spanning from
one to four years. The experimental results are shown in
Figure 3, the dataset gap labels indicate the time span
between the training and testing sets. For instance, “one
year” signifies that when selecting the years 2017, 2018,
2019, and 2020 as the training sets, the corresponding test
data will be from 2018, 2019, 2020, and 2021, respectively.
To ensure the broad applicability and reliability of the
results, the outcome corresponding to the “one year” label is
represented by the average F-measure value. Similarly, the
labels “two years”, "three years”, and “four years” follow
the same logic. In general, as the time span increases, the
performance of all tools demonstrates a declining trend.
This indicates that, with the evolution of MalScan, detectors
trained on outdated datasets gradually become less effective
in handling newly emerging samples, especially when the
time gap is larger. This performance degradation reflects
the impact of the evolving behavior and characteristics of
malware on detection tools.

As shown in Figure 3, when the time gap between the
test dataset and the training dataset is one year, MalScan
maintains relatively good performance. However, as the
time gap increases to two years, the f-measure of both
MalScan and HomDroid drops significantly. This is mainly

TABLE 6: F1 values of MalScan using different methods and datasets on classifying obfuscated apps

Obfuscator Degree Closeness Harmonic Katz Eigenvector Pagerank Authority | MalScan
ClassRename 98.75 98.75 98.63 98.81 93.82 98.87 98.81 98.99
Rename FieldRename 98.65 9877 9859 9877 93.67 98.88 97.31 98.87
MethodRename 98.26 98.2 91.41 97.82 88.16 98.56 98.31 97.80
AssetEncryption 98.64 98.64 98.46 98.76 93.57 98.76 98.65 99.00
) ConstStringEncryption | 98.14 96.89 95.16 95.77 92.05 95.94 96.42 96.60
Encryption LibEncryption 98.64 98.82 98.58 98.82 93.4 98.87 98.88 99.06
ResStringEncryption 98.57 98.63 98.57 98.75 92.93 98.93 98.75 98.78
ArithmeticBranch 98.65 98.77 98.59 98.77 93.49 98.88 97.14 98.87
CallIndirection 89.57 96.13 96.31 96.23 87.77 94.99 7.45 95.39
Code Goto 98.65 98.77 98.59 98.77 93.16 98.88 97.26 98.98
Nop 98.98 98.92 98.74 99.04 94.70 98.98 97.14 99.08
Reorder 98.81 98.81 98.69 98.93 93.98 98.99 97.05 99.01
F1s of all generated samples 9791 98.34 97.56 98.28 92.58 98.29 93.65 98.38

due to the considerable changes in sensitive API calls be-
tween datasets over this time span, while MaMaDroid rely
on abstract processing of sensitive API calls, which makes
them more resilient to the evolution of Android applica-
tions. Nevertheless, when the time gap further increases to
three and four years, MalScan’s f-measure decline becomes
more moderate, and it even shows an upward trend in the
fourth year. This may be because malware undergoes sub-
stantial changes in its initial evolution stages, causing a large
number of sensitive APIs to be obfuscated, renamed, or
discarded, which adversely affects detection performance.
However, as the evolution stabilizes, changes in sensitive
APIs diminish, enabling MalScan to better adapt to these
changes, resulting in a slower performance decline and even
an improvement in later stages.

Summary: The performance of a single classifier model\
fluctuates across datasets with different time spans, yielding
unstable results. Ensemble learning improves the stability of
Malscan against app evolution to some extent and achieves
better F1. In the experiments addressing temporal evolution,
all tools exhibit a decline in their f-measure as the time span
increases. Although MalScan does not demonstrate a signif-
icant advantage compared to other methods, it nonetheless
maintains a relatively stable detection performance, indicating
a certain degree of resilience to temporal evolution.

J

4.4 RQ3:Robustness against Code Obfuscation

To investigate the resistance of MalScan to obfuscation, we
introduce a modular Python tool Obfuscapk [44] to obfus-
cate the samples and test the obfuscated samples with
the trained model. Obfuscapk provides several types of
obfuscators, including not only some typical obfuscation
(e.g., renaming, encryption) but also some advanced code
obfuscation (e.g., Goto). Based on representativeness and
experimental feasibility, and referencing papers [45] and
[46], we select a subset of representative operators from
the total of 20/21 operators across different categories for
our experiments, ensuring the validity and relevance of
the results. Specifically, we select 12 different obfuscators
from Obfuscapk, including three renaming obfuscators, four
encryption obfuscators, and five advanced code obfuscators.
The descriptions are given in Table 5.

Due to the high computational cost of generating ob-
fuscated samples, following the methodology outlined in
references [45] and [46], we carefully select 1,000 benign
applications and 1,000 malicious applications from the 2021

dataset as test samples, while the remaining samples are
used to train the classification model. Subsequently, the 12
obfuscators mentioned in Table 5 are used to obfuscate the
test samples separately. Specifically, each APK file in the
dataset are sequentially processed using 12 different obfus-
cation tools, with each tool generating an APK file trans-
formed by a distinct obfuscation strategy. In other words,
each original APK file is converted into 12 files, each obfus-
cated using a different method. In practice, some obfuscated
samples are not able to generate due to certain errors, and
we finally obtain 10,060 obfuscated benign samples and
10,130 obfuscated malicious samples. The trained models
are utilized to classify the obfuscated samples to assess the
robustness of MalScan to obfuscation. Due to the excellent
performance of the XGBoost machine learning algorithm
and ensemble learning in effectiveness experiments, the
results of the XGBoost algorithm for classifying feature
vectors generated by different centrality analyses and the
results of ensemble learning are chosen for presentation.
The experimental results for Drebin and MaMaDroid are
exhibited for comparison.

Table 6 presents MalScan’s F-measures for classifying ob-
fuscated applications. Since the typical rename and encryp-
tion obfuscations do not change the call relationships be-
tween functions in an app, MalScan anti-obfuscation works
well for most of the typical obfuscators that can correctly
classify most obfuscated apps into the corresponding label.
However, when the selected obfuscator is Calllndirection,
MalScan’s detection was much less effective than the other
obfuscator experiments. Especially when authority was se-
lected as the centrality analysis, the F-value of XGBoost
classification results was only 7.45%. After our in-depth
analysis, we find that the number of nodes and edges in
a function call graph changes a lot after applying Call-
Indirection. For instance, after CallIndirection’s obfuscation
process, a sample that initially has 8,135 nodes and 19,725
edges is transformed to 35,396 nodes and the number of
edges increases to 58,407. MalScan misclassified the sample
due to the significant change. As shown in Table 6, the single
classifier performs best when classifying with pagerank cen-
trality analysis and XGBoost, while the ensemble learning
algorithm can further improve the stability and effective-
ness of anti-confusion on top of that. For example, pan-
grank centrality analysis (94.99%) does not perform as well
as Harmonic centrality analysis (96.31%) when countering
CallIndirection confusion, and ensemble learning achieve
superior results (95.39%) by fusing multiple classifier algo-

TABLE 7: F1 values of MalScan, Drebin, MaMaDroid, MalScan_origin, HomDroid, Xmal, RAMDA and MSDroid on classifying

obfuscated apps

Obfuscator MalScan Drebin Mamadroid Malscan_origin HomDroid Xmal RAMDA MSDroid
ClassRename 98.99 92.24 99.73 98.75 98.13 93.37 94.03 97.02
Rename FieldRename 98.87 93.52 97.56 98.65 98.18 9442 9458 95.33
MethodRename 97.80 90.24 97.39 98.26 97.05 91.18 91.87 96.19
AssetEncryption 99.00 92.64 97.85 98.64 94.63 9352 93.12 94.75
| ConstStringEncryption | 96.60 91.88 98.72 98.14 93.92 92.77 93.05 93.48
Encryption LibEncryption 99.06 94.07 98.47 98.64 95.77 9481 94.34 93.64
ResStringEncryption 98.78 92.83 97.34 98.57 94.89 93.82 93.27 92.27
ArithmeticBranch 98.87 92.65 98.36 98.65 94.01 93.47 93.78 95.41
CallIndirection 95.39 89.59 96.28 89.57 92.37 9043 913 93.24
Code Goto 98.98 92.37 98.21 98.65 94.76 93.52 93.56 95.29
Nop 99.08 93.99 98.60 98.98 94.9 94.86 9451 95.13
Reorder 99.01 94.01 98.89 98.81 95.33 9499 94.87 95.62
F1s of all generated samples 98.38 92.84 98.27 97.91 96.55 93.78 9413 95.19

rithms.

At the same time, we evaluated the effectiveness of
the selected methods, previously trained on the original
training set, on the obfuscation test set, with the corre-
sponding results summarized in Table 7. It is evident that
the performance of most methods declines after obfuscation
is applied. Specifically, the impact of obfuscation on the
effectiveness of the detectors largely depends on how the
detectors leverage the features of the APK. String-based
detection methods (e.g., Drebin, Xmal, RAMDA) primarily
rely on static features extracted from applications, such as
API calls and permission requests. These methods focus on
the syntactic aspects of the program, making them suscepti-
ble to simple syntactic obfuscations. For instance, renaming
obfuscation (such as ClassRename and FieldRename) ob-
scures the code by changing the names of classes, fields,
or methods, directly affecting the feature extraction process
of string-based methods and resulting in a decline in their
performance. Although methods like Drebin can maintain
relatively high detection accuracy under certain types of
obfuscation, their detection performance significantly de-
teriorates when faced with method-level renaming (such
as MethodRename) or string encryption (such as Const-
StringEncryption), due to their strong dependence on string
features.

In contrast, graph-based detection methods (e.g.,
MalScan, Malscan_origin, MaMaDroid, HomDroid, and MS-
Droid) not only rely on the syntactic information of the
program but also capture the semantic relationships through
the function call graph. This enables them to exhibit en-
hanced robustness when confronted with complex code
obfuscations such as code reordering and control flow al-
terations. Graph-based methods are capable of effectively
handling changes in the code structure, as obfuscations
like Goto, Nop, and Reorder do not significantly alter the
semantic information of the program, leading to relatively
stable performance against such obfuscations. For exam-
ple, MalScan achieves a performance score of 99.01% un-
der Reorder obfuscation, while other graph-based methods
consistently score above 95%. However, even graph-based
methods experience some performance degradation when
faced with complex control flow modifications, such as Call-
Indirection obfuscation. Calllndirection alters the control
flow of function calls without directly affecting the semantic
information of the program, posing challenges for analysis
methods that rely on the function call graph. While methods

10

like MalScan still outperform most string-based methods
under such obfuscation, their F1 scores notably decline.
For instance, MalScan scores 95.39% under Calllndirection
obfuscation.

Summary: The single classifier performs best when classify—\
ing with pagerank centrality analysis and XGBoost, while the
ensemble learning algorithm can further improve the stability
and effectiveness of anti-confusion on top of that. In the
comparison experiments, string-based detection methods tend
to perform poorly against certain types of obfuscation, while
graph-based detection methods typically demonstrate greater
robustness due to their comprehensive consideration of both
syntactic and semantic information of the program.

J

4.5 RQ4:Runtime Overhead

Due to the necessity of evaluating all comparison tools,
testing all 40,000 applications would require a substantial
amount of time. In this section, we randomly selected
5,000 benign applications and 5,000 malicious applications
from the 2021 dataset to estimate the runtime overhead
of MalScan. Since the sizes of each sample in the dataset
are not fixed, we calculate the average number of nodes
for all benign and malicious samples to reflect the overall
characteristics of the dataset. The average number of nodes
for benign and malicious examples in this dataset is 40,273
and 29,093, respectively. For the input test samples, MalScan
primarily conducts its analysis through four stages: Func-
tion call graph extraction, Feature extraction, Classification,
and Ensemble learning. Table 8 presents the time overhead
for the first three stages of MalScan for 5,000 benign and
5,000 malicious applications.

The extraction of function call graphs for a given APK
file takes an average of 1.51 seconds. Concerning feature
extraction, the runtime performance varies based on the
selected centrality metrics. The average time required for
degree centrality is 0.09 seconds, significantly lower than
other centrality measures. With the provided feature vec-
tors, we can employ well-trained machine learning models
for classification, with random forests capable of completing
the detection of 10,000 applications within 0.01 seconds?.

Finally, the results generated by the 49 machine learning
models are integrated and learned using DNN at the ensem-
ble learning phase, which takes 0.0868 seconds for 10,000

3. During this evaluation, we utilized 10,000 applications to train our
machine learning model.

TABLE 8: The detection time overhead of Malscan’s First Three Steps for 5,000 benign software and 5,000 malicious software

applications
. . Classification(s)
Phases Graph Construction(h) | Feature Extraction(h) NN 3NN RE DT ADA CBDT XCB
Degree 0.26 2.20 252 015 0.01 0.52 0.11 0.04
Closeness 4.01 2.32 257 015 0.01 0.49 0.12 0.03
Harmonic 4.16 2.20 247 016 0.01 0.49 0.12 0.02
Katz 4.18 3.61 2.26 249 015 0.01 0.51 0.11 0.02
Eigenvector 0.37 2.26 248 0.16 0.01 047 0.10 0.02
Pagerank 0.36 2.26 248 015 0.01 0.48 0.12 0.02
Authority 0.36 2.25 249 015 0.01 0.50 0.11 0.02

samples. Overall, after progressing through the four stages
mentioned above, MalScan is capable of categorizing a new
application as benign or malicious within an average time
of 6.23 seconds. In subsequent work, we conduct extended
experiments specifically focused on the MalScan tool, an-
alyzing datasets containing 10,000 and 20,000 applications.
The results indicate that the runtime exhibits a linear growth
trend. Based on this trend, we hypothesize that MalScan
maintains good scalability when handling larger datasets.
In future work, we plan to further expand the experimental
scale to validate the performance effectiveness with even
larger datasets.

To further elucidate the scalability of MalScan, we con-
duct a comparative analysis of its runtime overhead against
several other malware detection systems, including Drebin,
MaMaDroid, Malscan_origin, HomDroid, Xmal, RAMDA, and
MSDroid, as illustrated in Table 9. The data presented in the
table indicate that MalScan_origin significantly outperforms
other malware detection systems in terms of scalability
and efficiency, requiring an average of only 0.68 seconds
to detect a single malware instance. As an enhanced ver-
sion of the original method, MalScan exhibits an average
detection time of 6.23 seconds per application, which is
notably higher than the 0.68 seconds required by the single-
classifier MalScan_origin. However, MalScan significantly
improves the effectiveness and robustness of malware de-
tection through its multi-classifier ensemble strategy and
more complex feature extraction processes. Given the per-
formance enhancements offered by these methodologies, the
additional time overhead is both reasonable and acceptable
in practical applications.

Although Xmal and RAMDA demonstrate shorter detec-
tion times of 5.17 seconds and 4.92 seconds, respectively,
this increased speed comes at the expense of performance.
Specifically, Xmal relies solely on static features such as
permission requirements, intent declarations, and sensitive
API calls, while RAMDA only extracts API calls and permis-
sion information as its features. Both approaches depend
on a relatively simplistic feature representation, lacking a
deeper analysis of program structural semantics and global
behavioral patterns. This limitation results in suboptimal
performance in the detection of complex malware, making
it difficult to capture the latent malicious behavior pat-
terns within applications. In the case of MaMaDroid, the
need to construct a more accurate call graph to preserve
context and data flow necessitates an extensive program
analysis, taking approximately 165.63 seconds to complete
a full classification of each application. Drebin, on the other
hand, requires the extraction of eight distinct feature sets
from disassembled code and manifest files, including some

11

complex features such as network addresses, with the total
number of extracted features exceeding 90,000, leading to
a highly time-consuming detection process. The time con-
sumption for HomDroid and MSDroid primarily arises from
their intricate graph analysis and processing of function call
graphs. HomDroid utilizes complex community detection
algorithms to partition the application’s function call graph
into multiple subgraphs, followed by homophily analysis on
each subgraph. In contrast, MSDroid decomposes the func-
tion call graph into subgraphs associated with sensitive API
calls, employing graph encoding and GNNs for subgraph
inference. These processes necessitate handling complex,
large-scale graph structures, involving high computational
complexity, especially when the number of subgraphs is
substantial, leading to a significant increase in computa-
tional cost.

l Summary: Given a new application, a single classifier can\
detect as fast as 1.6s when choosing between degree centrality
analysis and random forest for classification. Furthermore,
with the incorporation of ensemble learning, MalScan achieves
an average classification time of merely 6.23 seconds for dis-
tinguishing between benign and malicious samples. Overall,
MalScan achieves a good balance between runtime efficiency
and detection accuracy, demonstrating superior detection per-
formance and robustness on large-scale datasets compared to
other methods, highlighting its advantages in scalability and

stability.
-

J

4.6 RQ5:Market-wide Case Study

To authenticate MalScan’s capability in detecting real-world
zero-day malicious software, we collect one million apps
from the Google-Play app market in February 2023 for the
MalScan case study, where the average size of the apps is
41.92 MB. Since the ensemble learning experiments perform
more consistently and with higher stability and effectiveness
in previous detection, we use our 2017-2021 dataset to train
the model by adopting an ensemble learning algorithm (49
classifiers are integrated based on 7 different centrality mea-
sures and 7 different machine learning algorithms). Next,
we feed the trained classifiers with apps crawled from the
Google-Play app market.

Out of these million apps, MalScan report 523 as mali-
cious. To investigate whether these 523 apps are malicious,
we subject them to analysis by uploading them to VirusTotal
[40]. Out of these 523 applications, 396 are reported as mal-
ware by at least one anti-virus scanner. For the remaining
127 apps, we used a state-of-the-art Android app analysis
system, SanDroid [47], for a more in-depth examination. This
system merges static and dynamic analysis to provide com-

TABLE 9: The comparative runtime overheads of Malscan, Drebin, MaMaDroid, Malscan_origin, HomDroid, Xmal, RAMDA

and MSDroid on analyzing our dataset

Methods MalScan | Drebin | MaMaDroid

MalScan_origin

HomDroid | Xmal | RAMDA | MSDroid

Average Runtime(s) 6.23 121.41 229.52

0.68 52.75 5.17 4.92 60.41

prehensive insights into risky behavior. By analyzing the
above 127 apps, we discover highly suspicious behavior in
102 of them. Analysis of the above reports of software with
highly suspicious behavior shows that most of the software
contains a variety of risky behaviors such as containing sen-
sitive files, connecting to the Internet, encrypting or decrypt-
ing data, and executing shell code, which is often achieved
by calling sensitive APIs. From the report, it is clear that
most of the malware suffers from data leakage. This soft-
ware obtains sensitive information such as the user’s geo-
graphic location, phone number, and device ID by calling
sensitive APIs (e.g., LocationManager.getLastKnownLocation(),
TelephonyManager.getDeviceld()), and some software can also
steal the user’s privacy by obtaining camera, recording and
other dangerous permission, thus gaining illegal benefits
and bringing huge economic losses to users and even lead-
ing to privacy leakage problems. In addition, some malware
can gain high-risk privileges by calling sensitive APIs. For
example, the application Omi can execute shellcode by
calling the function Runtime.exec(), which can be used to
exploit specific vulnerabilities in the system and gain higher
privileges to modify the device.

In summary, MalScan successfully identifies 498 in-
stances of zero-day malware among a pool of one million
Google Play applications and 102 of which are not reported
as malware by the existing tool [40]. In order to understand
the distribution of malware in the Google Play marketplace,
we conduct statistical research on the 498 zero-day malware
detected, and it is worth noting that 114 of the 498 zero-day
malware detected by MalScan have been removed from the
Google-Play app market. We gather specific details for the
remaining 384 applications, encompassing their app cate-
gory, size, download count, and user ratings. The statistics
for the remaining 384 apps are shown in Table 10.

The majority of these malwares are lifestyle, social and
gaming applications that lure users into installing them
by pretending to offer some specialised features. However,
after installation, they immediately change their names and
icons to make them difficult to discover and uninstall.
In addition, they serve intrusive ads to users by abusing
WebView. As these apps use their own framework to load
ads, they may place additional payloads on infected de-
vices. Based on the number of downloads and ratings, a
large number of users have already been infected. In this
case, Google’s responsibility is to promptly enhance security
measures to detect and prevent malicious software in time,
thereby reducing the threat to users.

Summary: MalScan successfully identifies 498 zero-day
malware from one million Google-Play apps and 102 of which
were not reported as malware by the existing tool. In addition,
114 of the 498 zero-day malware detected by MalScan have
been removed from the Google-Play app market, which further
demonstrates the effectiveness of our detection.

12

5 DISCUSSION
5.1 Threats to Validity

Android malware detection lacks a unified dataset, and to
ensure the effectiveness of the detection, we further expand
the dataset based on our original work by randomly select-
ing over 200,000 tagged apps from AndroZoo as our dataset.
In addition, for the given dataset we randomly divide the
training set and the test set in a ratio of 9:1. To reduce
the impact of training set selection on classification model
training, we present all experimental outcomes through a
10-fold cross-validation conducted on our dataset. Further-
more, due to fluctuating machine states, the time overhead
computation is susceptible to mistakes. We take the mean
value after performing the measurement numerous times to
confirm the reliability and validity of the findings in order
to reduce the risk.

5.2 Why does Malscan perform better?

Firstly, in terms of scalability, MalScan effectively captures
the semantic features of the function call graph of an ap-
plication by treating it as a social network and employing
centrality analysis based on social network theory. This
approach demonstrates greater time efficiency compared
to graph-based methods such as MaMaDroid, HomDroid,
and MSDroid, enabling it to more effectively handle large
and complex applications. Furthermore, the focus on the
centrality analysis of only 426 critical APIs significantly
reduces the time consumption associated with API tracking.
Secondly, regarding accuracy, our emphasis on the 426
key sensitive APIs mitigates the risk of model overfitting,
thereby enhancing the precision and recall of the model.
Building on existing methodologies, we also incorporate
three additional centrality analysis methods and four ma-
chine learning algorithms for malware identification. Fi-
nally, by introducing ensemble learning to integrate the
prediction results of multiple classifiers, we construct a more
robust and comprehensive supervised model. This strategy
effectively enhances detection capabilities, giving MalScan a
significant advantage in the field of malware detection.

5.3 Lessons

Through our research, we discover that random forest is
the quickest among the selected seven machine learning al-
gorithms, while xgboost performs the best. We also observe
that out of the seven centrality measures we selected, degree
centrality analysis is the fastest, while pagerank centrality is
the most effective. For the single classification model, the
models generated by pagerank centrality and xgboost clas-
sification algorithms perform best in detection effectiveness
and anti-confusion experiments; in terms of anti-evolution,
each single classifier performs inconsistently across different
datasets; in scalable experiments, classification using degree
centrality analysis and the random forest algorithm takes
the least time, with an average of 1.6s to complete the
detection of an app. Malscan’s integrated learning algorithm
outperforms the single classifier model in terms of effective-

TABLE 10: Category distribution of zero-day malware detected by MalScan

Category # Apps # Downloads AVE. SIZI\e/I(i\:([B) Min Avg. Ri;g;g M # Ratings
Travel & Local 14 595,110 4696 8656 11.92 430 430 430 5,570
Shopping 19 1,751,560 4779 9264 1164 427 500 3.30 7,934
Health 15 1,055,100 6398 106.61 2527 290 290 290 23,000
Browser 20 1,237,230 2823 8095 479 437 450 420 47,532
Educational 12 427,000 66.80 172.07 11.02 463 490 450 8,080
Finance 46 20,831,655 5256 103.84 891 354 500 1.60 231,914
Lifestyle 76 114,434,750 36.12 18286 732 412 500 270 13,171,537
Social 42 120,248,605 6125 9146 1413 4.04 450 320 3,192,660
Books & Reference 22 37,303,000 3687 9529 1316 439 480 370 1,212,784
Productivity 9 500,516,110 ~ 28.41 80.01 651 363 460 1.80 8,921,482
Music & Audio 39 112,673,060 2768 87.85 11.18 440 500 3.70 9,198,210
Game 49 64,650,560 4458 147.65 334 400 470 250 6,910,456
News & Magazines 21 1,222,650 40.06 8741 855 413 500 3.60 10,955
Total 384 976,946,390 4471 18286 334 4.06 500 1.60 42,942,114

ness and robustness, but it is more time-consuming than the
single classifier, taking 6.23s on average to detect an app.
According to the experimental results, if the testers want
to ensure certain effectiveness and relatively fast detection,
we suggest choosing the model trained by pangrank cen-
trality analysis and xgboost machine learning algorithm for
detection, which takes 1.63s on average to get the detection
results. For more accurate results, the ensemble learning
model of Malscan is chosen which takes 6.23s on average.

5.4 Limitation and Future Work

In our research, we thoroughly choose seven distinct cen-
trality measures and seven machine-learning techniques to
classify Android apps. Although the robustness of MalScan
against evolution is limited, its efficiency in malware scan-
ning positions it as a primary line of defense. By sieving
through the majority of malicious software, it paves the way
for the utilization of other computationally intensive and
more robust methods as a secondary layer of defense. This
strategic approach enables us to conserve valuable time and
resources. Furthermore, given that the majority of Android
malware detection systems are closed source, we only com-
pared MalScan against six state-of-the-art systems. In our
future work, we intend to conduct in-depth comparative
analyses involving a broader spectrum of systems.

6 RELATED WORK

Depending on the type of information extracted, the large
number of malware detection methods currently pro-
posed can be divided into two groups: syntax-based and
semantics-based.

6.1 Syntax-based Methods

Syntax-based approaches [48], [49], [7], [8], [9], [10], [11],
[50], [51], [52], [53] enable efficient Android malware detec-
tion, but the absence of semantic and contextual messages
makes the accuracy of the detection results difficult to
guarantee.

For instance, [7], [11], [52] treat permission control as an
entry point for Android malware detection, and high-risk
permissions are considered as characteristics of malware for
detection. Note that LinRegDroid [52] significantly improves
classification performance by creating different classifiers
using the bagging method in ensemble learning.

However, it is difficult to guarantee the accuracy of
software detection with a single feature. In response to
this issue, Drebin [8] employs comprehensive static analysis
to extract the maximum number of features from appli-

13

cations. These features are subsequently embedded in a
vector space for malicious software detection. Alazab etal.
[50] selects the most valuable API calls by three grouping
strategies (ambiguous group, risky group, and disruptive
group) and classifies applications as benign or malicious
by examining the distribution of permissions and API call
frequency. Famd [51] constructs the original feature set by
extracting permissions and Dalvik opcode sequences, and
obtains dimensionality reduction features to detect malware
by fast correlation-based filter (FCBF) algorithm. MFDroid [53]
combine permissions, API calls, and opcodes to form a
feature set and train multiple base classifiers using seven
classification algorithms. The ensemble learning algorithm
then integrates the prediction outcomes of the various base
classifiers to get the final classification outcomes. However,
the feature extraction of syntax-based methods only treats
the source code as text and performs the extraction of spe-
cific strings. These methods do not account for the semantic
information of the program and they are susceptible to
evasion through syntax feature attacks [54], [55].

6.2 Semantics-based Methods

To uphold a strong capability in the detection of Android
malware, semantic-based approaches [12], [13], [15], [56],
[57], [58], [59], [60], [61], [62], [63], [64], [65], [16], [66], [67]
extract the semantics of different types of causal programs
through program analysis. Compared to syntax-based ap-
proaches, more information significantly improves the accu-
racy of detection. but also suffers from high time overhead
and difficulty in scaling.

For example, DroidSIFT [12] extracts features from the
weighted contextual API dependency graph to counter
transformation attacks. IntDroid [67] view the function call
graph as a social network and analyze the centrality to filter
out the central nodes. The average intimacies between these
central nodes and sensitive API calls are then calculated
to capture the semantic properties of the graph. GENDroid
[66] achieves improved accuracy by integrating diverse
graph-based classification methods with a majority vot-
ing approach. MaMaDroid [15] extracts API call sequences
from the call graph to establish a Markov chain model
and conducts feature extraction for detection. This method
demonstrates greater adaptability to API variations and en-
hances resilience against the evolving landscape of Android
malware. Nonetheless, it also come with certain limitations:
firstly, it is susceptible to evasion by custom packages that
appear similar to Android, Google, or Java packages [54];

secondly, due to the extensive extraction of feature sets and
call graphs, considerable memory is required during the
detection process.

6.3 Differences From Previous Version

The currently proposed methods all exhibit inherent lim-
itations, making it challenging to achieve rapid malware
detection while ensuring rich semantic information. Our
prior work, Malscan, introduces a graph-based lightweight
approach and achieves notable results, but it still presents
some drawbacks. Building upon the foundation of prior
research, this paper has undertaken enhancements in the
following aspects:

Firstly, the previous work selects more than 20,000 sen-
sitive APIs as features to characterize malicious behavior.
However, upon conducting further analysis of the resul-
tant feature vectors, we discover that only a part of these
sensitive APIs hold significant importance. A multitude
of irrelevant APIs not only waste computational resources
but also undermine detection efficacy. To provide a precise
representation of malicious behavior, we reduce the feature
dimension and choose 426 most representative security-
related sensitive APIs [35] as features.

Secondly, in our previous work, we confine our selec-
tions to a mere 15,285 benign apps and 15,430 malicious
apps spanning the years 2011 to 2018 for our experimental
dataset. The limited dataset result in the trained model
lacking stability and reliability, potentially leading to biased
predictions and an inability to accurately capture various
scenarios. Additionally, considering the persistent evolution
of malicious software, outdated datasets may struggle to
precisely identify and capture the latest malicious behaviors,
consequently elevating the probabilities of both false posi-
tives and false negatives. Hence, we significantly expand
our data collection efforts by accumulating a dataset com-
prising 101,913 benign applications and 109,945 malicious
software spanning the period from 2017 to 2021, aiming to
enhance detection performance and bolster the credibility of
our experiments.

Thirdly, the limitations in the robustness and effective-
ness of MalScan stem from its narrow focus on just three
machine learning techniques and four centrality analysis
methods. Consequently, we undertake algorithmic enrich-
ment, ultimately embracing a diverse spectrum encompass-
ing seven centrality analysis techniques and seven machine
learning algorithms for the identification of malicious soft-
ware. We feed the feature vectors generated from distinct
centrality analyses into distinct machine learning models,
culminating in the creation of 49 distinct weak classifiers,
each emphasizing different aspects. Moreover, we introduce
the concept of ensemble learning, leveraging a DNN model
to integrate predictions from multiple classifiers into a com-
prehensive and exceptionally strong supervised model. This
approach ensures that even if one weak classifier makes
an inaccurate prediction, the collaborative effect of others
corrects the error.

Finally, to provide a more comprehensive assessment
of our proposed malicious software detection system’s per-
formance, we incorporate anti-obfuscation experiments and
case study experiments into the framework of our previous
experiments. On one hand, malware authors frequently

14

employ a variety of obfuscation techniques (e.g., altering
code structure, naming conventions) to veil their code and
thwart static analysis and detection efforts. Consequently,
we select 12 distinct obfuscators from Obfuscapk to obfuscate
the same dataset samples, followed by conducting malware
detection. This methodology enables us to evaluate the sys-
tem’s resilience and adaptability against obfuscation tech-
niques. On the other hand, practical applications demand
that malware detection methods adapt to diverse applica-
tion scenarios and evolving malware variations. Thus, we
conduct detection and research on millions of applications
from the Google Play Store to authenticate the method’s
utility and feasibility in real-world settings. Through the
analysis results, we finally discover 498 zero-day malware,
and they are downloaded more than 97 million times. This
means that there is a good chance that millions of users have
been infected, causing financial losses. We have reported
these malware to Google, hope they can deal with them as
soon as possible.

7 CONCLUSION

Building upon previous work MalScan, we propose an
enhanced, graph-based lightweight approach for detecting
malicious software. For a given test sample, a succinct
function call graph is initially extracted, followed by the ap-
plication of seven centrality analysis algorithms and seven
machine learning classification algorithms, generating 49
corresponding labels. Subsequently, a DNN model inte-
grates all labels to produce the final detection outcome.
We comprehensively evaluate MalScan using the dataset of
213,532 applications sourced from AndroZoo. Experimental
results demonstrate that MalScan can achieve a high accu-
racy rate of 98%, effectively identifying Android malware
within an average processing time of 6.23 seconds. This
represents a significant speed improvement of over 20 times
compared to two advanced methods, namely MaMaDroid
and Drebin. Additionally, we conduct a statistical study on a
million applications from the Google Play Store and identify
498 zero-day malware. This underscores the feasibility of
MalScan for comprehensive mobile malware scanning across
the market.

ACKNOWLEDGEMENTS

We would thank the anonymous reviewers for their insight-
ful comments to improve the quality of the paper. This
work is supported by the Key Program of National Science
Foundation of China under Grant No. 62172168.

REFERENCES
(1]
[2]

“The mobile malware threat landscape in 2022,” https:/ /secureli
st.com/mobile-threat-report-2022/108844/, 2022.

B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane, “Graph-
based malware detection using dynamic analysis,” Journal in com-
puter Virology, vol. 7, pp. 247-258, 2011.

W.-C. Wu and S.-H. Hung, “Droiddolphin: a dynamic android
malware detection framework using big data and machine learn-
ing,” in Proceedings of the 2014 conference on research in adaptive and
convergent systems, 2014, pp. 247-252.

B. Amos, H. Turner, and J. White, “Applying machine learning
classifiers to dynamic android malware detection at scale,” in
2013 9th international wireless communications and mobile computing
conference (IWCMC). 1EEE, 2013, pp. 1666-1671.

P. Feng,]. Ma, C. Sun, X. Xu, and Y. Ma, “A novel dynamic android
malware detection system with ensemble learning,” IEEE Access,
vol. 6, pp. 3099631011, 2018.

(3]

(4]

(5]

6]

(71

(8]

(9]

[10]

(1]

[12]

(13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

H. Long, Z. Tian, and Y. Liu, “Detecting android malware based on
dynamic feature sequence and attention mechanism,” in 2021 IEEE
5th International Conference on Cryptography, Security and Privacy
(CSP). IEEE, 2021, pp. 129-133.

W. Wang, X. Wang, D. Feng,]J. Liu, Z. Han, and X. Zhang,
“Exploring permission-induced risk in android applications for
malicious application detection,” IEEE Transactions on Information
Forensics and Security, 2014.

D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck,
and C. Siemens, “Drebin: Effective and explainable detection of
android malware in your pocket,” in Proceedings of the 2014 Annual
Network and Distributed System Security Symposium (NDSS’14),
2014.

B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and
I. Molloy, “Android permissions: A perspective combining risks
and benefits,” in Proceedings of the 17th ACM Symposium on Access
Control Models and Technologies (ACMT’12), 2012.

Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of
my market: Detecting malicious apps in official and alternative
android markets.” in Proceedings of the 2012 Annual Symposium on
Network and Distributed System Security (NDSS'12), 2012.

J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, “Signifi-
cant permission identification for machine-learning-based android
malware detection,” IEEE Transactions on Industrial Informatics,
2018.

M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware an-
droid malware classification using weighted contextual api depen-
dency graphs,” in Proceedings of the 2014 ACM SIGSAC conference
on computer and communications security, 2014, pp. 1105-1116.

Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantics-
based detection of android malware through static analysis,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE’14), 2014.

G. Suarez-Tangil and G. Stringhini, “Eight years of rider measure-
ment in the android malware ecosystem,” IEEE Transactions on
Dependable and Secure Computing, 2020.

E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro,
G. Ross, and G. Stringhini, “Mamadroid: Detecting android mal-
ware by building markov chains of behavioral models,” in Pro-
ceedings of the 2017 Annual Symposium on Network and Distributed
System Security (NDSS’17), 2017.

Y. Bai, S. Chen, Z. Xing, and X. Li, “Argusdroid: detecting android
malware variants by mining permission-api knowledge graph,”
Science China Information Sciences, vol. 66, no. 9, pp. 1-19, 2023.

Y. Wu, X. Li, D. Zou, W. Yang, X. Zhang, and H. Jin, “Malscan: Fast
market-wide mobile malware scanning by social-network central-
ity analysis,” in 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 1EEE, 2019, pp. 139-150.
K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,”
in Proceedings of the 13th Working Conference on Mining Software
Repositories (MSR'16), 2016.

Y. Wu, D. Zou, W. Yang, X. Li, and H. Jin, “THomdroid: detecting
android covert malware by social-network homophily analysis,”
in Proceedings of the 30th acm sigsoft international symposium on
software testing and analysis, 2021, pp. 216-229.

M. M. Alani, A. Mashatan, and A. Miri, “Xmal: A lightweight
memory-based explainable obfuscated-malware detector,” Com-
puters & Security, vol. 133, p. 103409, 2023.

H. Li, S. Zhou, W. Yuan, X. Luo, C. Gao, and S. Chen, “Robust
android malware detection against adversarial example attacks,”
in Proceedings of the Web Conference 2021, 2021, pp. 3603-3612.

Y. He, Y. Liu, L. Wu, Z. Yang, K. Ren, and Z. Qin, “Msdroid:
Identifying malicious snippets for android malware detection,”
IEEE Transactions on Dependable and Secure Computing, vol. 20, no. 3,
pp- 2025-2039, 2022.

H. Jeong, S. P. Mason, A.-L. Barabdsi, and Z. N. Oltvai, “Lethality
and centrality in protein networks,” Nature, 2001.

X. Liu, J. Bollen, M. L. Nelson, and H. Van de Sompel, “Co-
authorship networks in the digital library research community,”
Information Processing & Management, 2005.

R. Guimera, S. Mossa, A. Turtschi, and L. N. Amaral, “The world-
wide air transportation network: Anomalous centrality, commu-
nity structure, and cities” global roles,” National Academy of Sci-
ences, 2005.

N. Coles, “It’s not what you know-it’s who you know that counts.

15

[27]
(28]

[29]
(30]
[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
(43]
[44]

[45]

[46]

[47]

[48]

[49]

(50]

[51]

[52]

(53]

[54]

analysing serious crime groups as social networks,” British Journal
of Criminology, 2001.

K. Faust, “Centrality in affiliation networks,” Social Networks, 1997.
L. C. Freeman, “Centrality in social networks conceptual clarifica-
tion,” Social Networks, 1978.

L. Katz, “A new status index derived from sociometric analysis,”
Psychometrika, 1953.

L. C. Freeman, “A set of measures of centrality based on between-
ness,” Sociometry, 1977.

S. Brin and L. Page, “The anatomy of a large-scale hypertextual
web search engine,” Computer networks and ISDN systems, 1998.
M. Piraveenan, M. Prokopenko, and L. Hossain, “Percolation
centrality: Quantifying graph-theoretic impact of nodes during
percolation in networks,” PloS one, 2013.

M. R. Faghani and U. T. Nguyen, “A study of xss worm propaga-
tion and detection mechanisms in online social networks,” IEEE
Transactions on Information Forensics and Security, 2013.

A. Alvarez-Socorro, G. Herrera-Almarza, and L. Gonzalez-Diaz,
“Eigencentrality based on dissimilarity measures reveals central
nodes in complex networks,” Scientific Reports, 2015.

L. Gong, Z. Li, F. Qian, Z. Zhang, Q. A. Chen, Z. Qian, H. Lin, and
Y. Liu, “Experiences of landing machine learning onto market-
scale mobile malware detection,” in Proceedings of the Fifteenth
European Conference on Computer Systems, 2020.

A. Desnos, “Androguard,” https://github.com/androguard/an
droguard, 2011.

M. Marchiori and V. Latora, “Harmony in the small-world,” Phys-
ica A: Statistical Mechanics and its Applications, 2000.

M. E. Newman, “The mathematics of networks,” The new palgrave
encyclopedia of economics, 2008.

J. M. Kleinberg, “Authoritative sources in a hyperlinked environ-
ment,” Journal of the ACM (JACM), 1999.

“Virustotal - free online virus, malware and url scanner,” https:
/ /www.virustotal.com/, 2019.

“Socialnetwork,” https:/ /en.wikipedia.org/wiki/Social_netwo
rk/, 2019.

“scikit-learn,” https:/ /scikit-learn.org/, 2019.

“Tensors and dynamic neural networks in python with strong gpu
acceleration (pytorch),” https://pytorch.org, 2021.

S. Aonzo, G. C. Georgiu, L. Verderame, and A. Merlo, “Obfuscapk:
An open-source black-box obfuscation tool for android apps,”
SoftwareX, vol. 11, p. 100403, 2020.

C. Gao, G. Huang, H. Li, B. Wu, Y. Wu, and W. Yuan, “A compre-
hensive study of learning-based android malware detectors under
challenging environments,” in Proceedings of the 46th IEEE/ACM
International Conference on Software Engineering, ICSE 2024, Lisbon,
Portugal, April 14-20, 2024, 2024, pp. 12:1-12:13.

J. Liu, J. Zeng, F. Pierazzi, L. Cavallaro, and Z. Liang, “Unraveling
the key of machine learning solutions for android malware
detection,” CoRR, vol. abs/2402.02953, 2024. [Online]. Available:
https://doi.org/10.48550/arXiv.2402.02953

“Sandroid - an automatic android application analysis system,”
http://sanddroid.xjtu.edu.cn/, 2019.

H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-
Rotaru, and I. Molloy, “Using probabilistic generative models for
ranking risks of android apps,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security (CCS’12),2012.
Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-level
features for robust malware detection in android,” in Proceedings
of the 9th International Conference on Security and Privacy in Commu-
nication Systems (SecureComm’13), 2013.

M. Alazab, M. Alazab, A. Shalaginov, A. Mesleh, and A. Awajan,
“Intelligent mobile malware detection using permission requests
and api calls,” Future Generation Computer Systems, vol. 107, pp.
509-521, 2020.

H. Bai, N. Xie, X. Di, and Q. Ye, “Famd: A fast multifeature
android malware detection framework, design, and implementa-
tion,” IEEE Access, vol. 8, pp. 194 729-194 740, 2020.

D. O. Sahin, S. Akleylek, and E. Kilig, “Linregdroid: detection of
android malware using multiple linear regression models-based
classifiers,” IEEE Access, vol. 10, pp. 1424614259, 2022.

X. Wang, L. Zhang, K. Zhao, X. Ding, and M. Yu, “Mfdroid:
A stacking ensemble learning framework for android malware
detection,” Sensors, vol. 22, no. 7, p. 2597, 2022.

X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and
K. Ren, “Android hiv: A study of repackaging malware for evad-

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

ing machine-learning detection,” IEEE Transactions on Information
Forensics and Security, 2019.

K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. Mc-
Daniel, “Adversarial examples for malware detection,” in Pro-
ceedings of the 2017 European Symposium on Research in Computer
Security (ESORICS’17), 2017.

W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “Appcon-
text: Differentiating malicious and benign mobile app behaviors
using context,” in Proceedings of the 37th International Conference on
Software Engineering (ICSE’15), 2015.

J. Allen, M. Landen, S. Chaba, Y. Ji, S. P. H. Chung, and
W. Lee, “Improving accuracy of android malware detection with
lightweight contextual awareness,” in Proceedings of the 34th An-
nual Computer Security Applications Conference (ACSAC’18), 2018.
W. Yang, M. Prasad, and T. Xie, “Enmobile: Entity-based character-
ization and analysis of mobile malware,” in Proceedings of the 40th
International Conference on Software Engineering (ICSE’18), 2018.

V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt,
S. Rasthofer, and E. Bodden, “Mining apps for abnormal usage
of sensitive data,” in Proceedings of the 37th International Conference
on Software Engineering (ICSE’15), 2015.

W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: An information-
flow tracking system for realtime privacy monitoring on smart-
phones,” ACM Transactions on Computer Systems, 2014.

A. Machiry, N. Redini, E. Gustafson, Y. Fratantonio, Y. R. Choe,
C. Kruegel, and G. Vigna, “Using loops for malware classification
resilient to feature-unaware perturbations,” in Proceedings of the
34th Annual Computer Security Applications Conference (ACSAC’18),
2018.

A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “Madam:
Effective and efficient behavior-based android malware detection
and prevention,” IEEE Transactions on Dependable and Secure Com-
puting, 2018.

A. Narayanan, M. Chandramohan, L. Chen, and Y. Liu, “A multi-
view context-aware approach to android malware detection and
malicious code localization,” Empirical Software Engineering, 2018.
Y. Feng, O. Bastani, R. Martins, I. Dillig, and S. Anand, “Auto-
mated synthesis of semantic malware signatures using maximum
satisfiability,” in Proceedings of the 2017 Annual Symposium on
Network and Distributed System Security (NDSS'17), 2017.

J. Garcia, M. Hammad, and S. Malek, “Lightweight, obfuscation-
resilient detection and family identification of android malware,”
ACM Transactions on Software Engineering and Methodology, 2018.

S. Badhani and S. K. Muttoo, “Gendroid-a graph-based ensemble
classifier for detecting android malware,” International Journal of
Information and Computer Security, vol. 18, no. 3-4, pp. 327-347,
2022.

D. Zou, Y. Wu, S. Yang, A. Chauhan, W. Yang, J. Zhong, S. Dou,
and H. Jin, “Intdroid: Android malware detection based on api
intimacy analysis,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 30, no. 3, pp. 1-32, 2021.

Yueming Wu received the Ph.D. degree in the
School of Cyber Science and Engineering at
Huazhong University of Science and Technol-
ogy, Wuhan, China, in 2021. He is currently an
associate professor in the School of Cyber Sci-
ence and Engineering at Huazhong University of
Science and Technology, Wuhan, China. His pri-
mary research interests lie in malware analysis
and vulnerability analysis.

16

—_——
——~

Wenqi Suo received the master degree in the
School of Cyber Science and Engineering at
Huazhong University of Science and Technol-
ogy, Wuhan, China, in 2024. Her primary re-
search interests lie in malware analysis and vul-
nerability analysis.

Siyue Feng received the bachelor degree in
University of Electronic Science and Technology
of China (UESTC), in 2021. She is currently a
Ph.D. candidate in the School of Cyber Science
and Engineering at Huazhong University of Sci-
ence and Technology, Wuhan, China. Her pri-
mary research interests lie in vulnerability analy-
sis.

Deqing Zou received the Ph.D. degree at
Huazhong University of Science and Technology
(HUST), in 2004. He is currently a professor
of School of Cyber Science and Engineering,
Huazhong University of Science and Technology
(HUST), Wuhan, China. His main research inter-
ests include system security, trusted computing,
virtualization and cloud security.

Wei Yang received his Ph.D. in Computer Sci-
ence from the University of lllinois at Urbana-
Champaign and his bachelor degree from
Shanghai Jiao Tong University. He was a visiting
researcher in University of California, Berkeley.
His research interests are in software engineer-
ing and security. His current primary projects
relate to Mobile Security, Software engineer-
ing/Security for Machine Learning, Intelligent
SE/Security, and loT/Blockchain Security.

Yang Liu received the Ph.D. degree from NUS
and MIT, in 2010. He started his postdoctoral
work in NUS and MIT. In 2012, he joined
Nanyang Technological University (NTU). He is
currently a Full Professor and the Director of the
Cybersecurity Laboratory, NTU. He specializes
in software verification, security, and software
engineering. By now, he has more than 400
publications in top tier conferences and journals.

Hai Jin received the Ph.D. degree in computer
engineering from Huazhong University of Sci-
ence and Technology (HUST), Wuhan, China,
in 1994. He is a Cheung Kung Scholars Chair
Professor of computer science and engineering
at HUST in China. He was awarded Excellent
Youth Award from the National Science Founda-
tion of China in 2001. He is the chief scientist of
ChinaGirid, the largest grid computing project in
China, and the chief scientists of National 973
Basic Research Program Project of Virtualiza-

tion Technology of Computing System, and Cloud Security. He is a
fellow of the IEEE, a fellow of the CCF, and a member of the ACM. He
has co-authored 22 books and published over 700 research papers. His
research interests include computer architecture, virtualization technol-
ogy, cluster computing and cloud computing, peer-to-peer computing,
network storage, and network security.

