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COCL: An Intelligent Framework for Enhancing
Deep Learning-based Vulnerability Detection
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Abstract— Due to the powerful feature extraction capa-
bility of deep learning (DL), many recent studies have used
it to conduct source code vulnerability analysis. However,
although it has good performance on artificial datasets, it
does not perform satisfactorily on the real-world vulnerabil-
ities with higher complexity. In this paper, we introduce con-
trastive curriculum learning into DL-based vulnerability de-
tection to find a suitable boundary to distinguish vulnerabil-
ities from normal codes. Contrastive learning can be used
to reduce the difference between different vulnerabilities
while amplifying the difference between vulnerabilities and
normal codes. To make the training phase of contrastive
learning more intelligent, we apply curriculum learning to
mimic the way humans acquire knowledge, which means
that the model will learn simple samples first and then
increase the difficulty of training samples. Specifically, we
implement an intelligent framework (i.e., COCL) that can
enhance the detection effect of existing DL-based vulnera-
bility detectors. To verify the capability of COCL, we select
four state-of-the-art DL-based vulnerability detectors (i.e.,
AutoVulTC, VulDeePecker, BenchSG, and Devign) as our
base models. The experimental results show that using
COCL can bring an improvement of 8.1% to the F1 scores
of these models on a real-world vulnerability dataset.

Index Terms— Vulnerability Detection, Deep Learning,
Contrastive Learning, Curriculum Learning

I. INTRODUCTION

IN recent years, the greatly increased complexity of com-
puter systems makes both possibility and diversity of

software vulnerabilities greatly increased, the wide application
of open source libraries and sharing devices also make soft-
ware vulnerabilities’ propagation speed increase dramatically.
According to a recent report1, the number of vulnerabilities
released by the National Vulnerability Database (NVD) has
risen for four consecutive years. As a matter of fact, software
vulnerability detection is designed to discover weak snippets
in source code and prevent attackers from exploiting these
snippets to gain unauthorized access to the system. If the
source code can be detected before launching, the potential
damages caused by vulnerabilities may be avoided. Therefore,
software vulnerability detection has great significance to the
security of the software system.

Generally, there are mainly two categories of source code
vulnerability detection technology, code-similarity-based ap-
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proaches [1] and pattern-based methods [2]. Code-similarity-
based approaches can only figure out vulnerabilities caused
by code cloning. To this end, these detectors calculate the
similarity between object code and known vulnerabilities, and
report the object source codes which have a similarity score
higher than the threshold, these source codes are more likely to
have a cloned vulnerability. Since they are designed to discover
similar vulnerabilities, they cannot find new vulnerabilities
and have limitations in practical applications. To detect more
new vulnerabilities, pattern-based techniques are proposed.
For pattern-based methods, learning algorithms take patterns
produced by professional or machines as inputs and output the
vulnerabilities detection results. At the early stage of pattern-
based vulnerability detection [3], [4], the only way to get
vulnerability patterns is handmaking by experts, which is la-
borious and lacking generalization. Fortunately, the emergence
of deep learning (DL) makes up for this defect well.

Deep learning can extract features from source code through
iterative learning, that are more complex and representative
than those handmade. This advantage promotes researchers
[5]–[7] using deep learning to automatically learn high-latitude
features with strong generalization and relevance to the context
of source code. For example, VulDeePecker [8] first breaks the
source code into program slices, and adopts a bidirectional
long short-term memory (BiLSTM) neural network to detect
vulnerabilities. Funded [9] processes the source code through
complex procedural analysis into an enhanced abstract syntax
tree (AST), and then uses a graph neural network (GNN)
to train a classifier. Although these above methods have
an ideal performance on the Software Assurance Reference
Dataset (SARD), the effect is not satisfactory on real-world
vulnerability datasets. This happens mainly because the ma-
jor purpose of SARD is academic research, and the simple
synthetic vulnerabilities are sufficient, while the real-world
vulnerabilities have higher complexity and diversity, making
it difficult to be distinguished [10].

To improve the ability of existing methods on detecting real-
world vulnerabilities, we propose to use Contrastive Learn-
ing in DL-based vulnerability detection. Contrastive learn-
ing can gather homogeneous features and distinguish non-
homogeneous features in feature space as far as possible. Its
goal is to maximize the similarity between positive samples
and minimize the similarity between negative samples. How-
ever, in the training procedures, contrastive learning simply
presents samples in a random order. But the fact is that,
for a special model, different training samples have different
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learning difficulties. For example, some negative samples may
be similar to positive samples, making it hard for the model to
distinguish them. In other words, these negative samples have
high learning difficulties. Coincidentally, there is a similar
situation in the process of human ingestion of knowledge, and
our solution is not learning difficult knowledge at first, but
starting from simple samples and gradually join samples with
higher difficulty. The phased learning from primary school to
university is the application of this method. In this way, we
can understand what we learned better. In practice, certain
studies [11] have proved that a model can get better learning
effect if it can have a phase training procedure. They formally
define this approach as Curriculum Learning. Its basic idea is
to imitate the way humans learn, and gradually add difficult
samples during the training process to give the model more
buffer space for understanding.

In this paper, we introduce Contrastive Curriculum Learn-
ing into DL-based vulnerability detection. Specifically, we
implement two different difficulty calculators to sort our
training samples. One is to use the source code complexity
as the learning difficulty of the sample, and the other is to
calculate the similarity between the original sample and the
corresponding negative sample as the learning difficulty of
the negative sample. We implement a novel framework (i.e.,
COCL) that can enhance the detection ability of DL-based
vulnerability detectors. To examine the ability of COCL, we
choose four state-of-the-art DL-based vulnerability detectors
(i.e., AutoVulTC [7], VulDeePecker [8], BenchSG [12], and
Devign [5]) as our base models. According to the experimental
results, we find that introducing COCL during training phase
can make these detectors discover 9.6% more real-world
vulnerabilities on average.

In summary, the contributions of this paper are:
• We introduce Contrastive Curriculum Learning into DL-

based vulnerability detection to improve their detection
ability.

• We implement COCL, a model-agnostic framework that
can enhance the effectiveness of DL-based vulnerability
detection models.

• We use a real-world vulnerability dataset and four state-
of-the-art DL-based vulnerability detectors (i.e., Au-
toVulTC, VulDeePecker, BenchSG, and Devign) for the
evaluations. Experimental report shows that the use of
COCL can make them detect 9.6% more vulnerabilities
on average.

Paper organization. The remainder of the paper is organized
as follows. Section II describes the related work. Section III
introduces our system. Section IV reports the experimental
results. Section V concludes the present paper.

II. RELATED WORK
A. Vulnerability Detection
Generally, there are mainly two categories of source code
vulnerability detection technology: code-similarity-based ap-
proaches and pattern-based techniques. Code-similarity-based
vulnerability detection methods only detect cloned vulnera-
bilities, they use different code similarity analysis algorithms
based on different data structures (e.g., tree-based [13], token-

based [14], and graph-based [15]). In the early stage of pattern-
based methods [2], vulnerability patterns are usually defined
by human experts which is laborious and lacks generalization.
To achieve more intelligent vulnerability analysis, researchers
[5], [7], [8], [16] begin to use deep learning to detect vulnera-
bilities. For example, VulDeePecker [8] first breaks the source
code into program slices, and adopts a bidirectional long short-
term memory (BiLSTM) neural network to detect vulnerabil-
ities using the way it treats text. DeepWukong [16] processes
program semantics into a program dependency graph, then
based on the program interest points, the dependency graph
is splitted into multiple subgraphs. Finally, a graph neural
network (GNN) takes these subgraphs to train a detector.

B. Contrastive Learning

The idea of contrastive loss was generated by [17] in 2006,
instead of matching samples to fixed targets, it maximize
or minimize the similarities of representation pairs for opti-
mization. Then Mikolov et al. [18] introduce the first con-
trastive loss NCE in 2013, and used it for natural language
processing (NLP). In practice, contrastive learning has been
used in many other domains and is at the core of several
recent works. For example, [19] combines contrastive and
predictive coding to improve the accuracy of image classifica-
tion. [20] designs a lightweight self-supervised representation
learning model of audio based on contrastive learning and
reinforcement learning. Contrastive learning was used mostly
for unsupervised or self-supervised represent learning field,
however, [21] finds that label information can be used to
enhance the training effect with contrastive loss and proposes
a supervised contrastive loss form. Therefore, in this paper, we
adopt supervised contrastive learning to improve the accuracy
of vulnerability detection in source code.

C. Curriculum Learning

Referring to the human learning process, Elman [22] first
studies the effect of learning order on model’s effectiveness,
and from his experimental results, he finds that if the training
samples were sorted from simple to complex, the model
could learn more grammar than those random sorted. In 2009,
Bengio et al. [23] officially name this training method as
curriculum learning (CL) and prove that curriculum learning
improves both the study effectiveness and the convergence
speed of the model. Today, curriculum learning has been
widely used in many fields [24]–[26]. For example, in the
computer vision field, [25] adopts CL to enhance the DNN’s
training on large-scale weakly supervised images in the web.
In the medical field, [24] uses reinforcement learning and CL
to predict where the emergency patients will be admitted after
diagnosis in a hospital. In the translation field, [26] exploits
uncertainty-aware CL to improve neural machine translation’s
translation quality and convergence.

III. METHOD

In this section, we introduce our proposed framework namely
COCL that can improve the detection ability of DL-based
vulnerability detectors.



AUTHOR et al.: COCL: AN INTELLIGENT FRAMEWORK FOR ENHANCING DEEP LEARNING-BASED VULNERABILITY DETECTION 3

𝑥!"

𝑥#"
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝒙

Natural
Model

Contrastive
Learner

Difficulty
Calculator

Data
Augmenter

𝑙𝑜𝑠𝑠!

𝑙𝑜𝑠𝑠#

… 𝑙𝑜𝑠𝑠$

Embedding

K steps optimize

𝑂𝑡ℎ𝑒𝑟
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠
𝑿\{𝒙}

𝑖𝑛 𝑎 𝑏𝑎𝑡𝑐ℎ 𝑿

𝑋!%\{𝑥!%}

Contrastive Curriculum Learning
𝑣!&' 𝑣!&'

𝑣!('
𝑣!('

𝑉"&)\{!&)}

𝑣!('

8𝑉"&)\{!&)}

Fig. 1: System overview of COCL. Here, X\{x} is the complementary set of {x} to X , and x+, x− is the positive and
negative augmented function of anchor function x, respectively.

A. Overview
As show in Figure 1, COCL can be divided into three
parts: Data Augmenter, Difficulty Calculator, and Contrastive
Learner.

• Data Augmenter: For raw data, data augmenter applies
semantic-equivalent code transformations to generate cor-
responding data variants which are used to construct the
positive pairs required for contrastive learning.

• Difficulty Calculator: For training dataset, difficulty cal-
culator calculates the learning difficulty for each training
sample which are required for curriculum learning.

• Contrastive Learner: For a batch of data, contrastive
learner first sorts the negative samples by difficulty, then
divides them into several levels and combines them with
positive samples to complete contrastive learning.

During the training process, the Data Augmenter first gen-
erates augmented data for each data point, and the processed
embeddings enter the feature learning process of the Natural
Model. According to the difficulty ranking of the samples
calculated by the Difficulty Calculator, negative samples are
sequentially introduced in increasing numbers, along with
their corresponding positive samples, in order of increasing
difficulty, to participate in the contrastive learning process
during the k-step optimization.
B. Data Augmenter
Contrastive learning needs data augmentation technology to
produce positive samples (or positive pairs). Data augmenter
only exploits the data sample itself to build new data samples
without any other information, and the new data sample has
the same label as the original sample. This technology has
been widely used in the machine learning field to add more
new samples into training progress as the number of labeled
samples is limited, thus improving the model’s generalization.
Data augmentation has different implementation details on
different types of data. For example, images can use rotation,
cropping, and grayscale adjustment, but graph-type data should
use node-dropping or edges-removal. In DL-based vulnera-
bility detection, the data type is source code. Source code
has both semantic and structural information, but we only
need to keep its semantic information. Therefore, our data
augmentation skill will change the structure of some code
snippets but produce semantic-equivalent variants.

We have two expectations for data augmentation techniques

we will use. First, the trained model should be resilient
to common code modifications without losing semantic in-
variance. Some DL-based vulnerability detection techniques
apply abstraction like mapping user-defined variable names
to symbolic names (e.g., VAR) to the source code, which
brings a normalization effect. Second, the data augmentation
techniques should work well with some code analysis methods,
which are usually used to distill the program semantics into
different code representation (e.g., AST and CFG), these
meaningful representations cooperate with different network
structures (e.g., GNN) can improve the training effect of
the model. Moreover, we observe that when implementing
an algorithm, the code of the same functionality may have
different implementation details. Therefore, we design some
code conversion rules that can produce semantic-equivalent
code variants with different control flow structures.

We summarize the code transformation rules into a set of
atomic operations. Thses operations can be categorized into
three types: function substitution, code split, and junk code.

1) Function Substitution: Using keywords with the same
functionality to substitute. For example, we can use for-
loop to do the same thing as while-loop or use nested
if-else to replace if-elif-else.

2) Code Split: Splitting the complex decision statements
into several simple decision statements.

3) Junk Code: Adding junk code that makes no sense, like
some true or false statements.

TABLE I: Atomic operations: function substitution (loop)
Type For while do-while

loop

Body A Body A i=0;
for(i=0;i¡10;i++){ i=0;while(i¡10){ do{

Body A Body A Body A
} i++;} } while(i¡10);

TABLE II: Atomic operations: function substitution (condition)
Type if-elif-else if-else

condition
if(x¡a) Body A if(x¡a) Body A
else if(x¡b) Body B else{ if(x¡b) Body B
else Body C else Body C }

For a given program, we first traverse the whole source
code and find out all the statements that satisfy the code
transformation rules. After collecting all the code statements
that can be converted, we perform code transformations on
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TABLE III: Atomic operations: code split
Type complex simple

condition
if(x¡a & x ¿b){ if(x¡a){

Body A if(x¿b){
} Body A } }

TABLE IV: Atomic operations: junk code
Type original added junk code

In if(True){
Body A Body A }

Out
while(x¡a){ while(x¡a){

Body A Body A
} if(False) Break; }

these code statements according to the transformation rules.
Here, we transform all the code statements that satisfy trans-
formation rules, and when a statement satisfies two or more
transformation rules, we will use all the satisfied rules in
turn to produce multiple semantic invariants to provide richer
semantic possibilities.

As Figure 1 shows, we first input a function x into Data
Augmenter and collect the positive pairs (x+

1 , x+
2 ), then input

the other functions Xnx in the same batch to obtain the cor-
responding augmented functions X−

1 nx−
1 . These augmented

functions go through the embedding layer, then the model gets
embeddings as input, processes, and extracts the features.

C. Difficulty Calculator
Because the ability of a model to learn different samples is
different, we need to choose a reasonable way to evaluate
the learning difficulty of samples and distinguish them. Here,
we introduce two different methods to assess the learning
difficulty of a function. One is a static-based method, that
is, we directly calculate the complexity of the source code
and use it as the learning difficulty of the corresponding
training samples. The lower the code complexity, the simpler
the sample. The other is a dynamic-based method, that is, we
compute the similarity between negative samples and positive
pairs from the point of view of their feature vectors. The lower
the sample similarity, the simpler the sample.
1) Static-based Difficulty Calculator

Static-based Difficulty Calculator directly analyzes source
codes to calculate the learning difficulty of samples. The
samples with simpler source code are considered easier to
learn, while those samples which have complex source code
are difficult samples.

The prior work [27] has shown the overall complexity of a
program can be expressed in terms of program maintainability.
A complex program is harder to maintain than an easy pro-
gram. It is the reason why we leverage Maintainability Index to
be a standard of source code complexity, which also represents
the learning difficulty of the samples. Maintainability Index
[28] is a metric mostly derived from practice, developed by
Hewlett-Packard and its software teams2. It mainly contains
three indicators: 1) Lines of Code, 2) Cyclomatic Complexity
[29], and 3) Halstead Volume [30]. According to certain pre-
vious works [28], the calculation formula of Maintainability

2https://www.codegrip.tech/productivity/a-simple-understanding-of-code-
complexity.

Index is as follows:

MI = 171− 5.2 · lnVLC − 0.23 · lnVCC − 16.2 · lnVHV (1)

Note that VLC represents the number of Lines of Code,
a straightforward metric used to measure the complexity of
codes. By excluding comments and blank lines, the remaining
code can be equated to the size of the program. Huge programs
are more complex than tiny programs. VCC represents the
Cyclomatic Complexity, that is, the number of judgment
statements contained in the code. Programs that make more
decisions are more complex than those straightforward. VHV

represents the Halstead Volume, its value is related to the num-
ber of variables contained in the program and the frequency of
the according calls. Large volume means complex program.

In brief, lower Maintainability Index (MI) means more
complex code and higher learning difficulty.
2) Dynamic-based Difficulty Calculator

Dynamic-based Difficulty Calculator compares the similarity
between the negative samples and the corresponding positive
samples to calculate the learning difficulty of negative samples.
Here, in a multi-viewed batch of data, we have the anchor
embedding zi and K negative embeddings {zk}, and we define
a similarity metric function sim(·) to calculate the similarity
of negative pair {zi, zk}, that is sim(zi, zk) ∈ R. Specifically,
we choose one most common similarity function (i.e., cosine
similarity) to commence our similarity calculation.

sim(zi, zk) =
zi · zk

|zi| · |zk|
(2)

After obtaining the similarity scores between all negative
samples and a positive sample in a batch, the learning difficulty
is directly linked to the similarity, that is, we regard samples
with lower similarity as simple samples, samples with higher
similarity as difficult samples.
D. Contrastive Learner
1) Contrastive Learning

Contrastive self-supervised learning techniques learn suffi-
ciently representative representations by finding and encoding
what makes two samples the same or different. These tech-
niques only use information from data itself rather than labels,
thus becoming popular when labeled data can be expensive.
The motivation of contrastive learning is that humans not only
learn from positive signals but also benefit from correcting
bad behavior. Therefore, it cares about both the similarity and
dissimilarity among data, unlike cross-entropy only concerns
the similarity between the model’s outputs and labels. For-
mally speaking, contrastive learning aims to get an encoder to
produce data features with more uniqueness while not losing
essence. For any data sample x (referred as anchor sample)
and its feature f(x), it intends to complete a task as equation
(3).

SIM(f(x), f(x+)) >> SIM(f(x), f(x−)) (3)

Here, x+ is a data sample similar to x (referred to as a positive
sample), typically a data-augmented version of x, and x−

is a data sample dissimilar to x (referred to as a negative
sample). f(x+), f(x−) is the feature of x+, x− separately,
and SIM(·) is a metric to measure the similarity between two
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features. The underlying mechanism of contrastive learning
aims to minimize the distance between anchor samples and
positive samples in the embedding space, while maximizing
the distance between anchor samples and negative samples.
This implies that the similarity between anchor and positive
samples should be significantly greater than the similarity
between anchor and negative samples.

Since the excellent classification effects of contrastive learn-
ing, it flourishes in the self-supervised representations learning
field. Although the original intention of contrastive learning is
to save the cost of labeling data and use data’s information
to classify, its role is more than that. From another angle, if
we can combine the enhanced effect of contrastive learning on
classification with label information, the effects can be further
enhanced in the supervised representations learning field. In
fact, there are already some studies [21] on the supervised
contrastive learning area. Through their empirical results,
they observe that supervised contrastive learning can achieve
better effectiveness than self-supervised contrastive learning.
When the supervised learning effect has been improved by
the enhancement of contrastive learning, contrastive learning
is also leveraging label information to alleviate the wrong
clustering rate caused by overfitting. Therefore, we adopt the
loss function of Supervised Contrastive Learning (SupCon)
[21] as our loss function.

SupCon calculates contrastive loss in batches. For every
input batch of the training data, SupCon first obtains two
copies of the batch by using data augmentation twice and
combines these two augmented batches to form a multi-viewed
batch. For each anchor sample xi with label li, the positive
samples are all samples labeled li in the same batch and the
negative samples are the remaining samples whose labels are
different from li. Within a multi-viewed batch of data, let
i ∈ I ≡ {1, ..., 2N} be the index of an arbitrary augmented
sample, the loss takes the following form.

Lsup
out =

∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
(4)

Here, zi represents the embedding of data xi and τ ∈ R+

is a scalar temperature parameter. A(i) ≡ I/{i} and P (i) ≡
{p ∈ A(i) : lp = li} is the set of indices of all positives in
the batch apart from i, |P (i)| is its cardinality.

The equation (4) uses multiple positive and negative samples
per batch, and brings more information advantages to con-
trastive learning. It uses the positive normalization factor(i.e.,

1
|P (i)| ) to remove bias present in multiple positives samples and
preserve the summation over negatives in the denominator to
increase performance.

SupCon just treats all the negative samples consistently,
however, the learning difficulties of samples are different. If
we can grade and join them into the training progress step by
step, the model may find a better way to distinguish features.
To tackle the issue, we introduce curriculum learning into
contrastive learning.
2) Curriculum Learning

As aforementioned, when contrastive learning selects negative
samples, it just treats all the samples as the same and uses a

random strategy to sample. But in our humans’ daily life, we
never treat all the learning objects to the same degree. To better
understand the role of curriculum learning, we give a simple
example. When studying mathematics, we do not start with
advanced mathematics, but first learn addition, subtraction,
multiplication, and division in elementary school, calculus in
high school, and finally advanced mathematics in college. This
intuition also applies to machine learning. In this part, we
illustrate the way we introduce the human-learning manner
into the model’s training process to enhance the effect of
contrastive learning. In brief, we combine curriculum learning
with contrastive learning to improve the form of the loss
function (i.e., equation (4)).

According to the process shown in Figure 1, after getting
the feature vectors VX−

1 nx−
1

extracted by the Natural Model,
we input these features into Difficulty Calculator to obtain
the difficulties, and finally have the sorted feature vectors
V̂X−

1 nx−
1

. Then we use these sorted vectors as input to the
Contrastive Learner to complete our optimization process. In
each epoch, we perform a total of K steps optimizations,
and each optimization process takes a certain proportion of
negative samples with lower learning difficulties, both the
difficulties and the number of negative samples increase as
the optimization process progresses. The loss function of step
k is the form of the equation.

LCOCL,k = α ·
∑
i∈I

Lsup
k,i + c · Ls (5)

Here, Ls = −
∑

i∈I logyi ·M(zi) is the cross-entropy loss,
yi is the label of sample zi and M(zi) means the logit of
zi. c is a scalar value that determines whether to join Ls into
the training process, only when k = K, c is equal to 1, and
the rest of steps c is 0. Lsup

k,i represents the advanced form of
equation (4) in k-th step, which we describe in equation (6)
and α is its weight.

Lsup
k,i =

∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(k,i) exp(zi · za/τ)

where A(k, i) = p(I/{i}, k)
(6)

The only difference between equation (6) and equation (4)
is A(k, i), it is fixed to a certain sample xi in equation (4)
while related to steps in equation (6). Here, p(·, k) is a pacing
function to schedule how the negative samples are introduced
to the training procedure. Since the samples in batch I have
been sorted in increasing order, the sample with index j is the
j-th east sample in batch I . Therefore, the result of p(N, k)
can be explained as {z1, z2, . . . zN · k

K
}, a linear relationship

with step k. More specifically, if we have the total optimization
steps to be 4, then in step 1 we would have the first 25%
easiest samples and in step 3 we have the first 75%. In fact,
the pacing function has a variety of forms like logarithmic and
quadratic, but sometimes complexity doesn’t mean better. A
linear function is not only simple but also powerful, which has
been proven in [21].

After completing contrastive curriculum learning, we can
obtain an enhanced version of an original DL-based vulner-
ability detector. In other words, the output of COCL is an
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enhanced vulnerability detector.

IV. EVALUATIONS
Since the main components of COCL are Contrastive Learn-
ing module and Curriculum Learning module, we focus on
examining their effectiveness in this section.
A. Experimental Setup
1) Dataset

We choose a real-world vulnerability dataset [5] which is
widely used for vulnerability detection jobs. The main sources
of the dataset are two open source software, qemu3 and
ffmpeg4. It contains 14,858 normal functions (10,070 from
qemu and 4,788 from ffmpeg) and 12,460 Vulnerable functions
(7,479 from qemu and 4,981 from ffmpeg), which took 600
man-hours of a professional security team to build it.
2) Selected Vulnerability Detectors

To enable a more comprehensive evaluation of COCL, we
select four state-of-the-art DL-based vulnerability detection
methods using different code representations respectively.
These four detectors are as follows: AutoVulTC [7] is a vul-
nerability detector based on token. It first uses lexical analysis
to obtain tokens of a program, then inputs these tokens into
a convolutional neural network (CNN) to train the detection
model; VulDeePecker [8] is a vulnerability detector based
on program slices. It first uses static analysis to extract the
program slices, then processes them with a bidirectional long
short-term memory (BLSTM) network to train the detection
model; BenchSG [12] is a vulnerability detector based on
statement. It regards a program’s statements as sentences and
inputs these “sentences” into a bidirectional gated recurrent
unit (BiGRU) directly to train the detection model; Devign [5]
is a vulnerability detector based on graph. It first processes a
program into various forms, including abstract syntactic tree
(AST), control flow graph (CFG), data flow graph (DFG),
and natural code sequence (NSC). Then it inputs all types of
data into a graph neural network (GNN) to train the detection
model.
3) Implementations

We implement COCL in Python using Pytorch. We run ex-
periments on a machine with NVIDIA GeForce GTX 2080Ti
GPU and 32 cores of CPU. Limited by memory, the batch size
we experimented with is 32. For our dataset, we first divide
the whole dataset into ten subsets and combine eight of them
into the training set, one for validation and one for testing.
4) Metrics

We use four widely used metrics to measure the performance.
Accuracy = TP+TN

TP+FP+TN+FN , Recall = TP
TP+FN , Precision =

TP
TP+FP , and F1 = 2 · Precision·Recall

Precision+Recall . Note that True Positive
(TP) denotes the number of correctly predicted vulnerable
samples, True Negative (TN) denotes the number of correctly
predicted normal samples, False Positive (FP) denotes the
number of incorrectly classified vulnerable samples, and False
Negative (FN) denotes the number of incorrectly classified
normal samples.

3https://www.qemu.org.
4https://www.ffmpeg.org.

TABLE V: Experimental results of COCL with static-based
and dynamic-based Difficulty Calculators. DC denotes Dif-
ficulty Calculator, SupCon denotes Supervised Contrastive
Learning.

AutoVulTC Baseline SupCon COCL
DC None None Static Dynamic

Accuracy 0.458 0.537 0.582 0.573
Recall 0.510 0.532 0.574 0.545

Precision 0.416 0.508 0.540 0.533
F1 0.458 0.520 0.557 0.539

VulDeePecker Baseline SupCon Static Dynamic
Accuracy 0.532 0.597 0.600 0.611

Recall 0.577 0.643 0.671 0.669
Precision 0.472 0.549 0.550 0.561

F1 0.519 0.592 0.605 0.611
BenchSG Baseline SupCon Static Dynamic
Accuracy 0.537 0.59 0.606 0.609

Recall 0.592 0.651 0.666 0.665
Precision 0.488 0.542 0.557 0.560

F1 0.535 0.591 0.606 0.608
Devign Baseline SupCon Static Dynamic

Accuracy 0.561 0.572 0.576 0.587
Recall 0.572 0.619 0.723 0.667

Precision 0.534 0.536 0.541 0.539
F1 0.553 0.575 0.619 0.596

B. Contrastive Learning
In this part, we conduct experiments to check the ability of
contrastive learning on DL-based vulnerability detection.

TABLE VI: The improvements (%) introduced by contrastive
learning (Averagecole) on DL-based vulnerability detection.

Models Accuracy Recall Precision F1
AutoVulTC 7.9 2.2 9.2 6.2

VulDeePecker 6.5 6.6 7.7 7.3
BenchSG 5.3 5.9 5.4 5.6
Devign 1.1 4.7 0.2 2.2

Averagecole 5.2 4.9 5.6 5.3

Table V shows the relevant results. Specifically, we present
the detection effectiveness of DL-based models (i.e., Au-
toVulTC, VulDeePecker, BenchSG, and Devign) with con-
trastive loss and without contrastive loss (only cross-entropy
loss). If a model does not use contrastive learning to train
itself, we refer to it as Baseline in our experiments. Similarly,
if we perform contrastive learning to train a model, we refer
to it as SupCon in our experiments. Through the results in
Table V, we can see that the use of contrastive learning
can indeed improve the detection effectiveness of all four
DL-based vulnerability detectors. For example, the F1 of
AutoVulTC is only 45.8% while can increase to 52% if we
apply contrastive learning to complete the training phase. For
VulDeePecker, the recall of Baseline is 57.7%. However, after
using contrastive learning to train VulDeePecker, the recall can
increase to 64.3%. In other words, using contrastive learning
can make VulDeePecker detect 6.6% more vulnerabilities.

To show more clearly the improvement introduced by
contrastive learning, we add another table to present the
results. As shown in Table VI, all metrics are boosted for
all models (i.e., AutoVulTC, VulDeePecker, BenchSG, and
Devign), which means that contrastive learning can indeed
enhance their vulnerability detection capabilities. On average,
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(b) SupCon in training phase.
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(h) COCL dynamic in testing phase.

Fig. 2: The visualization of source code features generated by AutoVulTC on a real-world vunlerability dataset.

the improvements of Accuracy, Recall, Precision, and F1
are 5.2%, 4.9%, 5.6%, and 5.3%, respectively. Such results
demonstrate the effectiveness of contrastive learning on DL-
based vulnerability detection.
C. Curriculum Learning
In practice, traditional contrastive learning does not consider
the difficulty of each sample during the training phase. It
treats all the samples equally and samples them by using a
random strategy. To make our training phase more intelligent,
we apply curriculum learning to assist contrastive learning. In
particular, we take into account the model’s different abilities
to understand different samples. To be more precise, we
change the way that contrastive learning is used to select
negative samples, which are usually random. The type of
contrastive learning we choose is one positive pair to multiple
negative samples, so we sort the negative samples according
to their learning difficulty, and let the model start learning
from simple samples, then gradually transition to those more
difficult samples.

TABLE VII: The improvements (%) introduced by curriculum
learning (Averagecule) on DL-based vulnerability detection. A:
Accuracy, R: Recall, P: Precision.

Models COCL static COCL dynamic
A R P F1 A R P F1

AutoVulTC 4.5 4.2 3.2 3.7 3.6 1.3 2.5 1.9
VulDeePecker 0.3 2.8 0.1 1.3 1.4 2.6 1.2 1.9

BenchSG 1.6 1.4 1.5 1.5 1.9 1.4 1.8 1.7
Devign 0.4 10.4 0.5 4.4 1.5 4.8 0.3 2.1

Averagecule 1.7 4.7 1.3 2.7 2.1 2.5 1.5 1.9
Averagecole+cule 6.9 9.6 6.9 8.1 7.3 7.4 7.1 7.2

In this part, we present the experimental results after joining
curriculum learning and analyze the improvements introduced
by curriculum learning. We uniformly select the pace step
size of two for simplicity and train four DL-based vulner-
ability detectors (i.e., AutoVulTC, VulDeePecker, BenchSG,
and Devign) with two types of difficulty calculators (i.e.,

static-based calculator and dynamic-based calculator). Table V
illustrates the detection results of AutoVulTC, VulDeePecker,
BenchSG, and Devign after combining curriculum learning
with contrastive learning during training.

For static-based difficulty calculator, we consider code com-
plexity to be equivalent to sample learning difficulty. Samples
with high code complexity will be regarded as difficult sam-
ples. From the results in Table VII, we see on all metrics for
all models, curriculum learning can bring an improvement to
contrastive learning. For F1, it improves 3.7% on AutoVulTC,
1.3% on VulDeePecker, 1.5% on BenchSG, and 4.4% on
Devign, respectively. Such results indicate that curriculum
learning can boost the detection effectiveness of contrastive
learning. More detailed improvements are described in Table
VII. For dynamic-based difficulty calculator, we obtain the
difficulty by computing the similarity between a positive sam-
ple and other negative samples in a batch. Samples with high
similarity will be treated as difficult samples. Through Table
VII, it can be seen that the detection effectiveness can also be
enhanced when we adopt dynamic-based difficulty calculator.
For example, for Recall, we can maintain an average of 2.5%
improvement on four DL-based vulnerability detectors (i.e.,
AutoVulTC, VulDeePecker, BenchSG. In one word, no matter
which difficulty calculator is adopted, the detection ability of
four models can be boosted.

We also show the improvements introduced by contrastive
curriculum learning (i.e., Averagecole+cule), that is, the im-
provements between Baseline model and model trained with
contrastive curriculum learning. For example, for Devign, the
Recall of Baseline model is 57.2% while it can be increased
to 72.3% after we perform contrastive curriculum learning
to finish the training process. The improvement is 15.1%,
which means that using COCL allows Devign to detect 15.1%
more vulnerabilities. In the case of VulDeePecker, the Baseline
model only achieves an F1 of 51.9%. However, after applying
COCL, the F1 can be improved to 61.1%, resulting in an
increase of 9.2%. Moreover, when COCL uses static difficulty
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Fig. 3: Sensitivity analysis of hyperparamter alpha.

calculator to rank the samples, the average Recall and F1 can
achieve an improvement of 9.6% and 8.1%, respectively. These
results suggest that COCL is an effective framework that can
enhance the ability of DL-based vulnerability detection.

To further understand why COCL can enhance DL-based
vulnerability detection, we use PCA5 to visualize the distribu-
tion of feature vectors generated by AutoVulTC, VulDeePecker,
BenchSG, and Devign, respectively. Due to space limitations,
we only show the results of AutoVulTC in Figure 2 in-
cluding the visualization of feature vectors in the training
and testing phases. Through the figure, we see that Baseline
model exhibits a significant degree of overlap in the feature
space between vulnerabilities and normal codes. After we
introduce contrastive learning into AutoVulTC, the centroid
distance is increased. It is because contrastive learning can
cluster the homogeneous feature vectors and separate the
non-homogeneous feature vectors as much as possible in
the feature space. Furthermore, when curriculum learning is
combined with contrastive learning, the centroid distance is
also increasing. Such result indicates that nesting curriculum
learning into contrastive learning can improve the effect of
clustering and separation, thus further improve the detection
performance.
D. Sensitivity Analysis
In this part, we investigate the impact of different loss weight
α in equation (5). More specifically, we adjust α within the
range of 1e-2 to 1e-5 and record the corresponding F1 values
of COCL. The experimental results are shown in Figure 3.
When the value of α varies within the aforementioned range,
the static sorting COCL produces a fluctuation of 0.016 to
0.036 in F1 values, while the dynamic sorting COCL produces
a fluctuation of 0.009 to 0.021. The range of fluctuations under
both methods is within 6%, indicating that the tolerance of
equation (5) for fluctuations in α is relatively high, and good
detection performance could be obtained within a certain range
of α values. In our paper, we finally choose 1e-4 since both
static and dynamic sorting COCL can achieve higher F1 values
when α is 1e-4.

V. CONCLUSION
In this paper, we introduce Contrastive Curriculum Learning
into deep learning-based vulnerability detection. Specifically,
we implement a framework (i.e., COCL) and select four state-
of-the-art vulnerability detection methods (i.e., AutoVulTC [7],
VulDeePecker [8], BenchSG [12], and Devign [5]) to evaluate
COCL on a real-world vulnerability dataset. Through the

5https://en.wikipedia.org/wiki/Principal component analysis.

results, we find that using COCL enables them to detect
9.6% more vulnerabilities on average. Especially for Devign,
the Recall can be increased from 57.2% to 72.3%, which
means that the use of COCL makes Devign detect 15.1%
more vulnerabilities. Such results imply that COCL is an
effective framework that can indeed enhance the performance
of existing deep learning-based vulnerability detectors.
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