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Android, the most popular mobile operating system, has attracted millions of users around the world. Mean-

while, the number of new Android malware instances has grown exponentially in recent years. On the one

hand, existing Android malware detection systems have shown that distilling the program semantics into a

graph representation and detecting malicious programs by conducting graph matching are able to achieve

high accuracy on detecting Android malware. However, these traditional graph-based approaches always per-

form expensive program analysis and suffer from low scalability on malware detection. On the other hand,

because of the high scalability of social network analysis, it has been applied to complete large-scale malware

detection. However, the social-network-analysis-based method only considers simple semantic information

(i.e., centrality) for achieving market-wide mobile malware scanning, which may limit the detection effec-

tiveness when benign apps show some similar behaviors as malware.

In this article, we aim to combine the high accuracy of traditional graph-based method with the high scal-

ability of social-network-analysis–based method for Android malware detection. Instead of using traditional

heavyweight static analysis, we treat function call graphs of apps as complex social networks and apply

social-network–based centrality analysis to unearth the central nodes within call graphs. After obtaining the

central nodes, the average intimacies between sensitive API calls and central nodes are computed to represent

the semantic features of the graphs. We implement our approach in a tool called IntDroid and evaluate it on

D. Zou and Y. Wu contributed equally to this research.

This work is supported by the Key Program of National Science Foundation of China under Grant No. U1936211, by the

Shenzhen Fundamental Research Program under Grant No. JCYJ20170413114215614 and the Key-Area Research and De-

velopment Program of Guangdong Province under Grant No. 2019B010139001.

Authors’ addresses: D. Zou is with National Engineering Research Center for Big Data Technology and System, Ser-

vices Computing Technology and System Lab, Hubei Engineering Research Center on Big Data Security, School of Cy-

ber Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China, and also with

Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, China; email: deqing-

zou@hust.edu.cn. Y. Wu (corresponding author) is with National Engineering Research Center for Big Data Technology

and System, Services Computing Technology and System Lab, Hubei Engineering Research Center on Big Data Security,

School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; email:

wuyueming@hust.edu.cn; A. Chauhan and W. Yang are with University of Texas at Dallas, Dallsa, USA; emails: {axc170043,

wei.yang}@utdallas.edu; S. Yang, J. Zhong, S. Dou, and H. Jin are with National Engineering Research Center for Big Data

Technology and System, Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Com-

puter Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; emails: {yangsiru,

eileen_zjy, shihandou, hjin}@hust.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1049-331X/2021/05-ART39 $15.00

https://doi.org/10.1145/3442588

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 39. Pub. date: May 2021.

mailto:permissions@acm.org
https://doi.org/10.1145/3442588


39:2 D. Zou et al.

a dataset of 3,988 benign samples and 4,265 malicious samples. Experimental results show that IntDroid is

capable of detecting Android malware with an F-measure of 97.1% while maintaining a True-positive Rate of

99.1%. Although the scalability is not as fast as a social-network-analysis–based method (i.e., MalScan), com-

pared to a traditional graph-based method, IntDroid is more than six times faster than MaMaDroid. Moreover,

in a corpus of apps collected from GooglePlay market, IntDroid is able to identify 28 zero-day malware that

can evade detection of existing tools, one of which has been downloaded and installed by more than ten mil-

lion users. This app has also been flagged as malware by six anti-virus scanners in VirusTotal, one of which

is Symantec Mobile Insight.

CCS Concepts: • Security and privacy → Malware and its mitigation;

Additional Key Words and Phrases: Android malware, API intimacy, social network, centrality
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1 INTRODUCTION

In the second quarter of 2018, Google’s Android further extended its lead over Apple’s iOS, secur-
ing 88 percent market share to 11.9 percent share for iOS [4]. The explosive growth of Android
devices and applications (apps) has spurred the growth of Android malware. Millions of apps have
been installed by Android users around the world from various app markets. Up to the end of the
third quarter of 2018, the number of new malicious apps had an increase of over 40 percent com-
pared to the same period the previous year [3]. Correspondingly, this upsurge in Android malware
has resulted in a strong enthusiasm to develop methods for detecting malware automatically.

Generally speaking, existing mobile malware detection approaches can be classified as either
syntax-based methods [9, 12, 36, 46, 50, 53, 60] or semantics-based methods [10, 16, 24, 28, 43,
56–58]. Syntax-based techniques, for example, some methods [46, 53] focus on permissions re-
quested by apps and build models for malware detection. However, malware can perform malicious
activities without any permissions [29]. Moreover, benign apps may request more permissions than
necessary, which can also cause a high false-positive rate [20]. To address this, Drebin [12] uses an
extensive static analysis to obtain as many features as possible, which consist of both permissions
and API calls. However, it can be easily evaded by obfuscation because of the lack of structural
and contextual information of the program behaviors. To overcome the challenge, several systems
have been proposed to focus on distilling an app’s program semantics into a graph representation
and perform graph matching to detect malware. Empirical studies [24, 28, 58] have shown the
high effectiveness of these graph-based techniques on Android malware detection. Nevertheless,
graph matching is typically time-consuming, because a graph often contains thousands of nodes.
For instance, on average, the analysis time on an app of DroidSIFT [58] and Apposcopy [24] is 175.8
s and 275 s, respectively. In other words, these graph-based techniques suffer from low scalability
on detecting mobile malware.

To achieve more scalable malware detection, an abstraction-based approach has been proposed,
namely, MaMaDroid [43], which leverages the abstracted sequences obtained from a call graph to
model the app’s behaviors. Specifically, it builds a Markov chain model to represent the transitions
between method calls, these Markov chains stand for multiple pairwise invocation relationships
performed by an app and are used to extract features to complete the classification. The abstrac-
tion of method calls and Markov chain modeling in MaMaDroid can achieve the robustness and
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scalability on detecting mobile malware. However, several design choices may limit the effective-
ness of MaMaDroid. First, one-order Markov chains (i.e., pairwise invocations) cannot fully reflect
dependencies among method calls, thus the approach lacks the key information to distinguish
some of the malicious apps from benign ones. Additionally, the coarser-granularity information
(i.e., package-level information instead of method-level information) may not accurately differenti-
ate benign apps with malware. For instance, android.telephony.TelephonyManager.getDeviceId() and
android.telephony.SmsManager.sendTextMessage() are both abstracted in android.telephony package
while their usages and levels of sensitivity are completely different. Such design choices are under-
standable, because using whole-graph analysis (instead of only considering pairwise invocations)
and finer-granularity information (i.e., method-level information) may incur higher costs, thus
making the large-scale malware scanning infeasible.

To address the above issues, we present MalScan in our prior work [54] to complete market-
wide mobile malware scanning. MalScan regards the function call graph of an app as a complex
social network and apply social-network-centrality analysis on sensitive API calls to represent
graph semantics for malware detection. However, only using the centrality of sensitive API calls
to conduct malware detection may cause some false positives when benign apps show some sim-
ilar behaviors as malware by invoking sensitive API calls. In such case, the centrality of certain
sensitive API calls in benign apps may be almost the same as in some malware. For example, some
social apps (e.g., Tiktok) require to access users’ location for presenting location-specific news or
videos and read users’ address book for recommending new friends. In the situation, the centrality
of sensitive API call LocationManager.getLastLocation() may be almost the same as some malware,
which can cause a false positive.

In conclusion, on the one hand, traditional graph-analysis–based methods [24, 28, 43, 58] can
achieve high effectiveness on Android malware detection because of the consideration of different
types of program semantics. However, the efficiency of these methods is not ideal, since a graph
often contains thousands of nodes, resulting in low scalability on malware detection. On the other
hand, social-network-analysis–based method [54] is able to complete market-wide Android mal-
ware scanning because of the high scalability of social network analysis1. However, MalScan [54]
only considers the centrality of sensitive API calls, such simple consideration may limit the detec-
tion effectiveness when apps show some similar behaviors as malware by invoking sensitive API
calls. Therefore, we raise a research question:

Is there any way to combine the high effectiveness of traditional graph-analysis–based method with

the high scalability of social-network-analysis–based method for Android malware detection?

In this article, we aim to address the raised research question. To achieve the combination
and balance between traditional graph-analysis–based method and social-network-analysis–based
method, we first leverage social-network-centrality analysis on the whole graph to excavate the
most important nodes (i.e., central nodes). Then traditional graph analysis is applied to compute
the intimacy between these nodes and sensitive API calls as the semantic features, which provide
more effective graph details to distinguish malware from benign apps. Our key insight is derived
from an observation from daily-life social networks. We have found that a person in different so-
cial networks may present different intimacies (i.e., communication frequencies) between she and
the central person in corresponding social networks. In the context of malware detection, due to
the different inherent goals of benign apps (e.g., delivering utility) and malware (e.g., maximizing
profits, prolonging lifetime) [57], an API method may have different communication frequencies
with central nodes in different function call networks.

1Social network analysis can process networks with millions of nodes (e.g., Twitter, Facebook).
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Specifically, to maintain the program semantics, we first extract the function call graph of an app
based on static analysis. Given a call graph, we then apply centrality analysis to unearth the central
nodes within the graph. The concepts of centrality were first proposed in social network analysis
whose original objective is to quantify the importance of a vertex in the network. We leverage the
analysis result of method calls’ centralities to find nodes with high centrality (i.e., central nodes).
Moreover, as malware always invoke some sensitive API calls to perform malicious activities, we
pay attention to these API calls. Therefore, after obtaining the central nodes within the graph,
we perform intimacy analysis to compute the average intimacies between sensitive API calls and
central nodes. Our definition of intimacy between two nodes within a call graph consists of two
influencing factors: (1) the number of reachable paths and (2) the average path distance. In other
words, the higher the number of reachable paths and the shorter the average path distance, the
higher the intimacy between the two nodes. These calculated intimacies are used as features and
fed into a machine learning classifier to train a model and perform classification on a newly given
feature vector.

We implement a prototype system, IntDroid, and evaluate it using 3,988 benign samples and
4,265 malicious samples. Experimental results show that IntDroid is capable of detecting Android
malware with an F-measure of 97.1% while the True-positive Rate is able to maintain 99.1%. As
for scalability, IntDroid is not as fast as social-network-analysis–based method (i.e., MalScan [54])
because of the process of intimacy analysis, however, compared to a state-of-the-art traditional
graph-based method (i.e., MaMaDroid [43]), the time overhead of IntDroid is more than six times
less than it. We also examine the ability of IntDroid on detecting zero-day malware. Specifically, in a
corpus of apps collected from GooglePlay market, IntDroid is able to identify 28 zero-day malware
that can evade detection of existing tools, one of which has been downloaded and installed by
more than ten million users. This app has also been flagged as malware by six anti-virus scanners
in VirusTotal, one of which is Symantec Mobile Insight.

In summary, this article makes the following contributions:

• We propose a novel method to perform detection on Android malware by analyzing the
intimacies between sensitive API calls and central nodes within function call graphs.

• We design and implement a prototype system, IntDroid, to combine the high effectiveness
of traditional graph-analysis–based method with the high scalability of social-network-
analysis–based method to detect Android malware.

• We conduct evaluations using 3,988 benign samples and 4,265 malicious samples. Exper-
imental results show that IntDroid is capable of detecting Android malware with an F-
measure of 97.1% and a True-positive Rate of 99.1%. Moreover, compared to a traditional
graph-based method, IntDroid is more than six times faster than MaMaDroid [43].

Article organization. The remainder of the article is organized as follows. Section 2 presents our
motivation. Section 3 shows the definitions. Section 4 introduces our system. Section 5 reports
the experimental results. Section 6 presents the extensive comparison with MalScan. Section 7
discusses the future work and limitations. Section 8 describes the related work. Section 9 concludes
the present article.

2 MOTIVATION

To understand the key insight, we examine the API-call network of a benign app and a malicious
app. The benign app is a mobile security app for a safer Android experience while the malicious
app allows a trace of lost mobile phones.

We analyzed the API calls for both apps and created function call graphs. The function call graph
of these apps can be treated as an API-call network. The nodes represent functions and the edges
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Fig. 1. The relationships of two assumable networks, which are a benign app API-call network and a ma-

licious app API-call network. The number on an edge represents the frequency of communication between

the two nodes. The higher the number, the more frequent are the calls.

Table 1. The Frequency of Communication between PreferenceManager.getDefaultSharedPreferences(),

TelephonyManager.getDeviceId() and MainActivity.onResume(), SmsReceiver.onReceive() in Figure 1

API Calls MainActivity.onResume() SmsReceiver.onReceive()

PreferenceManager.getDefaultSharedPreferences() 18 (high) 0 (low)

TelephonyManager.getDeviceId() 2 (low) 36 (high)

represent communications between them. The direction of the edge is to help distinguish the caller
and callee in the graph. For example, in Figure 1, an edge from node MainActivity.onResume() to
node PreferenceManager.getDefaultSharedPreferences() represents a call path from function Main-

Activity.onResume() to function PreferenceManager.getDefaultSharedPreferences(). For each API-call
network, we select a central node based on node degree.

As shown in Figure 1, the benign app network is centered around node MainActivity.onResume()

with outward edges to PreferenceManager.AccountManager(), and so on. The malicious app net-
work is centered around node SmsReceiver.onReceive() with outward edges to TelephonyManager.

DevicePolicyManager(), and so on. Functions MainActivity.onResume() and SmsReceiver.onReceive()

are lifecycle methods, as a result they have high degree. App developers override these functions
for specific implementations, which usually involve many calls to other API calls. Many of these
API calls fall under sensitive methods [13], in which case, we refer to them as sensitive API calls.
The weight of an edge in Figure 1 represents the frequency of communication between the two
nodes. The higher the weight, the more frequent are the calls from the center node to the API.

Table 1 presents the communication frequency between nodes PreferenceManager.

getDefaultSharedPreferences(), TelephonyManager.getDeviceId() and MainActivity.onResume(),
SmsReceiver.onReceive() from Figure 1, respectively. If we define intimacy as the frequency of
communication between two functions, then from the results presented in Figure 1 and Table 1,
we can see that, due to the different objectives of PreferenceManager.getDefaultSharedPreferences()

and TelephonyManager.getDeviceId(), the intimacies between them and center nodes are different.
Based on the observation, we raise a question:
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Fig. 2. The average intimacies between sensitive API calls and central nodes in benign apps and malicious

apps.

Do the intimacies between sensitive API calls and central nodes in malicious apps vary from the

intimacies between sensitive API calls and central nodes in benign apps?

To answer the proposed question, we randomly select 500 benign apps and 500 malicious apps
from AndroZoo [11]. Then the function call graphs are extracted based on static analysis. Given
a call graph, we select the nodes with top 1% degree as central nodes within a call graph. After
obtaining the central nodes in a call graph, we then compute the intimacy between sensitive API
calls and central nodes. As aforementioned, we simply define the intimacy as the communica-
tion frequency between two persons in a social network. Therefore, to define a more precise inti-

macy between two nodes in a function call graph, we select the following two influencing factors:
(1) the number of reachable paths and (2) the average path distance. In other words, the higher
the number of reachable paths and the shorter the average path distance, the higher the intimacy
between the two nodes. A more detailed real-world example is presented in Section 4.

API calls with the prefix android.telephony.TelephonyManager.get from a list of security-sensitive
methods [13] are selected as our test objects. After computing all the intimacies between a sensitive
API call and central nodes within a call graph, we then collect the average value of these intimacies.
As a matter of fact, due to the small size of our randomly selected dataset, which consists of only
500 benign apps and 500 malicious apps, some sensitive API calls do not appear in these apps. In
such case, the average intimacy values are all zero, therefore, we only consider API calls that are
invoked by both benign apps and malicious apps. Finally, the total number of satisfied API calls
with the prefix android.telephony.TelephonyManager.get in PScout [13] is 14. Due to the limitation of
the page, we only show a portion of our results. Figure 2 shows the average intimacy distributions
of three sensitive API calls: (1) TelephonyManager.getDeviceID() can get your phone’s International

Mobile Equipment Identity (IMEI), (2) TelephonyManager.getLine1Number() can obtain your phone
number, and (3) TelephonyManager.getSubscriberld() can gain your phone’s International Mobile

Subscriber Identification Number (IMSI). Results in Figure 2 indicate that there are differences in
the average intimacies between sensitive API calls and the central nodes within a call graph in
benign apps and malicious apps.

To obtain more determinate results, we first perform Shapiro-Wilk test [51] to check whether
the average intimacies are normally distributed or not. After obtaining the test result, we find
that these average intimacies between sensitive API calls and central nodes do not fit the normal
distribution. Therefore, we adopt a non-parametric test (i.e., Mann-Whitney U test [41]), which is
robust against deviation from normality to commence our research. The null hypothesis of Mann-

Whitney U test is that the two populations have same means and the alternative hypothesis is that
the means of two populations are different.

The type I error rate or significance level is the probability of rejecting the null hypothesis given
that it is true. The null hypothesis is rejected if the calculated p-value is less than a pre-determined
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Table 2. P-values of Average Intimacies between 14 API Calls

with the Prefix android.telephony.TelephonyManager.get

from PScout [13] and Central Nodes in Benign Apps

and Malicious Apps

API Calls P-values
TelephonyManager.getSimOperator() 0.054473

TelephonyManager.getSimState() 0.014292
TelephonyManager.getNetworkType() 0.004563

TelephonyManager.getNetworkCountryIso() 0.000743
TelephonyManager.getSimOperatorName() 3.02E-05

TelephonyManager.getPhoneType() 6.81E-18
TelephonyManager.getSimSerialNumber() 8.43E-29

TelephonyManager.getLine1Number() 5.36E-31
TelephonyManager.getDeviceID() 3.59E-36

TelephonyManager.getSimCountryIso() 6.09E-47
TelephonyManager.getNetworkOperator() 1.36E-55

TelephonyManager.getSubscriberId() 5.43E-63
TelephonyManager.getCellLocation() 9.75E-97

TelephonyManager.getNetworkOperatorName() 5.6E-118

threshold value α , which is referred to as the level of significance. Usually, the significance level
is set to be 0.05, implying that it is acceptable to have a 5% probability of incorrectly rejecting
the true null hypothesis. We experiment with these API calls to examine the difference of API
intimacy between benign apps and malicious apps by using Mann-Whitney U test. Table 2 presents
the p-values of 14 API calls with the prefix android.telephony.TelephonyManager.get on average
intimacies between benign apps and malicious apps. As shown in Table 2, we can see that most of
the p-values are less than 0.05. In other words, as for most of API calls in Table 2, we can reject
the null hypothesis.

Therefore, based on the observation, we propose and develop an automatic Android malware
detection system by analyzing the average intimacies between sensitive API calls and central nodes
within a function call graph.

3 DEFINITIONS

Before introducing our proposed method, we first describe the formal definitions that we use
throughout the article.

3.1 Centrality

Centrality concepts were first developed in social network analysis, which quantify the impor-
tance of a node in the network. Centrality measures are very useful for network analysis, and
many studies have been proposed to use centrality measures in different areas, such as biological
network [34], co-authorship network [39], transportation network [30], criminal network [18],
affiliation network [22], and so on. There has been proposed several definitions of centrality in a
social network, for example:

Definition 1. Degree centrality [26] of a node is the fraction of nodes it is connected to. The
degree centrality values are normalized by dividing by the maximum possible degree in a graph
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N -1 where N is the number of nodes in the graph:

xi =
deд(i )

N − 1
.

Note that deд(i ) is the degree of node i .

Definition 2. Katz centrality [35] computes the centrality for a node based on the centrality of its
neighbors. The katz centrality for node i is

xi = α
∑

j

Ai jx j + β .

Note that A is the adjacency matrix of the graph G with eigenvalues λ. The parameter β controls
the initial centrality and

α <
1

λmax

.

katz centrality computes the relative influence of a node within a graph by measuring the number
of the immediate neighbors (first degree nodes) and also all other nodes in the graph that connect
to the node under consideration through these immediate neighbors.

Definition 3. Closeness centrality [26] indicates how close a node is to all other nodes in the net-
work. It is calculated as the average of the shortest path length from the node to every other nodes
in the graph. The smaller the average shortest distance of a node, the greater the closeness cen-
trality of the node. In other words, the average shortest distance and the corresponding closeness
centrality are negatively correlated:

xi =
N − 1∑

i�j d (i, j )
.

Note that d (i, j ) is the distance between nodes i and j and and N is the number of nodes in the
graph.

Definition 4. Harmonic centrality [42] reverses the sum and reciprocal operations in the definition
of closeness centrality:

xi =

∑
i�j

1
d (i, j )

N − 1
.

Note that d (i, j ) is the distance between nodes i and j and N is the number of nodes in the graph.

3.2 Intimacy

On the one hand, if there are more reachable paths between two functions, then the “communica-
tion” between these two functions can be considered frequent. On the other hand, if the distance
between two functions is shorter, then the “communication” between them can be considered easy.
In this article, if the “communication” between two functions is frequent and easy, then they will
be treated as a close pair.

Definition 5. Given a function call graph G = (V, E), and two functions a, b ∈ V, then the intimacy

between a and b is defined as

intimacy (a,b) =
n

ad (a,b) + 1
.

Note that n denotes the number of reachable paths between a and b, ad(a, b) denotes the aver-
age distance of these reachable paths. For instance, suppose that there are two reachable paths
between a and b: a → p → q → b and a → m → b. Then the number of reachable paths
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Fig. 3. System overview of IntDroid.

n is 2 and the average distance ad (a,b) is (3+2)/2=2.5. Therefore, the intimacy between a and
b can be computed as 2/(2.5+1)=0.57. Moreover, there is a special case when the central node
is a sensitive API call. In such case, the average distance between the API call and the cen-
tral node will be 0, and this is the reason why the denominator plus 1 in the definition of
intimacy.

4 SYSTEM ARCHITECTURE

In this section, we introduce IntDroid, an automatic Android malware detection system based on
intimacy analysis between sensitive API calls and central function calls within a function call
graph. Algorithm 1 presents the whole procedures of our system.

4.1 Overview

As shown in Figure 3, IntDroid consists of four main phases: Static Analysis, Centrality Analysis,
Intimacy Analysis, and Classification.

• Static Analysis: This phase aims at extracting the function call graph of an app based on
static analysis, in which, each node is a function that can be an API call or a user-defined
function.

• Centrality Analysis: After obtaining the function call graph, we then calculate the cen-
tralities of all nodes within the call graph. Nodes with top n%2 centrality will be selected as
central nodes.

• Intimacy Analysis: Next, we compute the average intimacies between sensitive API calls
and central nodes within the function call graph. The output of this phase is the feature
vector.

• Classification: In the final phase, given the feature vector, we can accurately and efficiently
classify the app as either benign or malicious by using a machine learning classifier.

4.2 Static Analysis

In this article, we aim to combine the effectiveness of graph-based method with the scalability
of social-network-analysis–based method. Therefore, we extract a succinct function call graph by
performing low-cost program analysis (e.g., context- and flow-insensitive analysis) on given APK
files. Specifically, we implement the static analysis based on an Android reverse engineering tool,
Androguard [19].

To better illustrate the different phases involved in our system, we choose a real-world malware
sample.3 Figure 4 shows the sample’s function call graph, in which, each node is an API call or a
user-defined function. The number of nodes and edges are 140 and 251, respectively.

2The value of n is 1 to 8 in our system.
32af4c588b447963118fd0a8a984438f64898efb0abd01aa6c65dad88d95c7880.
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Fig. 4. Function call graph of a real-world malicious app (com.qiacal.paobe).

ALGORITHM 1 : Extract the average intimacy between sensitive API calls and central nodes
within a call graph

Require: A: An APK file; t : The type of centrality measure for excavating the central nodes;n: Nodes with

top n% centrality will be selected as central nodes; S : The list of sensitive API calls.

Ensure: AI : The average intimacy between sensitive API calls and central nodes.

1: CG← extractCallGraph(A)

2: V← obtainNodes(CG)

3: for each v ∈ V do

4: centrality← computeCentrality(CG, v, t)

5: Centralities.add(centrality)

6: end for

7: for each v ∈ V do

8: ranking← computeRanking(Centralities, v)

9: if ranking/len(V ) ≤ n% then

10: CenterNodes.add(v)

11: end if

12: end for

13: for each s ∈ S do

14: for each c ∈ CenterNodes do

15: i ← computeIntimacy(CG, s, c)

16: I.add(i)

17: end for

18: ai ← computeAverageIntimacy(I)

19: AI.add(ai)

20: end for

21: return AI

4.3 Centrality Analysis

As aforementioned, we regard the function call graph as a social network. Therefore, in this phase,
our objective is to dig out the most important “persons” in a call graph social network. This phase
corresponds to Lines 2–12 in Algorithm 1.
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Fig. 5. Construction of all centrality by computing the union set of four individual results of central nodes.

As centrality measures can indicate the importance of a node within a network, we perform
centrality analysis to select central nodes in a call graph. Given a call graph, we compute the cen-
tralities of all nodes in the graph. Nodes with top n% centralities will be treated as central nodes.
To conduct more comprehensive experiments, we take a total of eight different values of n, which
are 1, 2, 3, 4, 5, 6, 7, and 8. Moreover, as for centrality measures, we select degree centrality, katz

centrality, closeness centrality, and harmonic centrality to commence our experiments. Addition-
ally, the importance of a vertex is generally to be measured by using multiple centralities, since
different centralities measure the importance of a vertex from different aspects. Therefore, for the
completeness of our research, we construct other two centralities by integrating the four indi-
vidual centrality measures. The one is average centrality by computing the average value of the
former four centrality measures and the other is all centrality by incorporating the central nodes
obtained by four individual centrality measures. As Figure 5 shows, suppose that we select node1
and node2 as the central nodes in Figure 4 after degree centrality analysis. Similarly, the central
nodes are (node1, node3), (node2, node4), and (node3, node5) after closeness centrality, harmonic
centrality, and katz centrality analysis, respectively. Then the union set of these four results of
central nodes is computed as the central nodes of all centrality, which are node1, node2, node3,
node4, and node5.

As shown in Figure 4, we first compute the degree centralities of all nodes. To present more
clearly in Figure 4, we use degree centrality as the weight of a node size (i.e., the greater the
degree centrality, the larger the node). The number of nodes of the function call graph in Figure 4
is 140, therefore, we choose the nodes with top 24 degree centrality as central nodes, namely,
NqUtils$1.run() and NqUtils$2.run(). We mark these two nodes as yellow to distinguish them from
other nodes in Figure 4.

4.4 Intimacy Analysis

Since API calls are used by the Android apps to access operating system functionality and system
resources, they can be used as representations of the behaviors of Android apps. Particularly, An-
droid malware usually invokes some security-related API calls to perform malicious activities. For
instance, getDeviceID() can get your phone’s IMEI and getLine1Number() can obtain your phone
number. Therefore, to characterize malicious behaviors, we focus on these security-related API
calls, namely, sensitive API calls on the basis of the result reported by PScout [13], which consists
of 21,986 sensitive API calls. Lines 13–21 in Algorithm 1 shows intimacy analysis.

After computing all the intimacies between a sensitive API call and central nodes, we use the av-
erage value of these intimacies as the corresponding feature of this sensitive API call. For instance,
we select NqUtils$1.run() and NqUtils$2.run() as central nodes after degree centrality analysis

4 �140/100� = 2.
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Fig. 6. Detailed procedures to compute the feature (i.e., average intimacy) of sensitive API call Telephony-

Manager.getDeviceID() in Figure 4.

and mark them as yellow in Figure 4. We choose a sensitive API call TelephonyManager.

getDeviceID() as an example to illustrate the detail steps of Intimacy Analysis. As shown in
Figure 6, we first perform reachability analysis to obtain the reachable paths between Telepho-

nyManager.getDeviceID() and central nodes (i.e., NqUtils$1.run() and NqUtils$2.run()). Results in
Figure 4 show that there is one path between TelephonyManager.getDeviceID() and NqUtils$1.run():
NqUtils$1.run() → NqUtils.access$3() → NqUtils.getRequestJson() → NqUtils.getIMEI() → Telepho-

nyManager.getDeviceID(). That is, the number of reachable paths is one (i.e., n=1) and the aver-
age distance is four (i.e., ad=4). Therefore, the intimacy between TelephonyManager.getDeviceID()

and NqUtils$1.run() is 1/(4+1)=0.2. Similarly, there is also one path between TelephonyManager.

getDeviceID() and another central node NqUtils$2.run(), and the intimacy between TelephonyMan-

ager.getDeviceID() and NqUtils$2.run() is also 1/(4+1)=0.2. Then the average value of these two
intimacies can be calculated as (0.2+0.2)/2=0.2, in other words, the feature of TelephonyManager.

getDeviceID() is 0.2. In addition, other sensitive API calls that do not appear in the function call
graph are represented as 0 in the feature vector.

4.5 Classification

Our final phase focuses on classification, i.e., labeling apps as either benign or malicious. For this
purpose, we select three different classification algorithms: 1-Nearest Neighbor (1-NN), 3-Nearest

Neighbor (3-NN), and Random Forest (RF) to complete the classification. Feature vectors extracted
from a training dataset are fed into a learning model to train a classifier and then performing
classification on a testing dataset.

5 EVALUATIONS

In this section, we aim to answer the following research questions:

• RQ1: What is the effectiveness of IntDroid on detecting Android malware from different aspects?

• RQ2: What is the effectiveness of IntDroid compared to other state-of-the-art Android malware

detection methods?

• RQ3: What is the runtime overhead of IntDroid on detecting Android malware?

• RQ4: Can IntDroid detect zero-day malware?
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Table 3. Summary of the Dataset

Used in Our Experiments

Category #Apps Average Size (MB)

Benign apps 3,988 3.45
Malicious apps 4,265 3.97

Total 8,253 3.72

Table 4. Descriptions of the Used Metrics in Our Experiments

Metrics Abbr Definition

True Positive TP #samples correctly classified as malicious
True Negative TN #samples correctly classified as benign
False Positive FP #samples incorrectly classified as malicious
False Negative FN #samples incorrectly classified as benign

True-positive Rate TPR TP/(TP+FN)
False-negative Rate FNR FN/(TP+FN)
True-negative Rate TNR TN/(TN+FP)
False-positive Rate FPR FP/(TN+FP)

Accuracy A (TP+TN)/(TP+TN+FP+FN)
Precision P TP/(TP+FP)

Recall R TP/(TP+FN)
F-measure F1 2*P*R/(P+R)

5.1 Datasets and Metrics

Our dataset used to evaluate IntDroid includes 8,253 samples that are available in github,5 by
this researchers can conduct reproducible experiments. We crawled these APK files from Andro-
Zoo [11], which currently contains over ten million APK files and each of which has been detected
by several different anti-virus products in VirusTotal [7]. We leverage the detection reports to fil-
ter and generate our dataset. An APK file is considered benign only if all its reports classify it as
non-malicious. As for malicious samples, we adopt the selection method in Drebin [12], that is,
an app is collected when it is flagged as malicious by more than two anti-virus scanners whose
purpose is to generate a more accurate dataset. Our final dataset includes 3,988 benign apps and
4,265 malicious apps. Table 3 lists the summary of our dataset. The largest benign sample size is
45.81 MB, and the smallest benign sample size is 67 KB. As for malware, the largest sample size is
69.69 MB while the smallest sample size is 54 KB.

To evaluate IntDroid, we conduct experiments by performing 10-fold cross validations using the
dataset, which means that the dataset is partitioned into ten subsets, each time we pick one subset
as our testing set, and the rest nine subsets as training set. We repeat this ten times and report the
average as the final results. The metrics used to measure the effectiveness of IntDroid are shown
in Table 4.

5.2 Detection Effectiveness

We first evaluate how effective IntDroid is on detecting Android malware. To this end, we perform
10-fold cross validations on our dataset. Particularly, we evaluate the effectiveness of IntDroid from
the following three aspects:

5https://github.com/IntDroid/IntDroid.
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Fig. 7. F-measure, Accuracy, True-positive Rate (TPR), and False-positive Rate (FPR) of IntDroid on detecting

Android malware by using degree centrality with different classification models.

• Different classification models: 1NN, 3NN, and Random Forest.

• Different centrality measures: degree centrality, closeness centrality, harmonic centrality, katz

centrality, average centrality, and all centrality.

• Nodes with different top n% centrality to select as central nodes: 1, 2, 3, 4, 5, 6, 7, and 8.

5.2.1 Different Classification Models. We first conduct a series of experiments using different
machine learning algorithms as discussed in Section 4.5. Specifically, we run IntDroid using 1-

Nearest Neighbor (1NN), 3-Nearest Neighbor (3NN), and Random Forest (RF). These three classifiers
are implemented by using a python library scikit-learn [6]. For the RF, we adopt the default pa-
rameters to commence our experiments.6 Figure 7 presents the F-measure, Accuracy, True-positive

Rate (TPR), and False-positive Rate (FPR) achieved by IntDroid when we choose degree centrality
to pick out the central nodes within call graphs. The results in Figure 7 indicate that 1NN is able to
maintain the best effectiveness on all experiments in terms of F-measure, TPR, and Accuracy. For
instance, when we select nodes with top 3% degree centralities as central nodes, the F-measure
of IntDroid is 96.8% with 1NN while is 95.2% and 92.0% by using 3NN and RF, respectively. As for
TPR, when IntDroid uses 1NN for classification, it can achieve better performance than uses 3NN
and RF. As shown in Figure 7, TPRs of IntDroid with 1NN range from 97.4% to 98.9% while range
from 81.0% to 88.3% with RF. As for FPR, IntDroid is able to detect more benign apps when we
use RF to train our classifier, however, the TPR is very low, which indicates that more malicious
samples are being misclassified as benign apps. As a matter of fact, it is very important to maintain

6More detailed information of parameters is available on the official website: https://scikit-learn.org/.
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Table 5. F-measure, Accuracy, True-positive Rate (TPR), and False-positive Rate (FPR) of IntDroid

on Detecting Android Malware by Using Different Centralities with 1NN

Top n% 1 2 3 4 5 6 7 8

Metrics F1 TPR F1 TPR F1 TPR F1 TPR F1 TPR F1 TPR F1 TPR F1 TPR

Degree 95.5 97.4 96.5 98.5 96.8 98.6 96.8 98.7 96.9 98.7 96.9 98.9 96.6 98.5 96.6 98.5

Closeness 88.6 89.5 92.0 93.8 92.9 95.6 93.0 95.7 93.1 95.5 93.6 95.8 93.6 95.6 93.8 95.5

Harmonic 88.3 90.0 91.7 93.9 92.7 95.1 93.2 95.5 93.8 96.3 93.4 95.6 93.9 96.0 94.4 96.1

Katz 90.4 93.0 92.0 94.5 93.2 95.2 93.7 95.6 94.1 96.2 94.3 96.1 94.7 96.5 94.8 97.0

Average 88.1 89.9 91.7 94.0 92.7 95.0 93.2 95.5 93.6 96.2 93.6 95.8 94.0 96.3 94.2 95.8

All 95.6 97.4 96.6 98.5 97.1 99.1 96.7 98.5 96.6 98.2 97.0 98.7 96.7 98.4 96.5 98.2

Metrics A FPR A FPR A FPR A FPR A FPR A FPR A FPR A FPR

Degree 95.2 7.1 96.3 5.9 96.7 5.4 96.6 5.6 96.8 5.4 96.7 5.6 96.4 5.9 96.4 5.8

Closeness 88.1 13.4 91.5 10.9 92.4 11.0 92.5 10.9 92.7 10.3 93.2 9.7 93.3 9.3 93.5 8.6

Harmonic 87.6 14.8 91.2 11.8 92.2 10.8 92.8 10.1 93.4 9.7 93.0 9.7 93.6 9.0 94.1 8.1

Katz 89.8 13.6 91.5 11.6 92.8 9.8 93.4 8.9 93.7 8.9 93.9 8.4 94.4 7.8 94.5 8.1

Average 87.4 15.3 91.2 11.8 92.3 10.7 92.8 10.1 93.3 9.8 93.3 9.5 93.7 9.1 93.9 8.2

All 95.3 6.8 96.4 5.7 96.9 5.4 96.5 5.5 96.5 5.3 96.8 5.2 96.5 5.5 96.3 5.7

a high TPR for Android malware detection, because low TPR signifies more malicious samples
being misclassified as benign samples, and these misclassified malicious samples can still spread
malicious activities. When users install these evasive malware, their private data may be stolen by
attackers, which may cause different levels of economic losses. In conclusion, IntDroid is able to
obtain better results when we adopt 1NN to train a classifier and use it to detect Android malware.

5.2.2 Different Centrality Measures. To test the effectiveness of IntDroid on detecting Android
malware with using different centralities to select central nodes, we first conduct four experiments
by adopting the following four centralities: degree centrality, closeness centrality, harmonic cen-
trality, and katz centrality. In addition, it is general to measure the importance of a vertex in a social
network by combining multiple centrality measures. Therefore, we add an average centrality ex-
periment by using the average value of the former four individual centralities to pick out central
nodes within call graphs. Moreover, we also construct another experiment (i.e., all centrality) by
computing the union set of the former four individual results of central nodes (Figure 5).

Table 5 and Figure 8 present the experimental results of IntDroid with 1NN, which include F-
measure, Accuracy, TPR, and FPR for each experiment. Results in Table 5 and Figure 8 indicate
that IntDroid can obtain better effectiveness when we select degree centrality and all centrality
to dig out central nodes. For instance, the F-measures of IntDroid are 96.8% and 97.1% when the
centrality measures are degree centrality and all centrality, while they are 92.9%, 92.7%, 93.2%,
and 92.7% when we choose closeness centrality, harmonic centrality, katz centrality, and average
centrality to pick out central nodes within call graphs. As for TPR, as shown in Table 5 and Figure 8,
IntDroid is able to maintain a TPR of 99.1% when we adopt all centrality to extract central nodes.
In conclusion, IntDroid can achieve better effectiveness when we adopt degree centrality and all
centrality to unearth central nodes within call graphs.

5.2.3 Different Top n%. The larger n, the more central nodes, resulting in greater runtime over-
heads (Section 5.4). Therefore, we only choose eight different values of n and exclude the larger
numbers. As shown in Figure 8, F-measure, Accuracy, TPR, and FPR vary according to the value
of n. As for degree centrality and all centrality, the detection results change slowly as n increases.
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Fig. 8. F-measure, Accuracy, True-positive Rate (TPR), and False-positive Rate (FPR) of IntDroid on detecting

Android malware by using different centralities with 1NN.

As for other selected centrality measures, F-measures, Accuracy, and TPR are generally positively
correlated to the value of n and FPR is generally negatively correlated to n. In addition, IntDroid

can always maintain better effectiveness whatever n is when we select degree centrality or all
centrality to extract central nodes within call graphs.

5.3 Comparison with Prior Work

In this section, we compare IntDroid with 30 anti-virus scanners in VirusTotal [7] and three
state-of-the-art Android malware detection approaches: one permission-based approach (i.e., Per-

Droid7 [53]), one traditional graph-based method (i.e., MaMaDroid [43]), and one social-network-
analysis–based system (i.e., MalScan [54]). To show more clearly in figure, we only present the
best result8 of IntDroid from our all 48 experimental results in Table 5.

5.3.1 With Anti-Virus Scanners. As discussed before, our dataset derives from AndroZoo [11]
and each of APK file has been detected by different anti-virus products in VirusTotal [7]. We
leverage the detection reports to generate our dataset. An APK file is considered benign only if all

7For more convenient discussion, we call the system [53] as PerDroid, because it is a permission-based method.
8IntDroid is able to maintain the best performance when we select nodes with top 3% all centralities as central nodes and

apply 1NN to train a model for malware detection.
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Table 6. The Names of 30 Selected Anti-virus Scanners in VirusTotal

ID Scanners ID Scanners ID Scanners
AV1 SymantecMobileInsight AV11 Babable AV21 Trustlook
AV2 ESET-NOD32 AV12 McAfee AV22 MicroWorld-eScan
AV3 Avira AV13 WhiteArmor AV23 Ad-Aware
AV4 F-Secure AV14 CAT-QuickHeal AV24 Emsisoft
AV5 AVware AV15 Cyren AV25 VIPRE
AV6 Fortinet AV16 F-Prot AV26 DrWeb
AV7 Sophos AV17 AVG AV27 Comodo
AV8 AhnLab-V3 AV18 Cynet AV28 MAX
AV9 NANO-Antivirus AV19 GData AV29 Arcabit
AV10 Ikarus AV20 BitDefender AV30 Baidu-International

Table 7. Detection Rates of 30 Anti-virus Scanners and IntDroid on Detecting

4,265 Malicious Apps in Our Dataset

Scanners AV1 AV2 AV3 AV4 AV5 AV6 AV7 AV8 AV9 AV10

TPR 0.957 0.916 0.911 0.860 0.858 0.846 0.836 0.825 0.813 0.780

Scanners AV11 AV12 AV13 AV14 AV15 AV16 AV17 AV18 AV19 AV20

TPR 0.765 0.745 0.718 0.702 0.687 0.672 0.672 0.600 0.597 0.593

Scanners AV21 AV22 AV23 AV24 AV25 AV26 AV27 AV28 AV29 AV30 IntDroid

TPR 0.576 0.561 0.552 0.550 0.550 0.517 0.496 0.484 0.469 0.454 0.991

its reports classify it as non-malicious. In other words, benign apps in our dataset are all within
the range that anti-virus scanners can detect. Therefore, in this subsection, we focus on the de-
tection rate of 4,265 malware samples in our dataset. Specifically, we upload these 4,265 malware
samples to VirusTotal to generate the detection reports. After obtaining all reports, we show the
top 30 TPRs of all anti-virus scanners in Table 7 and the names of these 30 scanners are presented
in Table 6.

From the results in Table 7, we can see that the TPRs of these anti-virus scanners vary con-
siderably. For instance, SymantecMobileInsight can detect over 95% malware in our dataset while
Baidu-International is able to detect only 45% of the 4,265 malicious samples. As for IntDroid, the
TPR is encouraging, since it can discover over 99% malware in our dataset, which is the highest
among all the scanners in VirusTotal. Furthermore, we also investigate the overlap of malware
detected by IntDroid and these 30 anti-virus scanners. We find that although IntDroid can detect
more malware than these 30 anti-virus scanners, seven false negatives of IntDroid (i.e., misclassified
malware by IntDroid) are correctly detected by certain scanners. We then manually analyze these
malware and the result shows that all of them are grayware. A grayware is an unwanted app that
is not necessarily malicious but can cause performance issues, as well as security risks, when left
unaddressed.9 In other words, IntDroid can detect malware misclassified by 30 scanners and these
30 scanners can also detect malware misclassified by IntDroid. Therefore, we can combine IntDroid

with other anti-virus scanners in VirusTotal to achieve a more complete malware detection.

5.3.2 With PerDroid. Wang et al. [53] proposed an approach for Android malware detection
based on risky permissions, which are security-aware features that provide a mechanism of ac-
cess control to core facilities of the mobile system. They apply three feature ranking methods (i.e.,

9https://www.logixconsulting.com/2019/12/24/what-is-grayware-2.
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Fig. 9. F-measure, Accuracy, True-positive Rate (TPR), True-negative Rate (TNR), False-positive Rate (FPR), and

False-negative Rate (FNR) of IntDroid, PerDroid, MaMaDroid, and MalScan on detecting Android malware.

mutual information, correlation coefficient, and T-test) to rank Android individual permissions
with respect to their risk. Then the top risky permissions are used as features for malware detec-
tion. We leverage the risky rank of permissions reported in their paper and use the top 88 risky
permissions presented in their public website [1]. Specifically, we employ Androguard [19] to con-
struct the features and feed them to three machine learning classifiers, namely, 1NN, 3NN, and RF.
Through the experimental results on our 8,253 samples, we find that 3NN is able to maintain the
best effectiveness of these three classifiers.

Figure 9 presents the comparative results of IntDroid and PerDroid [53], such results indicate
that our proposed approach is more effective than permission-based method. For instance, the
F-measure and Accuracy are 92.9% and 92.5% while IntDroid can achieve 97.1% and 96.9%, re-
spectively. This observation is mainly due to the lack of program semantics of permission-based
method.

5.3.3 With MaMaDroid. We also compare IntDroid with a state-of-the-art graph-based ap-
proach, namely, MaMaDroid [43], which leverages the sequences of abstracted function calls ob-
tained from a call graph and uses it to extract features to conduct classification. These abstracted
sequences are used to build a Markov chain model to represent the transmission probabilities be-
tween functions. Specifically, we use MaMaDroid’s open-source code in their website [2] for its
abstraction, modeling, and feature extraction. In an effort to complete the classification, we imple-
ment three classifiers (i.e., 1NN, 3NN, and RF) as described in their paper, which are not provided
in their source code. Comparative results of IntDroid and MaMaDroid in terms of F-measure, Ac-
curacy, TPR, TNR, FPR, and FNR are given in Figure 9.

From results in Figure 9, we can see that MaMaDroid outperforms permission-based method, this
happens because of the reserve of program semantics in MaMaDroid (i.e., it distills the program
semantics into a graph representation) while permission-based method ignores them. In addition,
the comparative results also demonstrate that IntDroid is capable of detecting more malware and
achieving better effectiveness than MaMaDroid. The F-measure and TPR are able to maintain 97.1%
and 99.1% with IntDroid while they are 94.4% and 97.3% with MaMaDroid. This is mainly due to
the fact that the abstraction of API calls can cause some false positives. For instance, two com-
pletely different API calls TelephonyManager.getDeviceId() and SmsManager.sendTextMessage() can
be abstracted into the same package, which is android.telephony.
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5.3.4 With MalScan. To achieve market-wide mobile malware scanning, MalScan [54] regards
the function call graph of an app as a complex social network and apply centrality analysis on sen-
sitive API calls to extract semantic features of the graph. Then these centrality values are used to
train a model for Android malware detection. As described in MalScan [54], we can see that the av-
erage detection effectiveness of MalScan is able to maintain the best when concatenate centrality10

is used to train a 1NN model for detecting malware. Therefore, we extract the concatenate central-
ity of sensitive API calls within a call graph to train a 1NN model for completing the comparative
experiment.

From the results presented in Figure 9, we see that MalScan can achieve better effectiveness
than permission-based method because of the consideration of graph semantics of an app. More-
over, IntDroid is capable of maintaining slightly better effectiveness than MalScan. For instance,
the TPR is 98.3% with MalScan while it is 99.1% when we use IntDroid for classification. This
happens because only using centrality of sensitive API calls to conduct malware detection may
cause some false positives and false negatives when benign apps show some similar behaviors as
malware by invoking sensitive API calls. For example, some social apps (e.g., Tiktok) require to
access users’ location for presenting location-specific news or videos and read users’ address book
for recommending new friends. In such case, the centrality of sensitive API call LocationManager.

getLastLocation() may be almost the same as some malware. However, when we use intimacy be-
tween sensitive API calls and central nodes to detect malware, the central nodes of these benign
apps and malware are different, resulting in different intimacies between the same sensitive API
call and central nodes in different apps. In other words, although the centrality values of sensitive
API calls are similar, the intimacy between the API call and central nodes can be different, since
the central nodes are different in benign apps and malware. By this, we can detect more malware
with lower false negatives.

5.4 Runtime Overhead

In this section, we perform a comprehensive evaluation on runtime overhead of IntDroid by using
our 8,253 samples (i.e., 3,988 benign samples and 4,265 malicious samples). The average number
of nodes and edges of these 8,253 samples are 4,779 and 10,159, respectively. Given a new app, Int-

Droid consists of four main steps to complete the classification: (1) Function Call Graph Extraction,
(2) Centrality Analysis, (3) Intimacy Analysis, and (4) Classification.

5.4.1 Function Call Graph Extraction. The first step of IntDroid is to extract the function call
graph for a given APK file. Figure 10 presents the runtime overheads of call graph extraction on
our dataset, for more than 99% APK files we can obtain call graphs in 2 s. On average, it is required
0.37 s to construct a call graph for a given APK file.

5.4.2 Centrality Analysis. The second step of IntDroid is to conduct centrality analysis to un-
earth the central nodes within a function call graph. As shown in Table 8 and Figure 11, the average
runtime overheads vary according to different centrality measures. It is obvious that the running
time of average centrality and all centrality is around the sum of four individual centralities, which
is reasonable, because these two centralities are the combination of degree centrality, closeness
centrality, harmonic centrality, and Katz centrality.

5.4.3 Intimacy Analysis. The third step of IntDroid is to perform intimacy analysis for extracting
the feature vector. Table 9 and Figure 11 present the average runtime overheads of IntDroid in this
step, such results indicate that the average running time of intimacy analysis is generally positive

10More detailed descriptions are in MalScan [54].
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Fig. 10. Runtime overheads of call graph extraction (seconds).

Table 8. Average Runtime Overheads of Centrality Analysis (seconds)

Top n% 1 2 3 4 5 6 7 8
Degree 0.41 0.40 0.40 0.40 0.40 0.40 0.40 0.40

Closeness 0.67 0.66 0.65 0.65 0.66 0.65 0.65 0.65
Harmonic 0.81 0.80 0.80 0.79 0.79 0.78 0.79 0.79

Katz 0.80 0.78 0.78 0.77 0.76 0.76 0.76 0.76
Average 2.52 2.53 2.50 2.51 2.48 2.47 2.47 2.48

All 2.43 2.40 2.40 2.40 2.39 2.39 2.42 2.40

Table 9. Average Runtime Overheads of Intimacy Analysis (seconds)

Top n% 1 2 3 4 5 6 7 8
Degree 4.61 11.50 17.24 21.46 25.12 29.42 32.53 36.42

Closeness 1.17 2.39 3.93 6.04 8.28 10.45 12.47 14.17
Harmonic 1.14 2.40 3.92 5.68 7.83 10.25 12.20 13.86

Katz 1.16 2.40 4.02 5.53 7.10 8.61 10.03 11.36
Average 1.15 2.44 3.91 5.67 7.90 10.12 12.17 14.38

All 5.32 13.52 20.98 27.38 33.72 39.58 45.06 50.40

related to the top n%. This observation is mainly due to the fact that the larger n, the more central
nodes, resulting in more runtime overheads to extract the average intimacy between sensitive API
calls and central nodes.

5.4.4 Classification. The last step of IntDroid is to train classifiers by using feature vectors ob-
tained from intimacy analysis step and perform classification on a testing dataset. As shown in
Table 10 and Figure 11, it consumes less than 0.02 s to complete the classification. The runtime
overhead of classification is the least expensive of four steps.

Table 11 and Figure 11 present the total average runtime overheads of IntDroid to analyze a
given APK file. When we select nodes with top 1% degree centrality as central nodes and conduct
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Fig. 11. Runtime overhead of IntDroid on different phases.

Table 10. Average Runtime Overheads of Classification with 1NN (seconds)

Top n% 1 2 3 4 5 6 7 8
Degree 0.010 0.008 0.007 0.007 0.007 0.007 0.008 0.008

Closeness 0.018 0.016 0.015 0.014 0.014 0.014 0.013 0.013
Harmonic 0.018 0.016 0.015 0.014 0.014 0.015 0.014 0.014

Katz 0.019 0.016 0.016 0.015 0.014 0.015 0.014 0.011
Average 0.019 0.017 0.017 0.016 0.016 0.015 0.015 0.015

All 0.009 0.008 0.008 0.007 0.007 0.007 0.008 0.007

intimacy analysis to produce a feature vector for classification, the total runtime overhead is only
5.4 s on average, while the TPR is able to maintain 97.4%.

On the one hand, PerDroid [53] is a permission-based method and its effectiveness on malware
detection is lower than both MaMaDroid [43] and MalScan [54]. On the other hand, IntDroid is
the combination of traditional graph-analysis–based method with social-network-analysis–based
method. Therefore, we mainly focus on the runtime overhead of IntDroid compared to traditional
graph-analysis–based method (i.e., MaMaDroid) and social-network-analysis–based approach (i.e.,
MalScan). As for MaMaDroid, Table 12 shows that it needs to take about 33.83 s to finish a
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Table 11. Total Average Runtime Overheads of IntDroid to Complete

Analyzing a Given APK File (seconds)

Top n% 1 2 3 4 5 6 7 8
Degree 5.40 12.28 18.02 22.24 25.90 30.20 33.31 37.20

Closeness 2.23 3.43 4.96 7.07 9.32 11.48 13.50 15.20
Harmonic 2.34 3.58 5.10 6.85 9.00 11.41 13.37 15.03

Katz 2.35 3.56 5.18 6.68 8.24 9.75 11.17 12.50
Average 4.06 5.36 6.80 8.56 10.76 12.97 15.02 17.24

All 8.13 16.30 23.76 30.16 36.49 42.35 47.86 53.18

Table 12. Comparative Runtime Overhead of MaMaDroid,

MalScan, and IntDroid

Tools MaMaDroid MalScan
IntDroid

Degree_1 All_3
RunTime Overhead (s) 33.83 2.75 5.40 23.76

classification on average. Although the runtime overhead of MaMaDroid can be almost the same as
IntDroid. However, it requires more than 7 times as much memory as IntDroid to perform classifica-
tion. MaMaDroid requires 63.7 GB of memory to complete the classification on our 8,253 samples,
while IntDroid only requires 8.5 GB. This happens because the dimension of feature vector of Ma-

MaDroid is 115,600 while is 21,986 for our proposed method. Moreover, because of the intimacy

analysis of IntDroid, its detection efficiency is lower than MalScan. For instance, when we treat
nodes with top 1% degree centralities as central nodes to train a classifier by using 1NN algorithm,
it takes about 5.4 s to analyze a given app for IntDroid while MalScan only consumes 2.7 s to com-
plete the whole analysis when we extract the concatenate centrality as the feature to train a 1NN
classifier. However, IntDroid and MalScan can be complementary because of the higher effective-
ness of IntDroid. In other words, MalScan can be used as the first line of defense to filter most of
malware, then IntDroid can be applied as the second line of defense to excavate more malware.
In this way, we can save longer time and resources. For example, suppose that given 10,000 new
apps, we can use MalScan to detect these apps first. Then benign apps classified by MalScan can
be fed into IntDroid to be deeply analyzed for discovering more malicious apps. By this, we can
save longer times compared to analyzing these 10,000 apps only using IntDroid. In practice, both
IntDroid and MalScan can not achieve 100% of detection accuracy. Therefore, after collecting all
detected malware samples, we can upload them to VirusTotal for generating more detailed reports
to assist analysts to filter benign apps from these malware.

5.5 Detection of Zero-Day Malware

In this subsection, we would like to check the ability of IntDroid on discovering real-world malware.
To achieve this goal, we treat nodes with top 3% all centralities as central nodes and leverage
our 8,253 samples to train a classifier by using 1NN algorithm. Next, we crawl 5,000 apps from
GooglePlay market and feed them to the trained 1NN classifier. Among these apps, IntDroid reports
32 of them as being malicious. To validate whether these 32 apps are indeed malware or not, we
upload them to VirusTotal [7] to analyze each of them. Among these 32 samples, 24 of them are
reported as malicious by at least two anti-virus scanners. To further study the behaviors of these
24 samples, we upload them to a state-of-the-art sandbox [8], which combines static and dynamic
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analysis for reporting detailed risky behaviors. Through the results, we observe that all of them
collect user’s private information (e.g., IMSI, IMEI, phone number, and contacts) and then send
them to the network or write them into a file. Additionally, seven of them execute shellcode to
complete more risky activities. After analyzing these samples, we then conduct an investigation
(i.e., obtaining more detailed information from GooglePlay official website) about them, results
show that one of which has been downloaded and installed by more than ten million users. This
app has also been flagged as malware by six anti-virus scanners in VirusTotal [7], one of which
is Symantec Mobile Insight. In reality, three apps are flagged as malware by only one scanner in
VirusTotal. Similarly, we also upload them to the sandbox [8] and the behavioral reports show that
they are not necessarily malicious and are identified as one type of grayware (i.e., adware).

Of the remaining five apps, we manually inspect them. Our manual checks show that one of
these five apps is actually malware as it contains highly suspicious behaviors. The app is a music
downloader, which contains six dangerous permissions and reads battery and memory information
of the device. Moreover, the app collects many sensitive data (i.e., Android ID, serial number, IMSI,
IMEI, phone number, contacts, emails, and location) and even can execute shellcode. In conclusion,
IntDroid is able to discover 28 zero-day malware11 among 5,000 GooglePlay apps, one of them has
been downloaded and installed by more than 10 million users, and one of them is not reported as
malware by existing tools [7].

6 EXTENSIVE COMPARISON WITH MALSCAN

Because the most similar system of IntDroid is MalScan, therefore, to validate the higher effec-
tiveness of IntDroid, we present an extensive comparison with MalScan in this section. From the
experimental results presented in Section 5, we are able to maintain the best effectiveness when we
select nodes with top 3% all centralities as central nodes and apply 1NN to train a model for mal-
ware detection. We choose these three parameters12 to commence our comparison with MalScan.

6.1 Malware Detection in the Twilight Zone

As aforementioned, a grayware sample is an unwanted app that is not necessarily malicious but
can cause performance issues, as well as security risks, when left unaddressed. According to a
recent report,13 grayware can do plenty of damage even if they are not actively malicious. Since the
malicious behaviors of grayware are not obvious, they are more difficult to be distinguished from
benign apps. In Euphony [38], authors find that apps flagged by at least five anti-virus scanners in
VirusTotal exhibit more obvious malicious behaviors. In other words, apps that are detected by one
to five scanners are highly likely in the twilight zone between malicious and benign functionality.

In this part, we pay attention to detect malware in the twilight zone (e.g., grayware) with
MalScan and IntDroid. Specifically, we randomly download 3,000 malware samples that are re-
ported as malicious by one to five scanners in VirusTotal. As for benign apps, we use 3,988 benign
samples in Section 5 as our dataset. After collecting 3,988 benign apps and 3,000 malicious samples,
we begin to examine the capability of MalScan and IntDroid on detecting malware in the twilight
zone.

Table 13 presents the comparative results of MalScan and IntDroid. The TPR of MalScan is 91.2%,
which means that MalScan can only detect 91.2% of malware that are in the twilight zone. How-
ever, as for IntDroid, the TPR is able to maintain 95.1%, which is greater than 91.2%. Such result
indicates that IntDroid performs better than MalScan on detecting malware in the twilight zone.

11More detailed behaviors and information are available in the website: https://github.com/IntDroid/IntDroid.
12Classification model: 1NN, Centrality measure: all centrality, and N = 3.
13https://solutionsreview.com/endpoint-security/grayware-can-defend/.
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Table 13. Detection Effectiveness of MalScan and IntDroid on

Detecting Malware in the Twilight Zone

Systems Accuracy Precision Recall F1 TPR TNR FPR FNR
MalScan 0.930 0.925 0.912 0.918 0.912 0.945 0.055 0.088
IntDroid 0.961 0.957 0.951 0.954 0.951 0.968 0.032 0.049

Although IntDroid can achieve 96.1% of accuracy when detecting our collected dataset, it still can
not detect certain malware in the twilight zone. We then manually inspect these misclassified mal-
ware and observe that most of them are adware. The most common reason for adware is to collect
information about users for the purpose of making advertising dollars. In practice, some benign
apps may use ad libraries to access users’ private information and even monitor users’ behavior
to push suitable ads for profit. Behaviors of these ad libraries and adware are similar, resulting a
wrong classification.

6.2 Malware Detection in Different Families

There is another important aspect (i.e., the balance of malware families in the experimental dataset
[12, 48]) that should be considered when we test the detection effectiveness of a malware detection
method. Suppose that the number of samples of several malware families is much larger than of
other families, then the detection ability of the trained model will mainly depend on these families.
In other words, a malware detection method should all maintain high effectiveness for different
families. In this subsection, we conduct a comparative experiment to evaluate the effectiveness
of MalScan and IntDroid on detecting malware in different families. Specifically, we select the 20
largest malware families in AndroZoo [11] as our test objects. Some malicious APK files in Andro-
Zoo [11] are labeled into corresponding families by using method in Reference [33]. We randomly
download 1,000 samples for each family, and the total number of downloaded samples is 20,000.
The family names and the average size of samples for each family can be found in Table 14.

We leverage our 3,988 benign samples used in Section 5 and these 20,000 malware samples to
commence our study. In reality, we totally conduct 20 experiments for 20 families. In other words,
the dataset in each experiment including 3,988 benign apps and 1,000 malicious apps for each
family. We repeat this 20 times for 20 families. All the researches are performed by using 10-fold
cross validations. The detection effectiveness of MalScan and IntDroid for each family is illustrated
in Figure 12.

From the results in Figure 12, we can see that IntDroid is capable of maintaining better effec-
tiveness than MalScan on detecting malware in all these 20 families. For example, when detecting
malware in admogo family, MalScan can only detect 95.5% of malware while IntDroid can achieve
98.8% of TPR. Moreover, IntDroid is able to maintain above 94% of detection ratio for all 20 malware
families. In particular, there are seven families with a TPR exceeding 98%, and one family with a
TPR greater than 99%. The average detection ratio of IntDroid is 96.9% when testing on these 23,988
samples, such high effectiveness suggests that IntDroid is suitable for the detection of malware in
different families.

6.3 Malware Detection in Unknown Families

Along with the constant evolution of Android, many new malicious samples are created by at-
tackers for evading existing malware detectors [52]. Some of these samples may not belong to
any existing malware families. When the app is from a new malware family, malware detectors
may produce a false negative because of a lack of discriminative features to label it as a malware.
Therefore, it is important to assess the ability of a malware detection method on distinguishing
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Table 14. The Average Size (MB) of Top 20

Families in Our Dataset

Family Average Size (MB) #Samples

admogo 2.61 1,000
adwo 2.64 1,000

airpush 2.48 1,000
appsgeyser 0.53 1,000

artemis 3.41 1,000
deng 4.37 1,000

domob 1.95 1,000
droidkungfu 1.94 1,000

feiwo 2.21 1,000
gingermaster 4.11 1,000

ginmaster 2.36 1,000
kuguo 3.38 1,000

leadbolt 2.15 1,000
plankton 2.15 1,000
smspay 5.84 1,000
startapp 2.69 1,000

waps 2.47 1,000
wapsx 2.41 1,000

wooboo 1.30 1,000
youmi 2.11 1,000
Total 2.66 20,000

Fig. 12. Detection effectiveness of MalScan and IntDroid in 20 different malware families.
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Table 15. Detection Effectiveness of MalScan and IntDroid on Detecting

Malware in Unknown Families

families
0 Samples Available 10 Samples Available 100 Samples Available
MalScan IntDroid MalScan IntDroid MalScan IntDroid

admogo 0.982 0.994 0.984 0.994 0.987 0.999
adwo 0.975 0.988 0.979 0.989 0.981 0.99

airpush 0.912 0.929 0.921 0.941 0.921 0.941
appsgeyser 1 1 1 1 1 1

artemis 0.855 0.877 0.867 0.917 0.896 0.947
deng 0.857 0.884 0.865 0.888 0.901 0.919

domob 0.961 0.977 0.965 0.978 0.972 0.984
droidkungfu 0.959 0.979 0.963 0.979 0.963 0.979

feiwo 0.876 0.89 0.876 0.89 0.909 0.938
gingermaster 0.949 0.957 0.949 0.957 0.949 0.957

ginmaster 0.889 0.902 0.89 0.904 0.904 0.909
kuguo 0.945 0.954 0.949 0.955 0.951 0.961

leadbolt 0.921 0.934 0.925 0.944 0.936 0.951
plankton 0.88 0.88 0.88 0.88 0.921 0.946
smspay 0.914 0.925 0.916 0.93 0.924 0.96
startapp 0.801 0.814 0.831 0.849 0.869 0.926

waps 0.977 0.983 0.977 0.983 0.977 0.984
wapsx 0.961 0.981 0.961 0.981 0.961 0.983

wooboo 0.931 0.957 0.939 0.975 0.958 0.983
youmi 0.966 0.973 0.966 0.973 0.966 0.973

Average 0.926 0.939 0.930 0.945 0.942 0.962

new malware families. In this subsection, we conduct a comparative experiment to examine the
effectiveness of MalScan and IntDroid on detecting malware in unknown families.

Our dataset in this subsection consists of 3,988 benign samples in Section 5 and 20,000 malicious
samples in Section 6.2. We totally conduct three experiments where we limit the number of training
samples of a particular family. In our first experiment, we do not provide any samples of the family
in our training set. Suppose that admogo family is a new family, then the training set will be made
up of 3,988 benign samples and 19,000 malicious samples, including 0 admogo family samples.
To simulate the starting spread of a new family, we commence our second experiment, we first
randomly select 10 samples of the family, then these selected samples are put into the training set.
The number of malicious training samples in this experiment is 19,010, which includes 10 new
family samples. As a new family of malware proliferates, the number of available samples will
increase. In our final experiment, we assume that the number of new family samples obtained is
100 and put these 100 samples into our training set. We conduct these three experiments for each
family and the detection results are presented in Table 15.

As shown in Table 15, similar to the results in Figure 12, IntDroid performs better than MalScan

on detecting malware in all new families. When the number of available samples for a new family
is 0, 10, and 100, the average TPR of MalScan is 92.6%, 93.0%, and 94.2%, respectively. However,
they are all smaller than TPRs achieved by IntDroid. Furthermore, without any samples of a new
family for training, the TPR of IntDroid is still able to maintain above 80% for 20 different families.
Moreover, 11 families can achieve above 95% of TPR and even one family (i.e., appsgeyser) can be
detected perfectly (i.e., 100% accuracy). Such results suggest that IntDroid is capable of detecting
malware from a new family with good effectiveness. When the number of available samples of a
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new family increases, the TPR of IntDroid can achieve better effectiveness. For instance, the TPR
of IntDroid on detecting startapp family malware is 81.4% if no startapp samples are available for
training, while are 84.9% and 92.6% when the available training samples increase to 10 and 100,
respectively. Such results are reasonable, because members of certain families often show similar
behaviors and are just repackaged malware with some slight modifications. The more the number
of available samples, the more variations of a family can be detected.

7 DISCUSSIONS AND LIMITATIONS

7.1 Threats to Validity

Threats to External Validity. Using a limited number of apps in Section 5 poses an external validity
threat. These limited apps may not be representative of the entire market. We conduct other de-
tailed comparative experiments in Section 6 to mitigate the threat by using 20,000 malicious apps
from 20 families.

Threats to Internal Validity. The distribution of intimacy values may cause some inaccuracies
when we conclude the level of the differences between benign apps and malicious apps. We mit-
igate the threat by adopting a non-parametric test (i.e., Mann-Whitney) to study the difference of
these intimacy values. In addition, inaccuracies in logging the runtime overheads are inevitable
due to the different machine running states (e.g., different CPU usages). The threat is mitigated by
reporting the average runtime overhead after collecting all runtime overheads three times. More-
over, selecting central nodes according to the simply sorted percentage of node centrality may
cause some inaccuracies. To mitigate the threat, we select eight thresholds (i.e., 1% to 8%) for per-
forming more complete experiments to find out the ideal threshold for malware detection. Finally,
there may be some false positives in detecting zero-day malware from Google Play market. We up-
load these samples to a sandbox that combines static with dynamic analysis for generating detailed
risky reports to mitigate the threat.

7.2 False Positives and False Negatives

False Positives. After deeply analyzing the false positives caused by IntDroid, we find that the most
common reason is the use of ad libraries in benign apps. These ad libraries need to access private
information and even monitor users’ behavior to push suitable ads for profit. Behaviors of these
ad libraries may be misclassified as malware, resulting in false positives.

False Negatives. As for false negatives of IntDroid, we observe that most of them are in the
twilight zone, that is, grayware. In other words, malicious codes of these samples do not exhibit
obvious malicious behaviors or are deeply disguised. Adware is one type of grayware and is un-
wanted software designed to throw advertisements up on your screen. Since most of them are not
performing any clearly malicious activities, IntDroid can not flag them as malware correctly.

7.3 Discussions

In our work, we totally select four individual centrality measures and construct another two
centrality measures to excavate central nodes for Android malware detection. Through the
experimental results in Section 5, we see that degree centrality can achieve the best performance
among four individual centrality measures (i.e., degree centrality, katz centrality, closeness cen-
trality, and harmonic centrality). Moreover, when we use the combined central nodes (i.e., all cen-
trality) to detect malware, the performance is almost the same as using degree centrality.

We conduct a simple study to examine the cosine distance between the feature vectors obtained
by using degree centrality and all centrality. We choose n=1 (i.e., nodes with top 1% centrality will
be selected as central nodes) as our parameter. For feature vectors of 3,988 benign samples between
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degree centrality and all centrality, the similarity of 3,921 samples (3,921/3,988=98.32%) is greater
than 90%, 3,185 samples (3185/3988=79.86%) have a similarity greater than 99%, and the similarity
of 548 samples are 100%. In addition, as for our 4,265 malicious samples, the similarity of 4,249 sam-
ples (4,249/4,265=99.62%) is greater than 90%, 3,818 samples (3,818/4,265=89.52%) have a similarity
greater than 99%, and the similarity of 394 samples are 100%. Such results indicate that degree cen-
trality may be the best candidate to extract central nodes for malware detection. In our future work,
we will test the capability of more different centrality measures on detecting Android malware.

In addition, since most Android malware detection systems are closed source, we only com-
pare IntDroid with three open-source systems [43, 53, 54]. We will conduct a detailed comparative
analysis on more systems in our future work.

7.4 Limitations

Similar to any empirical approach, IntDroid suffers from several limitations, which are listed below.
(1) Sensitive API calls: Our method depends on intimacy analysis between sensitive API calls

and central nodes within a call graph. We use the newest version of sensitive API calls mapped
by PScout [13]. However, it may be partially outdated. Some incorrect and missing API calls may
cause some false positives and false negatives on malware detection. Sensitive API calls need to
be updated by using PScout [13] on the latest Android version.

(2) Encryption: Using obfuscation techniques to protect Android apps is very popular. Consid-
ering that IntDroid analyzes the function call graph to extract the features, it is resilient to sev-
eral typical local obfuscation techniques [32], such as renaming of the user-defined functions and
packages. However, it is vulnerable to certain obfuscation techniques, such as encryption (e.g.,
APK Protect [5]). These encryption packers can protect apps by using encryption techniques to
hide the actual Dex code. To address this limitation, we can use some unpacker systems [55, 59]
to recover the actual Dex files, then static analysis can be applied to extract the call graph.

(3) Call Graph Extraction: To maintain high efficiency of IntDroid on malware detection, we
conduct simple static analysis to extract a succinct function call graph by using Androguard [19].
In reality, many apps use reflection technique [47] to call sensitive methods, in which case, we may
miss the call relationships between these methods. To be resilient to reflection, we can use an open-
source tool, DroidRA [37], to conduct reflection analysis on our dataset to identify methods that
use reflection for each app. Then the missing edges can be added into the call graph, where caller
nodes are methods that use reflection and callee nodes are reflected methods. Moreover, function
call graph extracted by Androguard [19] is a context- and flow-insensitive call graph. We ignore
these information for achieving high efficiency to conduct malware detection. It is dilemmatic
for us to maintain high scalability if we perform expensive program analysis for considering the
context and flow information of a call graph. However, our experimental results show that the
succinct call graph is enough for us to perform effective malware detection.

8 RELATED WORK

There has been proposed many approaches on Android malware detection that can be classified
into two main categories: syntax-based and semantics-based.

8.1 Syntax-based Android Malware Detection

Syntax-based methods [9, 12, 21, 31, 36, 46, 50, 53, 60] ignore the semantics of app code to achieve
efficient Android malware detection. For example, Wang et al. [53] focus on the permissions re-
quested by apps to detect Android malware. It scans the manifest file to collect the list of all
permissions, and then apply several feature ranking methods to rank them with respect to the
risk. After obtaining the ranking of all analyzed permissions, permissions with top risks will be
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considered as risky permissions and are used as features to detect malware. These risky permis-
sions can provide a mechanism of access control to core facilities of the mobile system, so they can
be represented as a type of apps’ behavior. Similar to Wang et al. [53], Huang et al. [31] also extract
permissions and several easy-to-retrieve features (e.g., the number of files with a “.so” extension
filename) from APK files to detect malware. In practice, due to the limited precision, they conclude
that their method can be used as a quick filter to identify malware, and then more advanced tech-
niques should be applied to achieve more accurate malware detection. In other words, because
of the lack of program semantics, permission-based approaches suffer from low effectiveness on
detecting Android malware. To mitigate the issue, Drebin [12] uses an extensive static analysis to
extract as many features as possible from both manifest and disassembled code, and embeds them
in a joint vector space to detect malware. Feature sets in the manifest consists of hardware fea-
tures, requested permissions, app components, and filtered intents while includes restricted API
calls, used permissions, suspicious API calls, and network addresses in app disassembled code.
However, it only searches for the presence of particular strings, rather than considers the program
semantics. So it can be easily evaded by attacks on syntax features [17].

8.2 Semantics-based Android Malware Detection

To maintain high effectiveness on detecting Android malware, researchers [10, 14, 20, 23–25, 27,
28, 40, 43–44, 45, 49, 56–58] conduct program analysis to extract different types of app semantics.
For example, MassVet [16] builds a view graph to describe an app with a reasonably complicated
UI structure. To ensure the high scalability on graph matching, MassVet applies a similarity com-
parison algorithm that appeared in their former work [15] to the analysis of recovered view graph.
It has validated the high efficiency and scalability on mobile malware detection, however, the orig-
inal purpose of MassVet is to detect repackaged malware. It can cause a false negative when the
app is a new malware. DroidSIFT [58] extracts the weighted contextual API dependency graph
to solve the malware deformation problem based on static analysis. Apposcopy [24] utilizes static
taint analysis to form a new program representation called Inter-Component Call Graph and use
it to detect malware. However, both DroidSIFT [58] and Apposcopy [24] suffer from heavy run-
time overhead. As reported in their papers, they consume an average of 175.8 s and 275 s to ana-
lyze an app, respectively. SMART [44] constructs semantic models of Android malware based on
Deterministic Symbolic Automaton, which can capture common malicious behaviors of malware
families. It consists of two main phases to complete malware detection. The first phase is offline
model learning, which consumes an average of 72.5 s for clone detection and 167.5 s for clone
differencing and DSA generation. The second phase is online malware detection and classifica-
tion where ML-based malware detection takes 13.4 s on average while it takes 105.9 s on average
to classify malware into corresponding families. MaMaDroid [43] leverages the sequences of ab-
stracted function calls obtained from a call graph to build a behavioral model and uses it to extract
features to conduct classification. One limitation of this method is that it can be easily evaded
by the self-defined packages that look similar to Android’s, Google’s, or Java’s packages [17], an-
other is that it requires a considerable amount of memory on classification because of its large
features [43].

8.3 Differences from MalScan

The most similar work as IntDroid is our prior work, MalScan [54], which considers the function
call graph as a complex social network and apply social-network–based centrality analysis on
sensitive API calls to represent the graph semantics for classification. However, only using the
centrality of sensitive API calls to conduct malware detection may cause some false positives when
benign apps show some similar behaviors as malware by invoking sensitive API calls. In such case,
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the centrality of certain sensitive API calls in benign apps may be almost the same as in some
malware. However, when we use intimacy (defined in Section 3.2) between sensitive API calls and
central nodes to detect malware, the central nodes of these benign apps and malware are different,
resulting in different intimacies between the same sensitive API call and central nodes in different
apps. In other words, although the centrality values of sensitive API calls are similar, the intimacy
between the API call and central nodes in benign apps and malicious apps can be different, since
the central nodes are different. By this, we can detect more malware with lower false positives.
In reality, because of the computation of intimacy between sensitive API calls and central nodes,
the efficiency of IntDroid is lower than MalScan. Therefore, MalScan can be used as the first line
of defense to filter most of malware, then IntDroid can be applied as the second line of defense to
discover more malware. In this way, we can achieve more efficient malware detection and save
more resources.

9 CONCLUSION

In this article, we present a novel approach to detect Android malware based on intimacy analysis
between sensitive API calls and central nodes within function call graphs. To avoid heavyweight
graph matching overheads, we treat a function call graph as a complex social network and conduct
centrality analysis to unearth central nodes. We implement an automatic system, IntDroid, and
the extensive evaluations show that our proposed system is able to maintain high accuracy and
scalability on Android malware detection.
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