
MalSensor: Fast and Robust Windows Malware Classification
HAOJUN ZHAO, Huazhong University of Science and Technology, China
YUEMING WU∗, Nanyang Technological University, Singapore
DEQING ZOU, Huazhong University of Science and Technology, China
YANG LIU, Nanyang Technological University, Singapore
HAI JIN, Huazhong University of Science and Technology, China

Driven by the substantial profits, the evolution of Portable Executable (PE) malware has posed persistent threats. PE malware
classification has been an important research field, and numerous classification methods have been proposed. With the
development of machine learning, learning-based static classification methods achieve excellent performance. However,
most existing methods cannot meet the requirements of industrial applications due to the limited resource consumption and
concept drift. In this paper, we propose a fast, high-accuracy, and robust FCG-based PE malware classification method. We
first extract precise function call relationships through code and data cross-referencing analysis. Then we normalize function
names to construct a concise and accurate function call graph. Furthermore, we perform topological analysis of the function
call graph using social network analysis techniques, thereby enhancing the program function call features. Finally, we use a
series of machine learning algorithms for classification. We implement a prototype system named MalSensor and compare it
with nine state-of-the-art static PE malware classification methods. The experimental results show that MalSensor is capable
of classifying a malicious file in 0.7 seconds on average with up to 98.35% accuracy, which represents a significant advantage
over existing methods.

CCS Concepts: • Security and privacy → Malware and its mitigation.

Additional Key Words and Phrases: Malware Semantic Analysis, Centrality, Disassembly

1 INTRODUCTION
Malware is an umbrella term that describes any software, firmware, or code intended to perform a malicious
unauthorized process that will have an adverse impact on the confidentiality, integrity, or availability of a
system [15]. As the most widely used operating system in the world, Windows has a huge user base. However,
due to the wide range of software sources and the open-use environment of Windows, its users security has
long been threatened by malware. Therefore, the analysis and classification of PE malware have always been a
significant research field.

∗Corresponding author

Authors’ addresses: H. Zhao and D. Zou are with National Engineering Research Center for Big Data Technology and System, Services
Computing Technology and System Lab, Hubei Engineering Research Center on Big Data Security, School of Cyber Science and Engineering,
Huazhong University of Science and Technology, Wuhan, 430074, China; emails: haojunzhao@hust.edu.cn, deqingzou@hust.edu.cn; Y. Wu
and Y. Liu are with Nanyang Technological University, Singapore; e-mails: wuyueming21@gmail.com, yangliu@ntu.edu.sg; H. Jin is with
National Engineering Research Center for Big Data Technology and System, Services Computing Technology and System Lab, Cluster and
Grid Computing Lab, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China;
e-mail: hjin@hust.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2024 Copyright held by the owner/author(s).
ACM 1557-7392/2024/8-ART0
https://doi.org/10.1145/3688833

ACM Trans. Softw. Eng. Methodol.

https://orcid.org/0000-0003-0848-9528
https://orcid.org/0000-0002-1515-3558
https://orcid.org/0000-0001-8534-5048
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0002-3934-7605
https://doi.org/10.1145/3688833
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3688833&domain=pdf&date_stamp=2024-08-24

0:2 • Haojun Zhao, Yueming Wu, Deqing Zou, Yang Liu, and Hai Jin

The classification methods of PE malware are generally divided into static analysis-based and dynamic analysis-
based [19]. Compared with dynamic analysis, static analysis has wider practical applications in large sample
sizes and heavy task processing. In recent years, with the development of machine learning, learning-based
malware classification methods [19, 53] are achieving increasingly excellent performance. Compared with the
traditional rule-based or heuristic-based methods, the machine learning-based malware classification methods
can undoubtedly better deal with new malware or unsigned variants due to its inherent generalization.

Learning-based classification methods can be divided into three categories based on how features are used:
image-based, binary-based, and disassembly-based. Image-based malware classification work usually converts
binary file streams into fixed-width grayscale image and then combines image classification algorithms for
malware classification. For example, methods in [6, 10, 45, 55] represent the binary content of the PE file as a
gray scale image and apply image classification techniques to analyze it. However, image-based classification is
generally limited in accuracy and scalability when faced with large-scale malware classification tasks in complex
real-world environments [9]. Moreover, because of the continuous evolution of malware, image matching
algorithms cannot make good use of existing malware information to process newer malware well [39]. With
the development of natural language processing (NLP), some research [7, 48, 50] convert PE files into binary
sequences as text and adopt NLP sequence models to solve the family classification problem. Nevertheless, these
methods cannot reflect the semantic information of the program as it does with natural language text, because
the instructions execution of the program is not a sequential model. Research [7, 12, 36, 46] disassemble malware
raw files to extract opcodes and some work [6, 49] utilizes Application Program Interface (API) call frequency
for malware analysis. However, they all lack the deep mining of program semantic information. In order to
understand program semantic information more comprehensively, some researchers find it is an efficient way to
combine program execution logic with graphs. For example, Kong et al. [33] abstract malware into an attribute
function call graph (AFCG), and then learn malware distance metrics to distinguish different AFCGs. Similarly,
Yan et al. [58] extract an attribute control flow graph (A-CFG) of the program by disassembling and applying
graph analysis to complete malware classification. However, CFG matching is time-consuming and may not
generalize well, potentially affecting classification accuracy and limiting large-scale applicability.

Ma et al. [39] conduct the first large-scale and systematic empirical study on learning-based PE malware
analysis methods. Through numerous experiments and discussions with security companies, they find that
existing learning-based methods are easily hampered in industrial applications. The main limitations restricting
the industry application of existing malware classification research are the precision, the predicting time, and
resource consumption. The first two factors decide the user experience, and the resource consumption decides
what kind of devices can the methods be deployed on. Some devices like gateway must deploy lightweight
malware detection due to their inherent resource constraints and traffic speed requirements. As a concrete
example, some products need to meet the requirements of running without GPU, prediction time less than 0.1s,
and accuracy higher than 93%. However, in their study, almost all methods failed to meet these requirements
simultaneously. They reveal that future researches tend to explore robust and lightweight models with high
prediction accuracy and consider malicious semantic features to better deal with rapidly evolving malware
families and unknown malware. Unfortunately, most of the existing researches fail to meet these needs.

To meet the requirements of practical applications, we aim to propose a lightweight, accurate, and robust
classification method. Given the importance of semantic analysis and the effectiveness of graph structures, we
utilize function call graphs for malware analysis. Therefore, we need to address two main challenges:

• Challenge 1: How to apply precise and fast static analysis to retain complete program semantics for accurate
malware analysis?

• Challenge 2: How to design succinct yet effective graph analysis for scalable malware analysis?

ACM Trans. Softw. Eng. Methodol.

MalSensor: Fast and Robust Windows Malware Classification • 0:3

To address the first challenge, we focus on capturing contextual and semantic features of malware for classifica-
tion. We know that the assembly instruction sets of different CPU architectures are different, and the disassembly
decorated names generated by the same function using different function calling conventions differ as well.
These factors affect the accuracy of classification. On the one hand, when classifying large-scale malware, sample
sources are highly complex. The same upper-level function of the same family samples running on different
systems may have different function decorated names after compiling. On the other hand, the same malicious
sample may also run in systems with different architectures and has different function decorated names of the
same upper-level function. For example, the new botnet Chaos attacks Intel, ARM, and other embedded system
architectures such as MIPS simultaneously. However, for all we know, no research work has paid attention to
these issues. To mitigate the issue, we implement a custom static analysis module including a decorated name
peeler to eliminate these differences. In this way, we can extract more precise function call graphs and perform
better in complex practical application environments.

To tackle the second challenge, we treat a function call graph as a social network and perform a centrality
analysis to retain the graph details. Some work [13, 27] has attempted to apply social network analysis to PE
malware analysis, but they only try to analogize the macroscopic attributes of malicious programs to social
networks, using social network attribute analysis methods to solve the problem. However, we believe that
reverse-mapping the social network to the fine-grained function call graph of the program is more effective. Each
function in the program is analogous to the user node in a social network, and the call relationships between
functions are analogous to the user relationship in this social network. Therefore, the function call graph can be
viewed as a social network graph structure. Centrality concepts are first proposed in social network analysis, and
their original purpose is to quantify the importance of a person in a network. Empirical studies [17, 41] have
demonstrated that centrality has the ability to reflect the structural characteristics of the network. Therefore, we
can leverage weighted centrality analysis to maintain the graph properties to achieve lightweight and effective
malware classification.

We implement a prototype system, namely MalSensor, and evaluate it in accuracy, efficiency, and robustness
compared with nine state-of-the-art static analysis-based malware classification works referenced in the re-
search [39] under the same conditions. The experimental results indicate that MalSensor is more accurate than
other methods, especially 3.7%-11% higher than similar methods. As for scalability, MalSensor consumes less
running time and it can be several times to thousands of times faster than other methods at different analysis
stages. As for robustness, our concept drift experiments verify that MalSensor is more robust than other methods
in the evolution of Windows applications.

In summary, the main contributions of our work are as follows:
• We propose an effective method for program semantic analysis based on function call graph. This method

generates concise and accurate function call graph through data and code cross-referencing, as well as
function name normalization. Additionally, it enhances the features of function call graph using weighted
social network analysis.

• We design and implement a lightweight, accurate, and well-compatibility PE malware classification system
called MalSensor1, which can perform well on large-scale PE malware.

• We conduct extensive evaluations in terms of malware classification effectiveness and scalability. The
experimental results show that MalSensor achieves a 98.35% F1 score with the lowest resource overhead,
which is superior to the other nine state-of-the-art methods.

Paper organization. The remainder of the paper is organized as follows. Section II presents the preliminary
study on function decorated name and social network centrality. Section III introduces our system. Section IV

1https://github.com/johorun/MalSensor

ACM Trans. Softw. Eng. Methodol.

https://github.com/johorun/MalSensor

0:4 • Haojun Zhao, Yueming Wu, Deqing Zou, Yang Liu, and Hai Jin

reports the experimental results. Section V discusses future work. Section VI describes the related work. Section
VII concludes the present paper.

2 PRELIMINARY STUDY
This section presents the threat model and provides pertinent information on function decorated name and social
network centrality that enable the techniques that we present in this work.

2.1 Threat Model
In industrial scenarios, large-scale analysis of malware from complex sources is often required. Malicious samples
often have different families, timestamps, programming languages, and operating architectures (malware that
exploits a cross-system vulnerability may often run on different architectures, e.g., some worms exploiting HTTP
protocol stack). We aim to perform fast and efficient analysis on large-scale malware programs from complex
sources.

In order to illustrate our work more clearly, we clarify two concepts as follows: (1) In this paper, the input
malicious program is pure, that is, it does not use adversarial attack methods such as packing, adding fake
functions, hiding function imports, etc. All the work based on static analysis have a common inherent limitation,
that is, it is difficult to deal with various means of adversarial attack, resulting in misjudgments. We will detail
these limitations and mitigation methods in the Section 5 (such as attaching automatic unpacking model before
the preprocessing of our work). (2) We believe that the application requirements of static analysis-based malware
classification in the real world are broad, especially in terms of performance and resource consumption. In the
real world, there are many malware analysis application scenarios with tight computing resources. For example,
gateway devices are usually with limited computing resources. In order to ensure the use of intranet users, it is
necessary to deploy as lightweight and accurate security analysis modules as possible.

2.2 Function Call Decorated Name
We know that the same upper-level functions called by programs running on different CPU architectures, written
in different high-level languages, and using different function calling conventions may have different disassembly
function names. We find that this phenomenon changes the topology of the function call graph and affects the
function call graph comparison between different malware when conducting large-scale experiments. Below we
give the related concept definitions and intuitive explanations.

The function calling convention determines the push and pop rules for parameters when a function is called
and specifies the generation rules for the function decorated name. The function decorated name rules determine
which decorated name the compiler will use to uniquely rename functions when generating the executable file. It
ensures that the function names are uniquely identifiable when linking programs. However, the same top-level
function uses different function calling conventions and name mangling rules, and may get different actual
function names after program linking. The function name decorating rules of different calling conventions for
different programming languages(e.g., C and C++) are shown in Fig. 1.

Due to the complex environment of Windows, PE programs are usually generated with different programming
languages and compiler strategies. Therefore, the same function in different PE malicious files or in the same
malicious file running in different CPU architectures may have different decorated names. This results in different
decorated names for the same upper-level function being treated as separate functions during function call
analysis, which causes redundancy. In addition, this also happenswith overloaded functions, the same functionality
functions in different programming languages, etc.

This redundancy will not only affect the comparative analysis between function call graphs, but also cause an
explosion in the number of function call graph nodes in large-scale malware classification tasks and decrease

ACM Trans. Softw. Eng. Methodol.

MalSensor: Fast and Robust Windows Malware Classification • 0:5

Calling
Convention

C C++

__cdecl Leading underscore (_)
Leading underscore (?) and a trailing at

sign (@@YA) followed by parameter list

in symbolic abbreviated form

__fastcall

Leading and trailing at signs

(@) followed by a decimal

number representing the

number of bytes in the

parameter list

Leading underscore (?) and a trailing at

sign (@@YI) followed by parameter list

in symbolic abbreviated form

__stdcall

Leading underscore (_) and a

trailing at sign (@) followed

by the number of bytes in the

parameter list in decimal

Leading underscore (?) and a trailing at

sign (@@YG) followed by parameter

list in symbolic abbreviated form

thiscall

Leading underscore (?) and insert

sign(@) between the function name and

parameter list to lead the class name.

The start identifier of the parameter list

is different according to the properties of

the class: Public(@@QAE),

Protected(@@IAE), Private(@@AAE).

If const modification is used, they

become(@@QBE), (@@IBE),

(@@ABE).

Use "AAV1" if the argument type is a

reference to a class instance, and

"ABV1" for references to a const type.

Program
language

Fig. 1. Function name decorating rules of different calling conventions.

classification efficiency. However, to our knowledge, no related work mentions this. To validate our hypothesis, we
conduct a preliminary experiment. We randomly download 20,000 program samples in 2018-2021 with different
CPU architectures and programming languages from VirusTotal2 and Scoop3 and perform a disassembly analysis.
Through analysis and comparison, we find that if the function decorated name is converted to the original
upper function name after disassembly analysis, the number of external import functions will be greatly reduced
from 31,571 to 11,049. This affects the construction of the function call graph and significantly reduces the
dimensionality of the feature vectors generated during the classification stage, which effectively improves the
accuracy and speed of the classification process.

2.3 Centrality
A social network consists of a group of user nodes and the social relations between them. The nodes of the social
network graph represent user nodes, and the edges between the nodes represent the social relationships between
users. Social network centrality, as the most effective measure to show social network attributes, is widely used
in various fields, such as co-authorship network [37], transportation network [21], criminal network [14] and
achieves good effects. However, in the field of PE malware classification, no one has proved that the combination

2https://www.virustotal.com
3https://github.com/lukesampson/scoop

ACM Trans. Softw. Eng. Methodol.

https://www.virustotal.com
https://github.com/lukesampson/scoop

0:6 • Haojun Zhao, Yueming Wu, Deqing Zou, Yang Liu, and Hai Jin

G o z i I c e d I D n j r a t T r i c k b o t- 0 . 0 0 2
0 . 0 0 0
0 . 0 0 2
0 . 0 0 4
0 . 0 0 6
0 . 0 0 8
0 . 0 1 0
0 . 0 1 2
0 . 0 1 4
0 . 0 1 6
0 . 0 1 8
0 . 0 2 0

De
gre

e C
en

tra
lity

 of
 Vi

rtu
alQ

ue
ry 2 5 % ~ 7 5 %

 M e a n

(a) Degree of VirtualQuery

G o z i I c e d I D n j r a t T r i c k b o t
0 . 0 0 0 5

0 . 0 0 1 0

0 . 0 0 1 5

0 . 0 0 2 0

0 . 0 0 2 5

De
gre

e C
en

tra
lity

 of
 Vi

rtu
alQ

ue
ry 2 5 % ~ 7 5 %

 M e a n

(b) Degree of CreateSemaphoreW

G o z i I c e d I D n j r a t T r i c k b o t
0 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

0 . 0 5

De
gre

e C
en

tra
lity

 of
 Vi

rtu
alQ

ue
ry 2 5 % ~ 7 5 %

 M e a n

(c) Closeness of VirtualQuery

G o z i I c e d I D n j r a t T r i c k b o t0 . 0 0 0
0 . 0 0 1
0 . 0 0 2
0 . 0 0 3
0 . 0 0 4
0 . 0 0 5
0 . 0 0 6
0 . 0 0 7

De
gre

e C
en

tra
lity

 of
 Vi

rtu
alQ

ue
ry 2 5 % ~ 7 5 %

 M e a n

(d) Closeness of CreateSemaphoreW

Fig. 2. The distribution of degree centrality and closeness centrality of two key API calls (i.e., VirtualQuery and Create-
SemaphoreW) in four families (i.e., Gozi, IcedID, njrat, and Trickbot)

of social network and function call graph is effective for malware classification. In the following, we give the
definition of related concepts and the method basis.

Centrality measures the importance of each node in a social network under a certain standard and reveals
the deep structural logic of the social network. According to different standards, it can be divided into degree
centrality, closeness centrality, betweenness centrality, eigenvector centrality, katz centrality, harmonic centrality,
etc. We believe that a program can be regarded as a complete social network, the functions in the program are
the user nodes of the social network, and the calling relation between the functions is the social relationship
between users. Therefore, we believe that the social network centrality theory can be used to analyze a program.
By analyzing the centrality of each function node in the function call graph of a program, we can highlight the
importance of functions at different topological locations in the global graph structure, thereby deepening the
semantic features of the program. This is very useful for extracting key information from large function call
graphs. In order to confirm our idea, we conduct experiments to compare the centrality distributions of the same
function in different malware families. We randomly select 3,000 malicious samples from 6 different families from

ACM Trans. Softw. Eng. Methodol.

MalSensor: Fast and Robust Windows Malware Classification • 0:7

PE File Function Name

Optimization

Function Call

Relationship

List

Key Function

List

Global

Function

Call Graph

Function

Call Graph

with

Centrality

Machine Learning

Classifier

Malware

Family

Static Analysis Centrality Analysis Classification

Program

Analysis

Fig. 3. System architecture of MalSensor

the dataset MalwareBazaar (shown in Section 4) and perform function call graph extraction on them. Then, we
perform the function call centrality analysis on some key external import functions to obtain the function call
centrality distribution of different families. The experimental results are shown in Fig. 2. Due to page limitations,
we only show the value distributions of degree and closeness centrality (as defined in Section 3.3) of two key APIs
(VirtualQuery and CreateSemaphoreW) in four families. In the figures, the abscissa represents four families, and
the ordinate is the API centrality value corresponding to each sample. We can see that after centrality processing,
the API centrality value distributions of different malware families are quite different, which shows that centrality
processing can effectively describe the importance of a function in different malware families.

3 SYSTEM ARCHITECTURE

3.1 System Overview
MalSensor operates in three phases: static analysis, centrality analysis, and classification. As shown in Fig. 3,
MalSensor first performs a quick scan and disassembly analysis on the target program. Using the function cross-
reference information and external import function information, for each program, MalSensor will get a function
call relationship list and a list of key functions (defined in Section 3.2). Then, the function name optimization
module renames all function names in the two lists and outputs them for centrality analysis. In the centrality
analysis stage, MalSensor converts all function call relationships in the program into a graph for storage and uses
a series of graph-based centrality algorithms to calculate the node centrality of the functions in the key function
list. After this, in the classification stage, all centrality values of the key functions are embedded in the feature
vector for representing a malware file, and finally, a variety of classification algorithms are used to classify the
malware family of this malware file. To better illustrate the detailed procedures involved in MalSensor, we give a
simple example in Fig. 4.

3.2 Static Analysis
In this paper, we aim to propose a malware classification system based on semantic information which requires
high efficiency in program analysis. To this end, the static analysis component of MalSensor is designed as two
parts of precise program analysis and function name optimization to capture malware features as well as possible.

Precise Program Analysis. We use the disassembly tool IDA Pro [2] for secondary development to complete
the program analysis module of MalSensor. Most existing research on static analysis-based malware classification

ACM Trans. Softw. Eng. Methodol.

0:8 • Haojun Zhao, Yueming Wu, Deqing Zou, Yang Liu, and Hai Jin

55 8B EC 83 EC 28 89 4D

FC 8B 45 08 8B 48 10 3B

4D 0C 73 0A 68 98 4B 41

00 E8 D4 0D 00 00 8B 55

push ebp

mov ebp, esp

sub esp, 28h

mov [ebp+var_4], ecx

mov eax, [ebp+arg_0]

mov ecx, [eax+10h]

cmp ecx, [ebp+arg_4]

LoadLibrary

PathGetArgs

DuplicateToken

UnlockFile

GetBuffer

CloseHandle

CreateBitmap

OnSetFont

Callee Function:

UnlockFile

Caller Function:

sub_1030B60

sub_103ABE0

Callee Function:

initterm

Caller Function:

tmainCRTStartup

… …

Key Function(e.g.LoadLibrary)

Key Function(e.g.UnlockFile)

… …

0.001492537313

0.005291005291

0.0036227224000.001890359168

0.001814882032
0.000568828213

Key Function List

Function Call

Relationship List

(0,0,…, 0.005291…,…,0.001492…,…)

Disassembly

PE File

Feature Vector

Key Functions […,UnlockFile,…,LoadLibrary,…]

PEFile Family

File A trojan

Function Call Graph

Function Call Graph with Centrality

Results

Classification

Fig. 4. A simple example to describe the different phases in MalSensor

.text:00401138 ; =============== S U B R O U T I N E =======================================

.text:00401138 push ebp

...

.text:00401158 lea eax, TlsGetValue

...

.idata:00419028 ; LPVOID __stdcall TlsGetValue(DWORD dwTlsIndex)

.idata:00419028 extrn TlsGetValue ; DATA XREF:

Fig. 5. Function call through data cross-references indirectly.

often focuses on strings [8], bytes [34, 48, 50], opcodes [7, 12, 36, 46], and API call frequency [6, 49], etc., but lack
the mining of program semantic information. We believe that the semantic features of malware are the key to
distinguishing their families. Therefore, we disassemble the program and perform cross-reference analysis on all
functions to obtain a function call network for classification. This function call network lays the foundation of
efficient and fast centrality analysis for the key functions.

In disassembly analysis, calls between code basic blocks are embodied in the form of address jumps, and we
can analyze these jumps using the concept of cross-reference. According to the purpose of executing jumps,
cross-references can be divided into code cross-references and data cross-references. A code cross-reference is
used to indicate that an instruction transfers control to another instruction, including three types named ordinary
reference, call reference, and jump reference. Data cross-references are used to track the data accessing within
a program, and the three most commonly encountered types of data cross-references are read cross-reference,
write cross-reference, and offset cross-reference.

Most function call relations in a program can be obtained by code cross-reference, but some function calls
invoked indirectly through data cross-reference are always overlooked. A typical situation is that the address of a
function is not directly used as the operand of the call instruction, but indirectly obtained by the call instruction
through a register or other means. Although the disassembly analysis will determine that this is an offset data
cross-reference, the function call process and control flow transition indeed occur. As shown in Fig. 5, the
function start calls the API TlsGetValue by storing the address of the TlsGetValue in eax register and using the call
instruction to jump to the address pointed to by eax. In this case, since the operand of the call instruction is the

ACM Trans. Softw. Eng. Methodol.

MalSensor: Fast and Robust Windows Malware Classification • 0:9

.text:00404190 ; =============== S U B R O U T I N E =======================================

.text:00404190 ; int __stdcall sub_404190(LPCSTR lpString, int)

... ...

.text:004041B5 push eax ; Size

.text:004041B6 call

... ...

.text:00465C66 ; =============== S U B R O U T I N E =======================================

cdecl (size_t Size)

.text:00465C66

.text:00465C66 Size = ptr 4

.text:00465C66

.text:00465C66 ds:__

endp

...

cdecl size_t Size)

.idata:0046A150 extrn __

.idata:0046A150 ; DATA XREF:

Fig. 6. Function call through code and data cross-references.

value in the register, the disassembly analysis will judge it as a dynamic call with an uncertain address, so that
the control flow direction cannot be directly analyzed through code cross-references. In reality, this is a static
call, and the actual function address can be obtained through data cross-reference, so as to determine the calling
relationship. This is because this indirect calling must first obtain the actual destination function address through
data reference, and then indirectly input it to the call instruction by register or other ways. In another case, the
call instruction often makes a cross-section invoke, which is often done through code and data cross-references.
Fig. 6 shows a function call that jumps a long address between sections through data cross-references. In fact,
this is a typical case produced by link incrementally. Microsoft documentation describes link incrementally as
an option enabled by default in MSVC linker, and it may add jump thunks to handle the relocation of functions
to new addresses. When compiling an incrementally linked program, the compiler creates a jump stub for all
functions. All the invoke procedures will jump to the stub and then get the real function address indirectly. In
this way, by grouping the jump stubs together, only one memory page needs to be rewritten when the functions
are relocated. Jump stubs imply that one function calling requires two cross-references and a cross-segment
invocation. However, relying solely on code cross-references can only obtain the stub name and not the decorated
name of the external static function. This can lead to redundancy when analyzing samples in bulk, as the external
imported function names cannot be unified across the samples. Considering the above situation, MalSensor
uses data cross-references to assist in extracting function call relationships. Specifically, MalSensor begins by
scanning the .text segment and obtains preliminary function call information through code cross-reference. Then,
it conducts data cross-reference analysis on all function addresses within the valid addresses of the .text segment
and .idata segment in program. This data cross-reference analysis helps to retrieve the source addresses that
reference the function addresses. The caller functions are determined based on the functions to which the source
addresses belong, thus establishing the indirect function call relationships. Since our data cross-reference analysis
focuses solely on function addresses, it avoids false positives by not mistakenly identifying normal data usage as
function calls. MalSensor captures the easily overlooked call behaviors and draws the precise and meticulous
global function call graph by combining code cross-reference and data cross-reference.

External imported functions of a program can reflect its critical behaviors and reveal behavioral differences
among samples during extensive sample analysis. Therefore, understanding how a program utilizes external
imported functions is considered highly important. MalSensor extracts the external functions imported by the

ACM Trans. Softw. Eng. Methodol.

0:10 • Haojun Zhao, Yueming Wu, Deqing Zou, Yang Liu, and Hai Jin

File A

File B

SymGetModuleBase

OpenServiceA

SymGetModuleBase

OpenService

SymGetModuleBase

OpenService

SymGetModuleBase64

OpenServiceW

Function List

Fig. 7. Changes in key function list by function name optimization.

target program and categorizes them by function library. Since not all external import functions are actually
invoked by the program, combining the global function call graph, we keep the focus on those external functions
that do be invoked (we call them ‘key functions’ of the program) and analyze their centralities later.

Function Name Optimization. Apart from the original program analysis module, MalSensor has a built-in
peeler for function decorated names. As we know, depending on the compilation strategy and programming
language, different function calling conventions may be adopted when a function call occurs. Since different
function calling conventions use different name decorating rules when programs are linked, the same top-level
function may get different decorated names in different PE files. Therefore, even if two programs use the same
external function, they probably get different analysis results in disassembly. This may have a negative impact on
the function feature analysis between samples. Accordingly, in order to streamline the function call graph and
mitigate the curse of dimensionality when generating the feature vector from key functions, MalSensor peels the
function decorated name for standardization.

Currently, there are mainly five calling conventions: _cdecl, _fastcall, _stdcall, _thiscall, and _naked call.
Different function calling conventions adopt different naming formats and prefix modifiers (such as ‘_’, ‘?’)
between different programming languages, and use ‘@’ or ‘@@’ to define the argument lists and class or library
name of a function. MalSensor analyzes the function name decorating rules of the five calling conventions and
developed corresponding analysis methods based on these rules, which provide a bridge for the unified analysis
of function calling relations in programs from different platforms and languages.

Furthermore, we believe that functions with extremely similar names are likely to be functionally consistent, for
example, the windows API GetMessageA and GetMessageW, where A and W differ only in whether the processing
string is in ANSI or UTF-16 format. Function overloading is also a typical case. Due to different function parameter
lists, the decorated names of the same overloaded functions are different. To uniformly rename similar functions
and reduce the redundant nodes of the program function call network, MalSensor matches each function to all
other functions by the maximum substring and renames the function to the largest substring whose change

ACM Trans. Softw. Eng. Methodol.

MalSensor: Fast and Robust Windows Malware Classification • 0:11

__imp_??YCString@@QAEABV0@PBD@Z

__imp_??YCString@@QAEABV0@ABV0@@Z

… …

CString::operator+=

… …

Global Function Call Graph

Fig. 8. Changes in global function call graph by function name optimization.

character is up to n (n=2, details are in Section 4.3). Specifically, MalSensor compares the target function name
with other functions in the sensitive function list, starting from the beginning of the name and proceeding
character by character until the comparison is completed. If the comparison is completed and there is a completely
identical function name in the sensitive function list, and the length of this function name is less than or equal to
the number of characters in the target function name plus 2, then this function name is merged into the target
function name. This allows Malsensor to ignore the name differences caused by individual decorated characters
and aggregate functions with the same function together (as shown in Fig. 7 and Fig. 8).

3.3 Centrality Analysis
Through the static analysis phase, we obtain the function call graph and the list of the key functions of a program,
and in the centrality analysis phase, we focus on extracting the centralities of the key functions in the program.

In social network analysis, centrality measures reflect the topological properties of different user nodes in a
network. We observe that social networks bear some similarity to function call graphs, where social network
users can be likened to function nodes in the function call graph. Therefore, using different centrality measures
can quantify the topological characteristics of function nodes in the function call graph. In malware classification,
different malware families exhibit different behaviors, including different API call patterns. Thus, using social
centrality can enhance or weaken the importance of different APIs, thereby highlighting the API call characteristics
of different malware families to achieve feature enhancement. Common centrality measures in social network
analysis include degree centrality, Katz centrality, and betweenness centrality, among others. Different centrality
measures calculate the topological characteristics of nodes from different perspectives. Since we need to propose
a lightweight method, we abandon high computational complexity centralities like betweenness and select the
centralities with reasonable computation speed. We will evaluate their effectiveness in Section 4.4.

For a given graph � := (+ , �) with |+ | nodes and |� | edges, the selected centrality measures are as follows:
Degree Centrality [18] is defined as the number of links incident upon a node (i.e., the number of ties that

a node has). The degree can be interpreted in terms of the immediate risk of a node for catching whatever is
flowing through the network. The degree centrality of a node, is defined as 346(E). Thus it can be normalized by
dividing by the maximum possible degree in � , where |+ | is the number of nodes in � (1).

�3 (E) =
346(E)
|+ | − 1

(1)

ACM Trans. Softw. Eng. Methodol.

0:12 • Haojun Zhao, Yueming Wu, Deqing Zou, Yang Liu, and Hai Jin

Closeness Centrality [18] is the average length of the shortest path between the node and all other nodes in the
graph. Thus the more central a node is, the closer it is to all other nodes. For a node E and the remaining nodes C
in � , the standardized form is as (2), where 3 (C, E) is the distance between nodes E and C .

�2 (E) =
|+ | − 1∑
C 3 (C, E)

(2)

Harmonic Centrality [41] is the sum and reciprocal operations in the definition of closeness centrality. For
a node E and the remaining nodes C in � , the standardized form of harmonic centrality of E is as (3), where
1/3 (C, E) = 0 if there is no path from C to E .

�ℎ (E) =
∑

C≠E
1

3 (C,E)
|+ | − 1

(3)

Katz Centrality [31] computes the relative influence of a node within a network by measuring the number
of the immediate neighbors (first degree nodes) and also all other nodes in the network that connect to the
node under consideration through these immediate neighbors. The connections made with distant neighbors are
penalized by an attenuation factor U . Its standardized form is defined as (4), where � is the adjacency matrix of
the graph, the element at location (8, 9) of �: is the sum of : degree connections between nodes 8 and 9 .

�: (E) =
∞∑
:=1

∑
C

U (�:)EC (4)

Furthermore, in order to explore the possibility of using combinatorial centrality, we construct two artificial
centrality measures named Average Centrality and Concatenate Centrality. First, we assume a set of different
centrality algorithms denoted as {�} and MalSensor considers four individual centralities: Degree Centrality, Katz
Centrality, Closeness Centrality, and Harmonic Centrality. The two artificial centralities definitions given by us are
as follows:

Average Centrality is the average value of {�}, which reflects the mean level of different centrality algorithms.
Its standardized form is defined as (5).

�0E6 (E) =
∑

� ��

20A3 (�) (5)

Concatenate Centrality is the direct sum of {�}. In simple terms, it is directly concatenated by centrality
measures in � and its standardized form is defined as (6).

�2>=20C (E) = (�3 ,�: ,�ℎ,�2 , ...) (�8 ∈ {�}) (6)
In short, the static analysis phase generates the function call graph of a program and then we compute the

centralities of all functions in the call graph. Thus, we generate the feature vector of the program using centrality
values. Each of the key functions is mapped to one dimension of the feature vector. Therefore, the centrality
values of the key functions within the function call graph are filled into the corresponding positions of the feature
vector, while the others not in the call graph are denoted as 0.

The above process can be described by a strict mathematical definition as follows:
We assume that all centrality algorithms form the set {�}, and n key functions defined by us form the

set{�:4~}. For a given program % , we suppose +0;; = (E1, E2, ..., E<) is the list of all< functions in % . To P, we
have an m-diagonal matrix �24=CA0;8C~ for ∀24=CA0;8C~ ∈ {�}. The element of �24=CA0;8C~ denoted 28 (0≤8≤<,8∈/) is
the centrality value of E8 in the function call graph. Therefore, after centrality processing, the function vector of

ACM Trans. Softw. Eng. Methodol.

MalSensor: Fast and Robust Windows Malware Classification • 0:13

the program P is expressed as +0;;� = (21E1, 22E2, ..., 2<E<) and then we get the feature vector of % is +�40CDA4 =
(21E1, 22E2, ..., 2=E=) (E8 ∈ {�:4~}).

To enhance the effectiveness and distinctiveness of the feature vector, we assign different initial weightsF8

to E8 . We conduct statistical analysis on a large-scale of malicious samples and perform weight ranking of APIs
based on their frequency of usage. According to this, we assign different weights (0<F8<1) to each key function
E8 . This will accentuate the influence of these functions in the feature vector. Finally, we get the feature vector of
% is +�40CDA4 = (F121E1,F222E2, ...,F=2=E=) (E8 ∈ {�:4~}).

3.4 Classification
In the final stage, we use classification algorithms to classify malware. We test 5 machine learning algorithms
and find that Random Forest work better. To be more convincing, we also conduct tests on four deep learning
algorithms and also achieve good performance. Particularly, in the evaluation section, if there is no special note,
we adopt the Random Forest for experiments.

4 EXPERIMENT EVALUATION
In this section, we address the following research questions to evaluate the superiority of MalSensor.

RQ1: How effective is the function name optimization module of MalSensor? (§4.3)
RQ2: How well MalSensor performs on classification accuracy? How does it compare to state-of-the-

art malware classification methods? (§4.4)
RQ3: How much faster is MalSensor than state-of-the-art malware classification methods? (§4.5)
RQ4: Is MalSensor more robust than state-of-the-art malware classification methods? (§4.6)

4.1 State-of-the-Art Methods
In order to verify the superiority of MalSensor over other works, we need to conduct extensive comparative
experiments with current state-of-the-art methods. The comparative methods should cover various types of
methods, including not only disassembly-based methods but also image-based and binary-based.

Research [39] aims to systematically study the performance of different PE malware classification works, and
they select and reproduce nine state-of-the-art learning-based PE malware family classification methods for
empirical study, which comprehensively represent the current state of the PE malware classification study field.
The nine state-of-the-art works are as follows:

• ResNet-50 [51] is an image-based malware classification method using the ResNet network. It is fairly
efficient and capable of capturing more malware information.

• VGG-16 [55] is a high-fitting capability image-based method using VGGNet.
• Inception-V3 [55] is the first work to apply Inception-V3 to malware classification using image conversion

from binary.
• IMCFN [55] stands for image-based malware classification using Fine-tuned Convolutional Neural Net-

work.
• CBOW+MLP [48] is a binary-based malware family classification approach combining Word2Vec [42]

and the Muli-Layer Perception (MLP).
• MalConv [50] is the first end-to-end binary-based malware analysis model that allows the entire malware

to be taken as input.
• MAGIC [58] is a disassembly-based method for classifying malware by extracting program attribute

function call graph.
• Word2Vec+KNN [7] is a representative work based on disassembly extracting malware opcode and

processing with Word2Vec.

ACM Trans. Softw. Eng. Methodol.

0:14 • Haojun Zhao, Yueming Wu, Deqing Zou, Yang Liu, and Hai Jin

• MCSC [46] extracts malware opcode sequences and encodes them based on SimHash [40]. By converting
SimHash value to the gray scale, it performs an image classifier to classify malware.

These nine state-of-the-art works are all competitors in our comparative experiments below.

4.2 Dataset and Configurations
4.2.1 Dataset. We use three datasets for our experimental evaluation: Mal-15000 [5], Malwarebazaar [39], and
MalwareDrift [39]. To ensure the purity and validity of the analyzed samples, we utilize PyPackerDetect [47] to
perform packing detection on the malicious samples with six determined strategies (PEID/Known packer section
names/Non-standard entrypoint/Threshold of non-standard sections reached/Imports number/Overlapping
entrypoint).

Mal-15000. To further verify the MalSensor static analysis capability and optimization effect, we download the
2018-2021 malicious PE sample compression packages with tens of thousands of samples from virusshare [5].
According to the hash value sorting, we randomly screen 15,000 unpacked malicious samples with different
architectures and families as the dataset Mal-15000.

Malwarebazaar.
Ma et al. [39] respectively download 1,000 recently uploaded malware samples from each of the top 6 malware

families in recent years from the MalwareBazaar website [3] to construct the dataset named Malwarebazaar. In
order to ensure the validity of the dataset, they eliminate samples in non-PE format and then utilize AVClass [52]
and Joe Security [38] to check the labels of the samples and then cull noise samples with inconsistent labels from
different websites. Finally, MalwareBazaar consists of 3,971 PE malware samples with six family labels (as shown
in Table 1).

Table 1. Details of MalwareBazaar and MalwareDrift Datasets.

Dataset Family Name Number of Samples Total

MalwareBazaar

Gozi 767

3971

GuLoader 589
Heodo 214
IcedID 578
NjRat 942

Trickbot 881

MalwareDrift

Bifrose 278

3125

Ceeinject 548
Obfuscator 204
Vbinject 1032
Vobfus 282

Winwebsec 487
Zegost 294

MalwareDrift. Wadkar et al.[57] reveal that code changes show up as sharp spikes in the j2 timeline statistic.
Similarly, the evolution of a malware family can be understood like as code changes. Ma et al. [39] use the dataset
and the corresponding j2 timeline statistic graph from the study [57] to determine the evolution period time of
each malware family and divide each family samples into the pre-drift or post-drift. Through the above steps, the
research [39] generates the dataset MalwareDrift containing 3125 samples with 7 families as shown in Table 1
which are used for testing the impact of time lapse on the classification methods. The samples in pre-drift and
post-drift are respectively before 2015 and after 2020.

ACM Trans. Softw. Eng. Methodol.

MalSensor: Fast and Robust Windows Malware Classification • 0:15

0

681

1172

1857

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1 2 3

Number

Nunmer of Normalized Function

97.83 97.73 97.79

88.23

82

84

86

88

90

92

94

96

98

100

0 1 2 3

F1(%)

F1 Value of Classification

Fig. 9. Normalized functions number and classification F1 values corresponding to n.

4.2.2 Configurations. Following the experimental Configurations of the research [39] on nine representative
works, we evaluate MalSensor using 10-fold cross-validation and use the macro average metrics of False Positive
Rate (FPR), Accuracy (A), Precision (P), Recall (R), and F1-Score (F1) to demonstrate the effectiveness. Especially, to
ensure the experiment reliability, the model parameters of the MLP, VGG-16, ResNet-50, and Inception-V3 used
by MalSensor are consistent with the configurations in research [39]. All the experiments are conducted on a
server with 2 Intel Xeon Platinum 8260 CPUs @2.30GHz and 4 Nvidia GeForce RTX2080 Ti GPUs (11GB), and
512GB RAM.

It is worth noting that the experimental performance of the nine state-of-the-art works in the
research [39] are all reproduced to their respective best results.

4.3 Static Analysis Effectiveness
In Section 3.2, we propose to use maximum substring matching for function normalized optimization. Therefore,
we first determine the optimal value of n experimentally. For the consistency of subsequent experiments, we
use the dataset MalwareBazaar for experiments. Specifically, after obtaining malware function call graphs and
the sensitive function list, we prune the function names by varying the size of n and then perform malware
classification using KNN. The number of functions normalized by different values of n and the corresponding
F1 value of their classification results are shown in Fig. 9. From the experimental results, we can see that when
n is 1 or 2, the classification performance is stable, which is similar to the performance of disabling function
name optimization. When n is greater than 2, the classification accuracy drops significantly. This is because
irrelevant functions may be aggregated together as n increases, negatively affecting classification performance. In
addition, when n is 2, the number of normalized functions is larger than n is 1, which can bring lower overhead
for subsequent processing. Therefore, we determine that the optimal n value is 2. This is also in line with common
sense, as we find that most of the redundant function names come from the difference in suffixes, that is, the
suffixes(e.g., A, W, 32, 64, etc.) are used to distinguish the different processing objects.

Then, we evaluate the effectiveness of the function name optimization module (n=2) for malware analysis.
Under the same experimental conditions, we compare the analysis results obtained by MalSensor with function
name optimization enabled or not. The differences brought by these two analyses are visually demonstrated in
terms of the number of key functions (i.e., dimension of feature vectors in classification) and the learning model
training time, as shown in Table 2 and Fig. 10. Furthermore, when generalizing to a wider range of real-world
scenarios, the benefits of this optimization will be more obvious. We perform the same comparison experiment

ACM Trans. Softw. Eng. Methodol.

0:16 • Haojun Zhao, Yueming Wu, Deqing Zou, Yang Liu, and Hai Jin

12.8 12.9
11.4

12.8

18.4 18.7 18.5 18.7

0

2

4

6

8

10

12

14

16

18

20

Degree Katz Harmonic Closeness

Time(ms) KNN

Optimization Enable Optimization Disable

1.96 1.93

1.63

1.94

2.4 2.39 2.37
2.23

0

0.5

1

1.5

2

2.5

3

Degree Katz Harmonic Closeness

Time(s) Random Forest

Optimization Enable Optimization Disable

Fig. 10. Training time of different machine learning algorithms with different configurations on dataset MalwareBazaar.

on dataset Mal-15000, which has more sample counts, file types, and architectures, and the results are shown in
Table 2 and Fig11.

Table 2. Number of key functions with optimization enabled or disabled.

Dataset Optimization
Disable

Optimization
Enable Decline(%)

MalwareBazaar 5243 4071 22
Mal-15000 24625 12628 49

From the experimental results, there are a total of 5243 key functions obtained after disassembly analysis on
the dataset MalwareBazaar. After the optimization module is turned on, the number drops to 4071, which reduces
redundancy. As for dataset Mal-15000, the function number drops from 24625 to 12628, with a more obvious
effect. This has a positive effect on accurately building function call graphs of each sample and data processing
such as feature extraction and learning model training. To verify the effectiveness of the optimization module
for model learning, we select two machine learning algorithms: KNN (3-NN) and Random Forest, and use four
centralities (degree, katz, harmonic, closeness) for model training. Benefiting from the reduction of key functions
(i.e., the reduction of the dimension of feature vectors), the speed of model training improves a lot. On the dataset
MalwareBazaar, before and after the optimization is turned on, the training time of KNN based on all centralities
is shortened by at least 31%, and the KNN with harmonic centrality has the most significant benefit, which is
shortened by 38%. For the Random Forest algorithm, the training time of the model is shortened by more than
13%, of which the training time combined with harmonic is reduced by 31%. One possible reason for the faster
training speed of harmonic is that the data processed by harmonic is less discriminative and easier to calculate.
Later we can see that the classification effect based on harmonic is indeed weaker than other centralities. When it
comes to dataset Mal-15000, the training time is reduced by 50-60%, and the optimization effect is more obvious.
This is because in large-scale data, with the growth of vector dimension, the training overhead will increase
greatly.

ACM Trans. Softw. Eng. Methodol.

MalSensor: Fast and Robust Windows Malware Classification • 0:17

0.16 0.16
0.14 0.15

0.39 0.38
0.36

0.38

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Degree Katz Harmonic Closeness

Time(s) KNN

Optimization Enable Optimization Disable

24.2 24.6
19.5

23.2

50.4 48.8 48.6 47.5

0

10

20

30

40

50

60

Degree Katz Harmonic Closeness

Time(s) Random Forest

Optimization Enable Optimization Disable

Fig. 11. Training time of different machine learning algorithms with different configurations on dataset Mal-15000.

4.4 Classification Effectiveness
To evaluate the effect of our optimized method on malware family classification, we conduct experiments on
the MalwareBazaar dataset. Specifically, we evaluate the performance of our work using nine machine learning
algorithms (including deep learning) for malware family classification. Subsequently, we compare our work with
nine state-of-the-art malware classification works under the same experimental conditions.

We first perform five sets of classification experiments using machine learning algorithms KNN(1-NN, 3-NN),
SVM, Decision Tree, and Random Forest combining different centralities (degree/katz/harmonic/closeness as
formulas 1-4). To provide more convincing and comprehensive results, we also employ various deep learning
models, including MLP, VGG-16, ResNet-50 and Inception-V3, for classification. In particular, to prepare the
feature vector for input into the CNN models, we reshape the one-dimensional feature vector generated by
previous analysis to match the width of the CNN input. Since centralities are often combined to measure the
importance of nodes in a network, we add two additional experiments by artificially constructing the integrated
centrality (average centrality/concatenate centrality), as shown in formulas 5, 6. In addition, to minimize the
randomness of the experiments, we perform 10-fold cross-validation and use F1, Accuracy, Recall, and Precision
as evaluation metrics.

The experimental results are shown in Table 3 and we can see that according to the selected centrality, the
classification ability of MalSensor is different. The classification based on closeness centrality can achieve the
best effect of using individual centrality on most of the learning algorithms, and this may be due to the strong
similarity in the topological positions of key functions on the function call graph of the same family malware.
The effect of concatenate centrality is usually better than that of single centrality, showing an F1 value of 98.35%
in the experiment, because it combines the focuses of various centralities, which makes the features display more
comprehensive.

In addition, classification performance varies depending on the learning algorithms. For instance, when using
concatenate centrality, the Decision Tree shows the worst performance with an F1 value of 97.14%, while the
Random Forest achieves the best performance with an F1 value of 98.35%. This is mainly because Random Forest
is based on ensemble learning. It combines multiple decision trees into a strong classifier to improve classification
performance. Compared to a single decision tree or individual classifiers, the voting mechanism of multiple
decision trees can better capture complex relationships and nonlinear features in the data. This effectively reduces
the influence of noise and the risk of overfitting. As some malware samples are very small, it may only be possible

ACM Trans. Softw. Eng. Methodol.

0:18 • Haojun Zhao, Yueming Wu, Deqing Zou, Yang Liu, and Hai Jin

Table 3. Performance of Different Learning Algorithms with Different Centralities.

ML Algorithm Centrality Classification Performance(%)
A P R F1 FPR

1-NN

Degree 97.70 97.88 97.98 97.93 2.08
Katz 97.85 97.95 98.08 98.01 2.05

Harmonic 97.58 97.89 97.78 97.83 2.10
Closeness 97.88 98.05 98.05 98.04 1.89
Average 97.79 97.92 97.99 97.96 2.03

Concatenate 98.05 98.11 98.14 98.11 1.85

3-NN

Degree 97.05 97.27 97.41 97.34 2.66
Katz 97.00 97.14 97.26 97.20 2.79

Harmonic 96.97 97.09 97.23 97.16 2.85
Closeness 97.38 97.67 97.68 97.67 2.43
Average 97.10 97.33 97.42 97.35 2.61

Concatenate 97.48 97.74 97.82 97.79 2.12

Random Forest

Degree 98.01 98.21 98.13 98.18 1.69
Katz 97.98 98.10 97.94 98.02 1.71

Harmonic 97.80 97.93 97.86 97.88 2.00
Closeness 98.13 98.32 98.24 98.25 1.55
Average 97.96 98.13 98.06 98.10 1.88

Concatenate 98.26 98.41 98.31 98.35 1.39

Decision Tree

Degree 96.53 96.21 96.73 96.68 3.77
Katz 96.77 96.90 96.94 96.92 3.01

Harmonic 96.91 96.82 96.76 96.88 3.09
Closeness 97.13 96.82 96.94 97.02 3.09
Average 97.06 96.93 96.96 97.00 3.03

Concatenate 97.09 97.07 97.21 97.14 2.91

SVM

Degree 97.80 97.98 98.01 97.98 1.99
Katz 97.86 97.92 98.02 97.93 2.01

Harmonic 97.03 97.30 97.25 97.22 2.67
Closeness 97.06 97.52 97.24 97.34 2.42
Average 97.65 97.70 97.82 97.79 2.29

Concatenate 97.96 98.01 98.07 98.05 1.91

MLP

Degree 97.87 98.10 98.07 98.03 1.88
Katz 97.87 98.23 98.12 98.10 1.75

Harmonic 97.89 97.99 98.02 97.97 1.98
Closeness 97.97 98.30 98.14 98.21 1.67
Average 98.14 98.23 98.17 98.19 1.56

Concatenate 98.30 98.39 98.16 98.33 1.59

VGG-16

Degree 97.71 97.92 97.91 97.88 2.03
Katz 97.79 98.09 98.02 98.00 1.89

Harmonic 97.82 97.96 98.05 97.95 2.00
Closeness 98.00 98.16 98.07 98.10 1.85
Average 97.94 98.11 98.03 98.04 1.79

Concatenate 98.21 98.28 98.19 98.24 1.68

ResNet-50

Degree 97.94 98.14 98.10 98.07 1.83
Katz 97.92 98.20 98.13 98.09 1.77

Harmonic 97.90 97.99 98.12 98.03 1.97
Closeness 98.02 98.32 98.18 98.19 1.68
Average 97.96 98.17 98.14 98.11 1.79

Concatenate 98.39 98.43 98.20 98.31 1.55

Inception-V3

Degree 98.08 98.22 98.19 98.16 1.77
Katz 97.98 98.29 98.18 98.21 1.68

Harmonic 98.03 98.11 98.15 98.07 1.88
Closeness 98.18 98.41 98.18 98.29 1.56
Average 98.11 98.31 98.18 98.19 1.69

Concatenate 98.24 98.32 98.18 98.26 1.71

ACM Trans. Softw. Eng. Methodol.

MalSensor: Fast and Robust Windows Malware Classification • 0:19

to extract a limited number of API features, which can interfere with the judgment of classifiers. Compared to
other machine learning methods, Random Forest have better robustness to outliers and missing values, thus it can
exhibit better performance. Additionally, the deep learning algorithms perform well, with F1 values above 98.24%.
However, they do not surpass the performance of the Random Forest. A main reason is that since the sensitive
function features extracted from FCGs do not have the logical relationships in the feature space context, the
feature processing of the VGG-16, ResNet-50, and Inception-V3 models introduce non-existing spatial correlations,
which may negatively impact their performance. This is also the reason why relatively simple MLP performs
better than other deep learning models.

Table 4. Performance of all methods on MalwareBazaar.

Classification(%) Train Reasource OverheadCategory Model
A P R F1 min) Mem(GB) GPU.Mem(GB) GPU(%)

ResNet-50 96.68 96.91 96.75 96.83 8.4 17.4 10.8 95
VGG-16 96.35 96.58 96.54 96.56 44.0 18.43 10.8 97

Inception-V3 95.83 95.67 95.79 95.73 6.4 12.3 10.8 96
Image

IMCFN 97.38 97.53 97.41 97.47 18.8 22.5 10.8 92
CBOW+MLP 97.81 97.92 98.08 98.00 0.8 52.0 10.4 34Binary
MalConv 95.92 96.04 96.43 96.20 65.4 246.8 10.8 60

Disassembly

MAGIC 92.82 88.03 87.36 87.45 246.0 114 10.6 81
Word2Vec+KNN 95.64 93.34 94.29 93.79 <0.1 5.5 - -

MCSC 96.80 94.97 94.51 94.70 1.1 45.3 10.8 33
MalSensor 98.26 98.41 98.31 98.35 0.3 4.8 - -

To evaluate the performance of our work more extensively, we observe the experimental results of all existing
state-of-the-art works under the same conditions, as shown in Table 4. In particular, we choose the Random Forest
algorithm for MalSensor to conduct the rest of the comparative experiments. From the experimental results, we
can see that among all the existing state-of-the-art works, IMCFN achieves the best F1 performance of 97.47% in
image-based methods. As for the binary-based methods, CBOW+MLP has 98% F1, also the best among all existing
methods. Disassembly-based methods perform poorly, 3%-11% lower than the methods of other categories. One
possible reason is that, unlike image-based and binary-based methods that directly analyze raw file features,
disassembly-based methods are limited by the analysis strategies and capabilities of static analysis tools, and the
method of feature extraction also greatly affects the results.

In contrast, MalSensor, which is also based on disassembly, can have a well and stable performance no matter
which centrality is used. Its F1 is 3-11 percent higher than other disassembly-based methods and this is mainly
due to our finer program analysis method and more suitable feature processing. Looking at all methods, only the
performance of CBOW+MLP comes close to MalSensor, however, it is time-consuming, which will be discussed
later. Overall, MalSensor outperforms all existing state-of-the-art methods in accurately classifying malware,
and this benefits from our more accurate and efficient characterization of program semantic.

4.5 Running Time Overhead
In addition to effectiveness, another significant factor affecting the practicality of the PE malware classification is
the runtime overhead and the requirement of computing resources. This is because some application scenarios are
on devices with limited computing resources. Therefore, in this section, we demonstrate that MalSensor not only
outperforms other methods in effectiveness but also has a huge advantage in resource overhead. We compare

ACM Trans. Softw. Eng. Methodol.

0:20 • Haojun Zhao, Yueming Wu, Deqing Zou, Yang Liu, and Hai Jin

the runtime overhead of MalSensor with the other representative methods at Training time, Preprocessing time,
and Prediction time based on the MalwareBazaar dataset. In particular, the prediction times based on different
centralities are almost the same. And the resource consumption of all methods in the three stages is shown in
Table 4, 5.

Table 5. The average runtime overhead for one sample

Category Model Time
Pre-process(s) Predict(ms)

Image

ResNet-50

0.7

2.6
VGG-16 2.2

Inception-V3 2.0
IMCFN 2.2

Binary CBOW+MLP 1.1 5441.0
MalConv 0.3 14.0

Disassembly

MAGIC 17.8 23.6
Word2Vec+KNN 17.7 95243.3

MCSC 4.5 3477.8
MalSensor 0.7 0.2

Training. During this stage, the runtime overhead will vary greatly depending on the category of method and
the learning algorithm used. As Table 4 shows, the graph-based methods ResNet-50, VGG-16, Inception-V3, and
IMCFN require 8.4, 44.0, 6.4, and 18.8 minutes of training time, respectively. This is mainly because complex
deep learning model requires longer training time and computational resource, and their preprocessing is too
simplistic in information sifting. The binary-based method CBOW+MLP takes 0.8 minutes for model training,
which is much less than 65.4 minutes for the similar method MalConv. This is because CBOW+MLP filters the
byte stream of the raw binary file in the preprocessing stage, removes meaningless bytes (which is why it takes
longer preprocessing time), and uses a more efficient vector embedding method (Word2Vec).

As forMalSensor, it only needs at most 0.3 minutes (depending on the centrality) to complete the model training,
which is several times to hundreds of times faster than the other methods except Word2Vec+KNN (its �1 is 4.5%
lower than MalSensor). KNN-based MalSensor can also achieve the same training speed as Word2Vec+KNN, and
the accuracy is 4.3% higher than it. This is because the features extracted by MalSensor are concise and effective,
and the learning method used is simple but useful.

Preprocessing. At the preprocessing stage, the image-based methods take 0.7s to convert the binary of the raw
file into an image, and the binary-based methods take 1.1s and 0.3s, respectively, depending on the preprocessing
granularity. However, the disassembly-based methods require 4.5s, 17.7s, and 17.8s, respectively, according to
the extracted features, which are much higher than the previous two categories. This is mainly because the
preprocessing of the image or binary-based method is very simple, which only involves the process of mapping
and converting the file binary, while the disassembly-based method requires a more complex analysis.

However, as a disassembly-based method, MalSensor only takes 0.7s of preprocessing time, which is 6-25 times
faster than similar methods and is close to the runtime overhead of image and binary-based methods using simple
processing. This is because the static analysis module cuts out all unnecessary steps and only extracts concise
key function information. It is worth mentioning that the time overhead of computing centrality for each sample
is in milliseconds.

ACM Trans. Softw. Eng. Methodol.

MalSensor: Fast and Robust Windows Malware Classification • 0:21

Prediction. At the prediction stage, for each sample, the image-based methods have excellent performance
and take 2ms to predict. However, the prediction time of CBOW+MLP, MCSC, and Word2Vec+KNN explodes,
with 5,441ms, 3,477ms, and 95,243ms, respectively. Their single sample prediction time is too long, which greatly
hinders practical application. The performance of MalSensor at this stage is 0.2ms, which is 118-476,216 times
faster than similar methods. Compared with other categories methods, the prediction speed of MalSensor is
improved by at least 10 times as a result of its efficient and strong specificity feature extraction.

Overall, compared to all representative works, MalSensor has a great advantage in running time overhead,
and this makes the practical meaning of the method even more strong. Furthermore, MalSensor performs well
without GPUs or a large memory runtime environment, and thus, it is lower than most methods in research [39]
in terms of hardware resource requirements.

4.6 Performance under Concept Drift
Malware is known to evolve rapidly over time, and concept drift (i.e., statistical properties of objects change in
unforeseen ways) has become a rather challenging problem in malware classification [28]. Concept drift can be
understood as changes in the code composition and file attributes of malware as the malware family evolves or
drifts. The ability of one method to adapt concept drift scenarios determines whether it has the ability to deal with
newer malware and the possibility of wide application. Therefore, it is important to evaluate the performance of
one method in the application scenario of concept drift.

To evaluate the concept drift scenario, we use the dataset MalwareDrift for the experiment. In order to show
the generalization ability of a model trained on an older dataset to a newer dataset, we train and perform
cross-validation testing on the pre-drift data for each classifier, and the experimental results are shown in the
“pre-pre” row of Table 6. Subsequently, we load the models trained on the pre-drift data and directly test them on
the post-drift data. The experimental results for each classifier in this scenario are shown in the “pre-post” row of
Table 6. This allows us to observe the performance of the classifiers trained on early data with newer data. In
Table 6, the depth of red represents the degree to which the method is affected by concept drift. The darker the
red, the more performance degradation. In particular, IMCFN is chosen as the representation of the image-based
methods as it has the best overall performance in previous experiments.

We can see from the table that the other 9 representative works have at least a 27.07% drop in F1 score when
facing concept drift in the real environment, and the maximum drop even reaches 69.62%. In contrast, the F1
drop ratio of MalSensor is 20.51%, which is lower than all other methods. This shows that MalSensor trained on
older samples has stronger adaptability to newer samples than the other works, which benefits from its deep
understanding of program semantics.

4.7 Practicability
In this section, we will further discuss the applicability of MalSensor in the real world. Attackers in the real
world often use evasion techniques such as obfuscation and packing to interfere with malware analysis. For
example, they may alter the internal structure of malware by adding irrelevant code and increasing control flow
complexity, making it appear different from other malware in the same family (i.e., polymorphism). To evaluate
the impact of various evasion techniques, we process the MalwareBazaar dataset using mature obfuscation and
packing tool, Virbox Protector [4] and binary editor 010editor [1]. We apply 9 typical obfuscation techniques and
packing techniques to the malicious samples, as shown in Table 7.

We evaluate MalSensor on datasets processed with these evasion techniques and compare the results with
those on the original MalwareBazaar dataset in Table 8. It can be seen that MalSensor exhibits good performance
when faced with evasion techniques such as Constant Values Encryption, Resource Obfuscation, and Section
Appending. This is because MalSensor focuses on the calling behavior of key APIs, unaffected by changes in

ACM Trans. Softw. Eng. Methodol.

0:22 • Haojun Zhao, Yueming Wu, Deqing Zou, Yang Liu, and Hai Jin

Table 6. Impact of concept drift on performance

Classification Performance (%)Category Model Test Strategy
A P R F1

pre-pre 85.21 85.23 83.00 83.91
pre-post 49.90 52.74 44.42 42.10Image IMCFN
decrease 35.31 32.49 38.58 41.81
pre-pre 81.69 83.36 78.58 80.50
pre-post 17.44 11.52 14.45 10.88CBOW+MLP
decrease 64.25 71.84 64.13 69.62
pre-pre 77.43 78.49 74.97 76.19
pre-post 46.50 39.19 39.49 35.51

Binary

MalConv
decrease 30.93 39.30 35.48 40.68
pre-pre 80.85 81.29 77.77 79.30
pre-post 42.15 34.69 33.07 28.30MAGIC
decrease 38.70 46.60 44.70 51.00
pre-pre 81.85 80.77 79.79 80.12
pre-post 49.18 48.73 51.80 43.87Word2Vec+KNN
decrease 32.67 32.04 27.99 36.25
pre-pre 74.31 69.44 73.49 70.89
pre-post 50.58 46.97 48.25 43.82MCSC
decrease 23.73 22.47 25.24 27.07
pre-pre 80.62 80.94 78.69 80.32
pre-post 63.25 56.38 59.08 58.46

Disassembly

MalSensor
decrease 17.37 24.56 19.61 21.86

Table 7. Impact of concept drift on performance

Obfuscation/Packing Descriptions
Function Name Encryption Encrypt function names
Constant Values Encryption Encrypt constant strings

Resource Obfuscation Modify the resources section of PE files
Goto Modify the control-flow graph by adding two new nodes
NOP Insert random nop instructions within every method implementation

Call Indirection Modify the control-flow graph without changing the code semantics
Section Rename Rename the section names of PE files
OEP Modification Modify the original entry point
Section Appending Add additional sections to PE files

irrelevant code. However, when dealing with Function Name Encryption, MalSensor shows a slight performance
decrease. This negative effect is because Function Name Encryption makes function names less understandable,
thus affecting the function name normalization process in MalSensor. Moreover, MalSensor also faces performance
degradation when dealing with control flow obfuscation like Goto, Nop, and Call Indirection. To ensure normal
program operation, control flow obfuscation does not introduce significant interference with key function calls
significantly. However, these obfuscation introduces new function nodes and alters the topological structure
of the program function call graph. This indirectly affects the centrality weight of key API functions, thereby
impacting the classification performance.

ACM Trans. Softw. Eng. Methodol.

MalSensor: Fast and Robust Windows Malware Classification • 0:23

Table 8. Impact of concept drift on performance

Classification Performance (%)Obfuscation/Packing
A P R F1

Function Name Encryption 97.65 97.74 97.41 97.57
Constant Values Encryption 98.11 98.31 98.09 98.19

Resource Obfuscation 98.19 98.29 98.18 98.22
Goto 97.69 97.06 97.68 97.31
NOP 97.80 97.79 97.98 97.91

Call Indirection 97.77 95.66 96.58 96.34
Section Rename 98.21 98.16 98.01 98.08
OEP Modification 98.03 98.11 97.98 98.07
Section Appending 98.24 98.34 98.22 98.31

Clean 98.26 98.41 98.31 98.35

5 DISCUSSION
Limitation. Static analysis has some inherent limitations. Since static analysis does not actually execute the
target program, its analysis results are susceptible to various obfuscation methods [26]. Our work is based on
static analysis and therefore is also subject to the inherent limitations of static analysis. For example, attackers
can load a constant value into a register without the static analyzer knowing its value by using opaque constants.
This mechanism allows attackers to perform a number of transformations that obfuscate the control flow, data
locations, and data usage of a malicious program, without changing its actual behavior [43]. In this case many
jumps with constant addresses operands will not be analyzed correctly. When function names are completely
randomized, MalSensor cannot construct the necessary features for family classification based on function call
relationships, because the same function may have completely different names in different programs. Therefore,
it is necessary to use dynamic analysis, fuzzing testing, and other methods to recover function names through
inference. In addition, adding fake functions is also a way to interfere with our analysis. Since our work is based
on FCG, adding fake functions to a malicious program that do not affect its behavior can alter the FCG of the
program, thereby affecting the classification accuracy. There are also ways to resist static analysis by program
packing or hiding externally imported functions of the program.There are many mature commercial packing tools
that can create complex shells, such as multi-layer and virtualization shells. These shells are very difficult even
for manual unpacking and require dynamic analysis. In such cases, since we cannot obtain useful information by
static analysis, it is nearly impossible to make an effective judgment. Therefore, it is challenging for our work
to serve as an end-to-end processing method, and we need to apply various anti-obfuscation techniques before
inputting the original program.

Future Work. In our future work, we will further refine the feature extraction process of MalSensor and train
the classifier with more artificial obfuscated samples to achieve higher accuracy and robustness. Furthermore, we
will try more social centrality and deep learning models for experiments. We will also attempt to incorporate
various anti-obfuscation preprocessing techniques into MalSensor, such as automatic unpacking modules, to
alleviate the limitations imposed by static analysis. We also intend to explore the potential benefits of hybrid
analysis, combining both static and dynamic analysis approaches. This approach will effectively compensate for
any potential misjudgments in program behavior that may arise from static analysis alone. Additionally, we find
that the dataset used in the concept drift experiment can not be overly outdated. This is because there may be
samples running on an outdated version of Windows, or using outdated API and library functions, which have a
certain negative impact on disassembly analysis. All of these aspects will serve as guidance for our future work.

ACM Trans. Softw. Eng. Methodol.

0:24 • Haojun Zhao, Yueming Wu, Deqing Zou, Yang Liu, and Hai Jin

Future Trend. We believe that work in the field of static analysis-based malware classification should be closer
to the needs of industry. Current learning-based static malware classification methods are not lightweight or
accurate enough for large-scale analysis, especially on resource-critical devices, such as network gateway devices
with limited computing resources [39]. The current work often does not pay enough attention to the issues of
resource consumption, which leads to the difficulty of practical application. In addition, it is necessary to propose
more effective feature extraction methods to deal with concept drift scenarios in the real world.

6 RELATED WORK
The PE malware classification based on static analysis and machine learning is divided into three categories:
methods based on binary graph transformations; methods based on byte stream sequences; methods based on
disassembly.

Image-Based techniques first transform the malware binary files into gray scale images, and then adopt image
classification models for malware classification. Nataraj et al. [45] first combine malware analysis with image
analysis techniques to convert binary files into gray scale images, where each byte corresponds to a pixel in the
image with a gray scale value and then the image is classified using KNN. Kancherla et al. [30] further refined
the image processing method and used the SVM algorithm for classification in combination with Gabor filter
extraction features. Afterwards, Ahmadi et al. [6] extract new features such as Haralick and Local Binary Pattern
for classifying malware using boosting tree classifiers. However, these methods are usually inefficient due to
the high overhead of extracting complex texture features. With the development of deep learning in the field of
image classification, image-based malware analysis has also become more mature. For example, Convolutional
Neural Network (CNN) has been widely used in various malware classification work [20, 24, 29, 55, 56], and has
excellent performance. Although image-based methods do not require specific expertise and there are many
well-established image classification models available, binaries transforming malware into images introduce new
hyper-parameters (e.g., image width) and might impose non-existing spatial correlations between pixels, which
may be wrong [19]. Compared to our work, image-based methods require significant computational resources,
such as GPUs, which can not meet the lightweight requirements of the industrial scenarios with limited resources.

Binary-Based approaches treat the binary content of malware as sequential information and process it using
sequential models(such as models in the NLP domain). Moskovitch et al. [44] first propose a malware classification
method based on text classification technology. They extract n-grams from the training data, select the top 5,500
as features according to a custom Document Frequency score, and then use learning algorithms for classification.
Jain et al. [25] use a technique called classwise document frequency to reduce the feature space to improve the
analysis method and Fuyong et al. [59] use information gain to filter K n-grams as features, but they still have
the disadvantage that the computational cost increases exponentially as the value of n increases. Raff et al. [50]
take the entire binary file as input for malware classification using an end-to-end shallow CNN model. However,
its processing power is limited due to the large amount of memory required. Qiao et al. [48] convert byte values
of PE files into 256 words and combine the Word2Vec model to represent the malware as a word embedding
matrix, and then utilize the multilayer perceptron (MLP) for classification. The binary-based methods consider
the contextual information of a program to a certain extent, but because the program often has instruction jumps
and function calls, the byte contextual information is not always relevant, and thus, this interferes with the
classification. Moreover, Binary-based methods also need to consume high system resources, because the size
of the malware byte sequences may reach several million-time steps by treating each byte as a unit in a byte
sequence [50]. As our work is based on function call analysis representing program semantic information, we do
not encounter the issue of lost instruction jumps. Furthermore, the computation complexity of employing social
network analysis for feature enhancement and vector embedding is significantly lower than that of byte-stream
analysis models.

ACM Trans. Softw. Eng. Methodol.

MalSensor: Fast and Robust Windows Malware Classification • 0:25

Disassembly-Based methods disassemble the raw PE file and extract information from the disassembly result
for malware classification. Opcodes, frequency of API function calls, Function Call Graph (FCG), Control Flow
Graph (CFG), etc. are often used as features for classification. Hu et al. [23] present a classification approach
based on opcode N-gram features which are extracted from the disassembly result of malware, and Ahmadi et
al. [6] use the frequency of a subset of API calls, extracted from an analysis on 500 K malware samples, to build a
multimodal system to classify malware into families. Ficco [16] combines multiple features, including API call
frequency, and utilizes a hybrid classifier for joint decision-making. This combination achieves promising results.
Awad et al. [7] treat the opcode sequence of each disassembly file as a document and generate a computational
representation of the document using Word2Vec. Then, they classify these documents with the Word Mover’s
Distance (WMD) [35]metric and K-Nearest Neighbors. SimHash [46] and MinHash [54] utilize hash projection to
convert opcode sequences into vectors, which are then visualized as images for classification. However, none of
them fully reflect the semantics of the program due to the lack of program execution logic information. Kinable
et al. [32] first use graph matching techniques to calculate the similarity score between two program FCGs and
regard it as a distance metric for malware clustering. Afterwards, Kong et al. [33] abstract malware into an AFCG,
and then learn malware distance metrics to distinguish different AFCGs. Unfortunately, the above methods are
computationally intensive and cannot generalize well. Hassen et al. [22] adopt Minhash [11] to cluster similar
FCGs, and then use a deep learning model to represent the graphs as vectors for classification. Similarly, Yan
et al. [58] utilize Deep Graph Convolution Neural Network (DGCNN) [60] to aggregate the attributes of the
AFCGs extracted from disassembly files and perform well. Disassembly can better capture program semantics,
but they require domain knowledge, such as assembly language and disassembly analysis methods. Moreover,
the classification effectiveness is greatly affected by the manually selected feature vectors from the disassembly
results. In addition, some of the methods require a large amount of computation when calculating the similarity
between graphs, which will bring huge performance overhead. Compared to these disassembly methods, our
work can extract more function calls that are easily overlooked by conventional approaches. Additionally, we
streamline the disassembly information through normalization, effectively reducing redundancy of the feature
information. These optimizations not only enhance the classification capability but also improve the analysis
speed of our method.

7 CONCLUSION
In this paper, we present an efficient and lightweight PE malware classification method based on program
semantics and implement the prototype system MalSensor with a custom static analysis module and centrality
analysis. The characteristics of MalSensor are very consistent with the development trend of future malware
classification proposed by ENISA [15] and the research [39], that is, to pay more attention to program semantic
features, to be lighter and more accurate. Through experimental comparison with various existing PE malware
static classification methods, we have verified that MalSensor not only outperforms other methods in terms of
accuracy and robustness but also significantly reduces resource overhead. These show that the application value
and scalability of MalSensor are higher than that of most existing methods.

ACKNOWLEDGMENTS
The work is supported by the National Natural Science Foundation of China (62172168).

REFERENCES
[1] 2023. 010editor. https://www.sweetscape.com/010editor/.
[2] 2023. IDA7.0. https://www.hex-rays.com/products/ida/news/.
[3] 2023. MalwareBazaar Homepage. https://bazaar.abuse.ch/.
[4] 2023. Virbox Protector. https://shell.virbox.com/.

ACM Trans. Softw. Eng. Methodol.

https://www.sweetscape.com/010editor/
https://www.hex-rays.com/products/ida/news/
https://bazaar.abuse.ch/
https://shell.virbox.com/

0:26 • Haojun Zhao, Yueming Wu, Deqing Zou, Yang Liu, and Hai Jin

[5] 2023. VirusShare. https://virusshare.com/.
[6] Mansour Ahmadi, Dmitry Ulyanov, Stanislav Semenov, Mikhail Trofimov, and Giorgio Giacinto. 2016. Novel Feature Extraction,

Selection and Fusion for Effective Malware Family Classification. In Proceedings of the Sixth ACM on Conference on Data and Application
Security and Privacy, CODASPY 2016, New Orleans, LA, USA, March 9-11, 2016, Elisa Bertino, Ravi S. Sandhu, and Alexander Pretschner
(Eds.). ACM, 183–194. https://doi.org/10.1145/2857705.2857713

[7] Yara Awad, Mohamed Nassar, and Haïdar Safa. 2018. Modeling Malware as a Language. In 2018 IEEE International Conference on
Communications, ICC 2018, Kansas City, MO, USA, May 20-24, 2018. IEEE, 1–6. https://doi.org/10.1109/ICC.2018.8422083

[8] Neil Balram, George Hsieh, and Christian McFall. 2019. Static malware analysis using machine learning algorithms on apt1 dataset with
string and pe header features. In 2019 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE,
90–95.

[9] Tamy Beppler, Marcus Botacin, Fabricio Ceschin, Luiz E. S. Oliveira, and André Grégio. 2019. L(a)ying in (Test)Bed - How Biased
Datasets Produce Impractical Results for Actual Malware Families’ Classification. In Information Security - 22nd International Conference,
ISC 2019, New York City, NY, USA, September 16-18, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11723), Zhiqiang Lin,
Charalampos Papamanthou, and Michalis Polychronakis (Eds.). Springer, 381–401. https://doi.org/10.1007/978-3-030-30215-3_19

[10] Niket Bhodia, Pratikkumar Prajapati, Fabio Di Troia, and Mark Stamp. 2019. Transfer Learning for Image-based Malware Classification.
In Proceedings of the 5th International Conference on Information Systems Security and Privacy, ICISSP 2019, Prague, Czech Republic,
February 23-25, 2019, Paolo Mori, Steven Furnell, and Olivier Camp (Eds.). SciTePress, 719–726. https://doi.org/10.5220/0007701407190726

[11] Andrei Z. Broder. 1997. On the resemblance and containment of documents. In Compression and Complexity of SEQUENCES 1997,
Positano, Amalfitan Coast, Salerno, Italy, June 11-13, 1997, Proceedings, Bruno Carpentieri, Alfredo De Santis, Ugo Vaccaro, and James A.
Storer (Eds.). IEEE, 21–29.

[12] Aniket Chandak, Wendy Lee, and Mark Stamp. 2021. A Comparison of Word2Vec, HMM2Vec, and PCA2Vec for Malware Classification.
CoRR abs/2103.05763 (2021). arXiv:2103.05763 https://arxiv.org/abs/2103.05763

[13] Lingwei Chen, William Hardy, Yanfang Ye, and Tao Li. 2015. Analyzing File-to-File Relation Network in Malware Detection. In Web
Information Systems Engineering - WISE 2015 - 16th International Conference, Miami, FL, USA, November 1-3, 2015, Proceedings, Part I
(Lecture Notes in Computer Science, Vol. 9418), Jianyong Wang, Wojciech Cellary, Dingding Wang, Hua Wang, Shu-Ching Chen, Tao Li,
and Yanchun Zhang (Eds.). Springer, 415–430. https://doi.org/10.1007/978-3-319-26190-4_28

[14] Nigel Coles. 2001. It’s not what you know—it’s who you know that counts. Analysing serious crime groups as social networks. British
Journal of Criminology 41, 4 (2001), 580–594.

[15] ENISA. 2021. ENISA Threat Landscape 2021. https://www.enisa.europa.eu/publications/enisa-threat-landscape-2021.
[16] Massimo Ficco. 2022. Malware Analysis by Combining Multiple Detectors and Observation Windows. IEEE Trans. Computers 71, 6

(2022), 1276–1290. https://doi.org/10.1109/TC.2021.3082002
[17] Linton C Freeman. 1977. A set of measures of centrality based on betweenness. Sociometry (1977), 35–41.
[18] Linton C Freeman et al. 2002. Centrality in social networks: Conceptual clarification. Social network: critical concepts in sociology.

Londres: Routledge 1 (2002), 238–263.
[19] Daniel Gibert, Carles Mateu, and Jordi Planes. 2020. The rise of machine learning for detection and classification of malware: Research

developments, trends and challenges. J. Netw. Comput. Appl. 153 (2020), 102526. https://doi.org/10.1016/J.JNCA.2019.102526
[20] Daniel Gibert, Carles Mateu, Jordi Planes, and Ramon Vicens. 2019. Using convolutional neural networks for classification of malware

represented as images. J. Comput. Virol. Hacking Tech. 15, 1 (2019), 15–28. https://doi.org/10.1007/S11416-018-0323-0
[21] Roger Guimera, Stefano Mossa, Adrian Turtschi, and LA Nunes Amaral. 2005. The worldwide air transportation network: Anomalous

centrality, community structure, and cities’ global roles. Proceedings of the National Academy of Sciences 102, 22 (2005), 7794–7799.
[22] Mehadi Hassen and Philip K. Chan. 2017. Scalable Function Call Graph-based Malware Classification. In Proceedings of the Seventh

ACM Conference on Data and Application Security and Privacy, CODASPY 2017, Scottsdale, AZ, USA, March 22-24, 2017, Gail-Joon Ahn,
Alexander Pretschner, and Gabriel Ghinita (Eds.). ACM, 239–248.

[23] Xin Hu, Kang G. Shin, Sandeep Bhatkar, and Kent Griffin. 2013. MutantX-S: Scalable Malware Clustering Based on Static Features. In
2013 USENIX Annual Technical Conference, San Jose, CA, USA, June 26-28, 2013, Andrew Birrell and Emin Gün Sirer (Eds.). USENIX
Association, 187–198.

[24] Mugdha Jain, William Andreopoulos, and Mark Stamp. 2020. Convolutional neural networks and extreme learning machines for
malware classification. J. Comput. Virol. Hacking Tech. 16, 3 (2020), 229–244. https://doi.org/10.1007/s11416-020-00354-y

[25] Sachin Jain and Yogesh Kumar Meena. 2011. Byte level n–gram analysis for malware detection. In International Conference on Information
Processing. Springer, 51–59.

[26] Tiantian Ji, Binxing Fang, Xiang Cui, Zhongru Wang, Peng Liao, and Shouyou Song. 2023. Framework for understanding intention-
unbreakable malware. Sci. China Inf. Sci. 66, 4 (2023). https://doi.org/10.1007/S11432-021-3567-Y

[27] Qingshan Jiang, Nancheng Liu, and Wei Zhang. 2013. A feature representation method of social graph for malware detection. In 2013
Fourth Global Congress on Intelligent Systems. IEEE, 139–143.

ACM Trans. Softw. Eng. Methodol.

https://virusshare.com/
https://doi.org/10.1145/2857705.2857713
https://doi.org/10.1109/ICC.2018.8422083
https://doi.org/10.1007/978-3-030-30215-3_19
https://doi.org/10.5220/0007701407190726
https://arxiv.org/abs/2103.05763
https://arxiv.org/abs/2103.05763
https://doi.org/10.1007/978-3-319-26190-4_28
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2021
https://doi.org/10.1109/TC.2021.3082002
https://doi.org/10.1016/J.JNCA.2019.102526
https://doi.org/10.1007/S11416-018-0323-0
https://doi.org/10.1007/s11416-020-00354-y
https://doi.org/10.1007/S11432-021-3567-Y

MalSensor: Fast and Robust Windows Malware Classification • 0:27

[28] Roberto Jordaney, Kumar Sharad, Santanu Kumar Dash, Zhi Wang, Davide Papini, Ilia Nouretdinov, and Lorenzo Cavallaro. 2017.
Transcend: Detecting Concept Drift in Malware Classification Models. In 26th USENIX Security Symposium, USENIX Security 2017,
Vancouver, BC, Canada, August 16-18, 2017, Engin Kirda and Thomas Ristenpart (Eds.). USENIX Association, 625–642. https://www.
usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney

[29] Mahmoud Kalash, Mrigank Rochan, Noman Mohammed, Neil D. B. Bruce, Yang Wang, and Farkhund Iqbal. 2018. Malware Classification
with Deep Convolutional Neural Networks. In 9th IFIP International Conference on New Technologies, Mobility and Security, NTMS 2018,
Paris, France, February 26-28, 2018. IEEE, 1–5. https://doi.org/10.1109/NTMS.2018.8328749

[30] Kesav Kancherla and Srinivas Mukkamala. 2013. Image visualization based malware detection. In Proceedings of the 2013 IEEE Symposium
on Computational Intelligence in Cyber Security, CICS 2013, IEEE Symposium Series on Computational Intelligence (SSCI), 16-19 April 2013,
Singapore. IEEE, 40–44.

[31] Leo Katz. 1953. A new status index derived from sociometric analysis. Psychometrika 18, 1 (1953), 39–43.
[32] Joris Kinable and Orestis Kostakis. 2011. Malware classification based on call graph clustering. J. Comput. Virol. 7, 4 (2011), 233–245.

https://doi.org/10.1007/s11416-011-0151-y
[33] Deguang Kong and Guanhua Yan. 2013. Discriminant malware distance learning on structural information for automated malware

classification. In The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA,
August 11-14, 2013, Inderjit S. Dhillon, Yehuda Koren, Rayid Ghani, Ted E. Senator, Paul Bradley, Rajesh Parekh, Jingrui He, Robert L.
Grossman, and Ramasamy Uthurusamy (Eds.). ACM, 1357–1365.

[34] Marek Krcál, Ondrej Svec, Martin Bálek, and Otakar Jasek. 2018. Deep Convolutional Malware Classifiers Can Learn from Raw
Executables and Labels Only. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Workshop Track Proceedings. OpenReview.net. https://openreview.net/forum?id=HkHrmM1PM

[35] Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kilian Q.Weinberger. 2015. FromWord Embeddings To Document Distances. In Proceedings
of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015 (JMLR Workshop and Conference
Proceedings, Vol. 37), Francis R. Bach and David M. Blei (Eds.). JMLR.org, 957–966. http://proceedings.mlr.press/v37/kusnerb15.html

[36] Young Man Kwon, Jae-Ju An, Myung-Jae Lim, Seongsoo Cho, and Won-Mo Gal. 2020. Malware Classification Using Simhash Encoding
and PCA (MCSP). Symmetry 12, 5 (2020), 830. https://doi.org/10.3390/sym12050830

[37] Xiaoming Liu, Johan Bollen, Michael L. Nelson, and Herbert Van de Sompel. 2005. Co-authorship networks in the digital library research
community. Inf. Process. Manag. 41, 6 (2005), 1462–1480.

[38] Joe Security LLC. 2022. Joe Security. https://www.joesecurity.org/.
[39] Yixuan Ma, Shuang Liu, Jiajun Jiang, Guanhong Chen, and Keqiu Li. 2021. A comprehensive study on learning-based PE malware family

classification methods. In ESEC/FSE ’21: 29th ACM Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Athens, Greece, August 23-28, 2021, Diomidis Spinellis, Georgios Gousios, Marsha Chechik, and Massimiliano Di
Penta (Eds.). ACM, 1314–1325. https://doi.org/10.1145/3468264.3473925

[40] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. 2007. Detecting near-duplicates for web crawling. In Proceedings of the 16th
International Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007, Carey L. Williamson, Mary Ellen
Zurko, Peter F. Patel-Schneider, and Prashant J. Shenoy (Eds.). ACM, 141–150. https://doi.org/10.1145/1242572.1242592

[41] Massimo Marchiori and Vito Latora. 2000. Harmony in the small-world. Physica A: Statistical Mechanics and its Applications 285, 3-4
(2000), 539–546.

[42] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Estimation of Word Representations in Vector Space. In 1st
International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings,
Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1301.3781

[43] Andreas Moser, Christopher Kruegel, and Engin Kirda. 2007. Limits of Static Analysis for Malware Detection. In 23rd Annual Computer
Security Applications Conference (ACSAC 2007), December 10-14, 2007, Miami Beach, Florida, USA. IEEE Computer Society, 421–430.
https://doi.org/10.1109/ACSAC.2007.21

[44] Robert Moskovitch, Dima Stopel, Clint Feher, Nir Nissim, and Yuval Elovici. 2008. Unknown malcode detection via text categorization
and the imbalance problem. In IEEE International Conference on Intelligence and Security Informatics, ISI 2008, Taipei, Taiwan, June 17-20,
2008, Proceedings. IEEE, 156–161.

[45] Lakshmanan Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath. 2011. Malware images: visualization and automatic classification.
In 8th International Symposium on Visualization for Cyber Security, VizSec 2011, Pittsburgh, PA, USA, July 20, 2011. ACM, 4.

[46] Sang Ni, Quan Qian, and Rui Zhang. 2018. Malware identification using visualization images and deep learning. Comput. Secur. 77
(2018), 871–885. https://doi.org/10.1016/j.cose.2018.04.005

[47] nickcano. 2018. PyPackerDetect. https://github.com/cylance/PyPackerDetect.
[48] Yanchen Qiao, Bin Zhang, and Weizhe Zhang. 2020. Malware Classification Method Based on Word Vector of Bytes and Multilayer

Perception. In 2020 IEEE International Conference on Communications, ICC 2020, Dublin, Ireland, June 7-11, 2020. IEEE, 1–6. https:
//doi.org/10.1109/ICC40277.2020.9149143

ACM Trans. Softw. Eng. Methodol.

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney
https://doi.org/10.1109/NTMS.2018.8328749
https://doi.org/10.1007/s11416-011-0151-y
https://openreview.net/forum?id=HkHrmM1PM
http://proceedings.mlr.press/v37/kusnerb15.html
https://doi.org/10.3390/sym12050830
https://www.joesecurity.org/
https://doi.org/10.1145/3468264.3473925
https://doi.org/10.1145/1242572.1242592
http://arxiv.org/abs/1301.3781
https://doi.org/10.1109/ACSAC.2007.21
https://doi.org/10.1016/j.cose.2018.04.005
https://github.com/cylance/PyPackerDetect
https://doi.org/10.1109/ICC40277.2020.9149143
https://doi.org/10.1109/ICC40277.2020.9149143

0:28 • Haojun Zhao, Yueming Wu, Deqing Zou, Yang Liu, and Hai Jin

[49] Dima Rabadi and Sin G. Teo. 2020. Advanced Windows Methods on Malware Detection and Classification. In ACSAC ’20: Annual
Computer Security Applications Conference, Virtual Event / Austin, TX, USA, 7-11 December, 2020. ACM, 54–68. https://doi.org/10.1145/
3427228.3427242

[50] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, and Charles K. Nicholas. 2018. Malware Detection by Eating
a Whole EXE. In The Workshops of the The Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, February
2-7, 2018 (AAAI Technical Report, Vol. WS-18). AAAI Press, 268–276. https://aaai.org/ocs/index.php/WS/AAAIW18/paper/view/16422

[51] Edmar R. S. De Rezende, Guilherme C. S. Ruppert, Tiago Carvalho, Fabio Ramos, and Paulo L. de Geus. 2017. Malicious Software
Classification Using Transfer Learning of ResNet-50 Deep Neural Network. In 16th IEEE International Conference on Machine Learning
and Applications, ICMLA 2017, Cancun, Mexico, December 18-21, 2017, Xuewen Chen, Bo Luo, Feng Luo, Vasile Palade, and M. Arif Wani
(Eds.). IEEE, 1011–1014. https://doi.org/10.1109/ICMLA.2017.00-19

[52] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. 2016. AVclass: A Tool for Massive Malware Labeling. In Research
in Attacks, Intrusions, and Defenses - 19th International Symposium, RAID 2016, Paris, France, September 19-21, 2016, Proceedings (Lecture
Notes in Computer Science, Vol. 9854), Fabian Monrose, Marc Dacier, Gregory Blanc, and Joaquín García-Alfaro (Eds.). Springer, 230–253.

[53] Andrii Shalaginov, Sergii Banin, Ali Dehghantanha, and Katrin Franke. 2018. Machine Learning Aided Static Malware Analysis: A
Survey and Tutorial. CoRR abs/1808.01201 (2018). arXiv:1808.01201 http://arxiv.org/abs/1808.01201

[54] Guosong Sun and Quan Qian. 2021. Deep Learning and Visualization for Identifying Malware Families. IEEE Trans. Dependable Secur.
Comput. 18, 1 (2021), 283–295. https://doi.org/10.1109/TDSC.2018.2884928

[55] Danish Vasan, Mamoun Alazab, Sobia Wassan, Hamad Naeem, Babak Safaei, and Zheng Qin. 2020. IMCFN: Image-based malware
classification using fine-tuned convolutional neural network architecture. Comput. Networks 171 (2020), 107138. https://doi.org/10.
1016/J.COMNET.2020.107138

[56] Danish Vasan, Mamoun Alazab, Sobia Wassan, Babak Safaei, and Qin Zheng. 2020. Image-Based malware classification using ensemble
of CNN architectures (IMCEC). Comput. Secur. 92 (2020), 101748. https://doi.org/10.1016/j.cose.2020.101748

[57] Mayuri Wadkar, Fabio Di Troia, and Mark Stamp. 2020. Detecting malware evolution using support vector machines. Expert Syst. Appl.
143 (2020).

[58] Jiaqi Yan, Guanhua Yan, and Dong Jin. 2019. Classifying Malware Represented as Control Flow Graphs using Deep Graph Convolutional
Neural Network. In 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2019, Portland, OR, USA,
June 24-27, 2019. IEEE, 52–63. https://doi.org/10.1109/DSN.2019.00020

[59] FuYong Zhang and Tiezhu Zhao. 2017. Malware Detection and Classification Based on N-Grams Attribute Similarity. In 2017 IEEE
International Conference on Computational Science and Engineering, CSE 2017, and IEEE International Conference on Embedded and
Ubiquitous Computing, EUC 2017, Guangzhou, China, July 21-24, 2017, Volume 1. IEEE Computer Society, 793–796.

[60] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An End-to-End Deep Learning Architecture for Graph
Classification. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications
of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018, Sheila A. McIlraith and Kilian Q. Weinberger (Eds.). AAAI Press, 4438–4445. https:
//doi.org/10.1609/AAAI.V32I1.11782

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3427228.3427242
https://doi.org/10.1145/3427228.3427242
https://aaai.org/ocs/index.php/WS/AAAIW18/paper/view/16422
https://doi.org/10.1109/ICMLA.2017.00-19
https://arxiv.org/abs/1808.01201
http://arxiv.org/abs/1808.01201
https://doi.org/10.1109/TDSC.2018.2884928
https://doi.org/10.1016/J.COMNET.2020.107138
https://doi.org/10.1016/J.COMNET.2020.107138
https://doi.org/10.1016/j.cose.2020.101748
https://doi.org/10.1109/DSN.2019.00020
https://doi.org/10.1609/AAAI.V32I1.11782
https://doi.org/10.1609/AAAI.V32I1.11782

	Abstract
	1 Introduction
	2 Preliminary Study
	2.1 Threat Model
	2.2 Function Call Decorated Name
	2.3 Centrality

	3 System Architecture
	3.1 System Overview
	3.2 Static Analysis
	3.3 Centrality Analysis
	3.4 Classification

	4 Experiment Evaluation
	4.1 State-of-the-Art Methods
	4.2 Dataset and Configurations
	4.3 Static Analysis Effectiveness
	4.4 Classification Effectiveness
	4.5 Running Time Overhead
	4.6 Performance under Concept Drift
	4.7 Practicability

	5 Discussion
	6 Related work
	7 Conclusion
	Acknowledgments
	References

