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Goner: Building Tree-based N-gram-like Model for
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Yueming Wu, Siyue Feng, Wenqi Suo, Deqing Zou, Hai Jin, Fellow, IEEE

Abstract—Code clone detection refers to the detection of code
fragments that are functionally similar. As software engineering
progresses, the significance of code clone detection continues to
grow. A number of code clone detection techniques have been
designed. Among these methods, tree-based code clone detection
approaches have the ability to discover semantic code clones.
However, given the intricate nature of tree structures, they
consume plenty of time to complete the tree analysis, thus cannot
scale to large-scale code scanning. In this paper, we propose a
novel tree-based scalable semantic code clone detection method
by transforming the heavy-weight tree processing into efficient
N-gram-like subtrees analysis. Specifically, we build a variant
of N-gram model to partition the original complex tree into
small subtrees. After collecting all subtrees, we divide them into
different groups according to the positions of the subtree nodes,
and then calculate the similarity of the same group between
two functions one by one. Similarity scores of all groups are
made up of a feature vector. Given feature vectors, we train
a machine learning model for semantic code clone detection.
We implement Goner, a scalable tree-based semantic code clone
detection system. To showcase the effectiveness of Goner, we con-
ducted evaluations on two extensively utilized datasets, namely
BigCloneBench and Google Code Jam. The experimental results
unequivocally indicate that Goner outperforms our comparative
systems (i.e., SourcererCC, RtvNN, Deckard, ASTNN, TBCNN,
CDLH, Amain, FCCA, DeepSim, and SCDetector). Additionally, in
the context of scalability, Goner demonstrates remarkable speed,
being approximately 56 times faster than another advanced tree-
based tool, namely ASTNN, when it comes to identifying semantic
code clones.

Index Terms—Semantic Code Clones, Abstract Syntax Tree,
N-gram

I. INTRODUCTION

CODE clone is the phenomenon of copying the entire
source code or code fragments. In reality, code clones are

divided into syntactic clones and semantic clones. Syntactic
clones are usually found when copying and pasting code
and are classified into three types in descending order of
similarity, namely Type-1 (textual similarity), Type-2 (lexical
similarity), and Type-3 (syntactic similarity). Semantic clones
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are usually introduced when different code syntaxes are used
to achieve the same functionality, which is Type-4 (semantic
similarity). As the computer and software fields continue to
advance and evolve over time, developers often need to write
and handle large amounts of code. Code clone can often save
developers’ time and effort to a great extent, making code
cloning common. However, the drawbacks brought by code
clone cannot be ignored, which is the consequent increase in
maintenance costs. For example, if the copied code contains
any vulnerabilities, code cloning may amplify the propaga-
tion of these vulnerabilities. Therefore, code clone detection
becomes increasingly important.

Recently, there have been designed many code clone de-
tection techniques where token-based methods are the most
scalable. For example, CCFinder [1] transforms the tokens
extracted from the source code by means of certain pre-defined
transformation rules. However, it can only detect Type-1 and
Type-2 code clone due to their simple code transformation
rules. To handle Type-3 code clone, SourcererCC [2] computes
the code similarity by analyzing the overlap between tokens.
While it is capable of identifying certain Type-3 code clones, it
lacks the capability to detect Type-4 code clone (i.e., semantic
code clone). In fact, compared to the former three types
of code clone, Type-4 code clones are more difficult to be
distinguished since they are syntactically dissimilar. To address
the detection of Type-4 code clones, researchers propose to
distill the program semantics into different representations
(e.g., abstract syntax tree and control flow graph) and use them
to calculate the semantic similarity of different code fragments.
Since the consideration of program semantics, graph-based
detection methods [3]–[7] and tree-based methods [8]–[12]
can both deal with semantic code clones. However, typical
graph analysis is heavy-weight which means that they may
require lots of time to finish code clone detection. For tree-
based methods, a tree generated by a function of a few lines
of code may contain dozens of nodes. For example, Figure
3 provides a visual representation of the abstract syntax tree
associated with the GCD method (Type-4 method) depicted
in Figure 1. The simple four lines of code can generate an
abstract syntax tree with 36 nodes. In other words, the tree
structures are also complex, making it difficult to complete
large-scale code clone detection. Therefore, there is a growing
need for a code clone detector that possesses both semantic
clone detection capabilities and high scalability.

The focus of this paper is to propose a novel and scalable
tree-based code clone detector that can detect semantic code
clones at a large scale. We specifically tackle two significant
challenges.



• Challenge 1: How to simplify the intricate structure of a
tree while preserving its rich semantic information?

• Challenge 2: How to develop a code clone detection
process that is streamlined and efficient in handling
semantic clones at scale?

To overcome the first challenge, we propose a variant of
N-gram model to split the original abstract syntax tree into
small subtrees to simplify the tree complexity. The traditional
N-gram method is mainly used in natural language to calculate
the similarity between two texts. In our method, we start from
the root node in a tree, and the n nodes connected together
constitute a subtree. Assuming n is 2, then the parent node
and each of its child nodes form a subtree. In this way, we
partition the complex abstract syntax tree into many n-node
subtrees. By performing statistical comparison operations on
these subtrees, we can implement the detection of semantic
clones in a scalable manner while preserving the semantic
information of the program.

To address the second challenge, we design a novel simi-
larity measurement technique to construct feature vectors and
use them to train a machine learning model for efficient code
clone detection. Specifically, given all collected subtrees, we
first classify them into different groups based on the positions
of the subtree nodes. The similarity of each group between two
methods corresponds to a feature, and the similarity scores of
all groups constitute the feature vector. In other words, given
two methods, we can output a feature vector after computing
the similarity scores of all groups. Finally, these feature vectors
are put into a machine learning model for training to obtain
a clone detector for fast and accurate semantic code clone
detection.

We have developed a prototype system namely Goner and
extensively evaluate the system using two prominent datasets:
BigCloneBench (BCB) [13], [14] and Google Code Jam (GCJ)
[15]. The experimental results demonstrate that Goner greatly
improves the accuracy of clone detection compared to ten
state-of-the-art code clone detectors. These detectors include
two token-based methods (SourcererCC [2] and RtvNN [16]),
five tree-based methods (Deckard [8], ASTNN [10], TBCNN
[17], Amain [18], and CDLH [9]), and three graph-based
methods (SCDetector [19], DeepSim [6], and FCCA [20]).
In particular, it performs well in detecting Type-4 clones.
Moreover, compared to an advanced tree-based code clone
detector (i.e., ASTNN), Goner is approximately 51 times faster
during the training phase and around 120 times faster during
the predicting phase.

In summary, this paper provides the following contributions:
• We propose a novel N-gram-like model to transform the

complex tree analysis into simple and efficient subtree
analysis.

• We implement a prototype system, Goner1, a tree-
based semantic code clone detector. Building N-gram-
like model makes Goner suitable for scanning large-scale
code clones.

• We check the ability of Goner by conducting comparative
experiments on BigCloneBench dataset and Google Code

1https://github.com/SiyueFeng99/GonerCode.

Jam dataset. Experimental results validate that Goner
performs better than ten state-of-the-art systems.

Paper organization. The remainder of the paper is organized
as follows. Section II presents the background and motivation.
Section III shows our system. Section IV reports the experi-
mental results. Section V discusses the future work. Section VI
describes the related work. Section VII concludes the present
paper.

II. BACKGROUND AND MOTIVATION

Before introducing our proposed system, it is necessary to
establish a clear understanding of certain definitions that will
be utilized throughout the paper, including definitions of clone
types and code granularity.

A. Clone Type

Code clone is the phenomenon of copying the entire source
code or code fragments. According to the level of similarity,
clone clone is generally divided into the following four types
[21], [22]:

• Type-1 (textual similarity): Code fragments that are
identical, except for variations in white-space, layout, and
comments.

• Type-2 (lexical similarity): Code fragments that are
identical, except for variations in identifier names and
lexical values, in addition to the differences in Type-1
clones.

• Type-3 (syntactic similarity): Code snippets that exhibit
syntactic similarities but at the statement level. Alongside
Type-1 and Type-2 clone differences, these fragments
may have added, modified, or removed statements relative
to one another.

• Type-4 (semantically similarity): Code fragments that
are syntactically dissimilar but implement the same func-
tionality.

To visualize the different types of clones, Figure 1 gives a
showcasing example of clones from Type-1 to Type-4. These
clones illustrate different variations or instances related to the
original method, which calculates the greatest common divisor
of two numbers. The Type-1 code clone is exactly the same
as the original method, nothing has changed. Type-2 code
clone has the same code fragments, but with different identifier
names (i.e., m and n instead of a and b). Type-3 code clone
has the same syntax, but the order of statements, the method
name, and some variable types are different. Type-4 code clone
replaces the while loop with a function call, implementing
the same functionality with a completely different syntax
structure. This type of code clone is also called semantic
code clone and is the most difficult to discover since the code
structure may change a lot.

B. Code Granularity

We also give a definition of the granularity of the code,
which refers to the size of code fragments in the whole study.
Depending on the size of the granularity unit, it can be divided
into Token, Line, Function, File, and Program. A line consists
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//Type-1

private long gcd(long a, long b) {

    while (b != 0) {

        long t = a % b;

        a = b;

        b = t;

    }

    return a;

}

//Type-3

public static int calculateGCD(int 

a, int b) {

    while (b != 0) {

        int t = a;

        a = b;

        b = t % b;

    }

    return a;

}

//Type-2

private long gcd(long m, long n) 

{

    while (n != 0) {

        long t = m % n;

        m = n;

        n = t;

    }

    return m;

}

//Original 

private long gcd(long a, long b) {

    while (b != 0) {

        long t = a % b;

        a = b;

        b = t;

    }

    return a;

}

//Type-4

public static int GCD(int a, int 

b) {

if (b == 0) return a;

return GCD(b, a % b);

}

Fig. 1. Examples of different clone types

of multiple tokens, and many lines in turn make up functions.
A program is a set of files encompassing functions. From the
largest granularity program-level, to the smallest granularity
token, code cloning can occur on any granularity unit. Since
cloning of entire files or programs rarely occurs, file-level and
program-level are too coarse on code clone detection. While
the clone pairs detected at line-level and token-level may not
hold significant meaning (e.g., simple statements such as ‘int
i = 0;’ and ‘int j = 0;’ could be identified as a clone pair).
While the clone at function-level can guarantee the cloning of
complete functions, so we use function-level as the processing
granularity.

C. Motivation

To illustrate more clearly how our approach is proposed,
we present a simple example in this part. Figure 1 shows that
both Original and Type-4 methods implement the functionality
of calculating the GCD of two numbers by different syntactic
structures, which is a typical semantic code clone.

The traditional N-gram method is mainly used in natural
language to calculate the similarity between two texts. N-gram
slices the strings by length n, and all substrings of length n
in the original sentence are obtained. The distance between
two texts is calculated by counting the number of identical
substrings. The closer the distance, the more similar the two
sentences are. For two sentences S and T, N-gram defines the
distance of two sentences as follows:

Distance = |GN(S)|+ |GN(T)| − 2× |GN(S) ∩ GN(T)| (1)

where GN(S) (or GN(T)) denotes the set of substrings obtained
by N-gram segmentation of length N for sentence S (or T).
|GN(S)| and |GN(T)| denote the number of substrings in
the two sentences, respectively. |GN(S)∩GN(T)| denotes the
number of common substrings in the two sentences.
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Fig. 2. substrings obtained by the ’while (b != 0)’ statement

We first illustrate how to calculate the distance between
these two methods using traditional N-gram approach. If we
set n as 2, the statement ‘while (b != 0)’ will be partitioned
into five substrings as shown in Figure 2. After collecting
all substrings from the Original method and Type-4 method
shown in Figure 1, we find that the Original method has
a total of 37 substrings, and Type-4 method has a total
of 31 substrings. In addition, they have 10 substrings in
common. In other words, |GN(S)| = 37, |GN(T)| = 31, and
|GN(S)∩GN(T)| = 10. The distance between the two methods
calculated using the traditional N-gram method is 37+31-2×10
= 48.

In order to consider the program information of methods,
we first extract the corresponding abstract syntax trees and
then use a 2-gram-like approach to compute the distance.
Figure 3 shows the abstract syntax tree corresponding to the
Type-4 method in Figure 1. Specifically, we partition the
abstract syntax tree into some subtrees with two nodes. In
fact, in this case, what we analyze is the edges of the tree.
After statistical analysis, we observe that original method
has 49 two-node subtrees (i.e., edges), and Type-4 method
has 35 two-node subtrees. In total, there are 27 common
subtrees. In other words, |GN(S)| = 49, |GN(T)| = 35, and
|GN(S) ∩ GN(T)| = 27. The resulting similarity distance is
49+35-2×27 = 30, which is smaller than 48 calculated by
using traditional N-gram method on source code.

In one word, the similarity distance calculated using tree-
based 2-gram-like model is smaller than that obtained using
traditional code-based 2-gram model. With a certain threshold
value, tree-based 2-gram-like model may detect the code pair
of Original and Type-4 methods in Figure 1 as a code clone.
In other words, using the principle of N-gram to segment
the tree into subtrees with n nodes may hold the potential to
identify semantic code clones. Building upon this observation,
we develop a tree-based N-gram-like model for semantic code
clone detection.

III. SYSTEM

In this section, we present our code clone detection system,
which we refer to as Goner.

A. Overview

As described in Figure 4, Goner consists of four main
phases: AST Generation, AST Division, Feature Extraction,
and Classification.

• AST Generation: The purpose of this phase is to statically
analyze the input program and obtain an abstract syntax
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tree (AST) for each code. The input to this phase is a
method while the output is an AST.

• AST Division: The purpose of this phase is to build a
N-gram-like model to partition the original AST into
subtrees. The input of this phase is an AST while the
output is the number of various subtrees.

• Feature Extraction: The purpose of this phase is to
construct a feature vector by calculating the similarity
of different types of subtrees. The input of this phase
is subtrees of two methods while the output is a feature
vector.

• Classification: The purpose of this phase is to train a code
clone detector by using some feature vectors and then use
the detector to find code clones. The input of this phase
is a feature vector of two methods while the output is the
corresponding label (i.e., clone or not clone).

B. AST Generation

In this paper, our goal is to apply the N-gram principle
to partition the AST of each method into subtrees. Therefore,
we need to parse the method to obtain the corresponding AST.
Given that our experimental dataset (i.e., BigCloneBench [13],
[14] and Google Code Jam [15]) comprises Java code, we
leverage Javalang [23] for conducting static analysis.

Good   rain   knows   its   time   right,   it   will   fall   when   comes   spring.

BinaryOperati

on

MemberRefere

nce

MemberRefere

nce

a

Identifier

b

Identifier

%

Operator

BinaryOperation Operator

BinaryOperation MemberReference

BinaryOperation MemberReference

MemberReference Identifier

MemberReference Identifier

Assignment

MemberRefere

nce

Operator

Assignment

MemberRefere

nce

MemberRefere

nce

Assignment

Operator

MemberRefere

nce

Assignment
MemberRefere

nce
Identifier Assignment

MemberRefere

nce
Identifier

A Subtree in Figure 2 Subtrees divided by 2-gram Subtrees divided by 3-gram

Fig. 5. The string divided by 2-gram

In order to give all nodes a distinct type, after collecting
the AST of all methods in BigCloneBench and Google Code

Jam datasets, we perform a deep analysis to count the types
of all nodes in the AST. After analysis, for nodes except
leaf nodes, we identify a total of 57 distinct types. We use
the type names to represent these nodes. For leaf nodes, we
first tokenize all methods in BigCloneBench and Google Code
Jam datasets and then count the types of all tokens. From the
results, we find that the vast majority of tokens fall into the
14 types, including “Annotation”, “BasicType”, “BinaryInte-
ger”, “Boolean”, “DecimalFloatingPoint”, “DecimalInteger”,
“HexFloatingPoint”, “HexInteger”, “Identifier“, “Keyword”,
“Modifier”, “OctalInteger”, “Operator”, and “Separator”. So
we use these 14 types as token types. For the rare tokens that
do not fall into one of these 14 types, we classify them as
“Null” type. In this way, we get a total of 15 token types. The
AST presented in Figure 3 is derived from parsing the GCD
method depicted in Figure 1. The leaf nodes are represented by
the types corresponding to the token values in the leaf nodes,
shown in red in figure 3.

Algorithm 1 AST Division
Input: an AST and the value of n in the n-gram.
Output: SubtreeDict, the mapping of each subtree to its num-
ber.
1: SubtreeList← []
2: if n == 2 then
3: GET2GRAM( ASTRootNode, SubtreeList)
4: end if
5: if n == 3 then
6: path← []
7: GET3GRAM 1(ASTRootNode, SubtreeList, path)
8: GET3GRAM 2(ASTRootNode, SubtreeList)
9: end if

10: for each subtree in SubtreeList do
11: if subtree in SubtreeDict then
12: SubtreeDict[subtree]← SubtreeDict[subtree] + 1
13: else
14: SubtreeDict[subtree]← 1
15: end if
16: end for

C. AST Division

The principle of N-gram segmentation is relatively simple.
For a string of length l, it is to divide the ith word and the
i+1, i+2 ... i+ n− 1 words into a substring. Starting from
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the first word, it has been divided until the l−nth word, so a
total of l−n substrings can be obtained. For example, Figure
5 shows a string that needs to be divided, and each framed
place is the substring obtained by the 2-gram division.

After a series of processing in the AST generation phase,
we obtain the AST represented by node types. Similarly, the
segmentation principle of N-gram is applied to AST. Starting
from the root node, the connected n nodes are the subtrees
obtained by division. For example, the first part of Figure
6 represents a subtree of Figure 3. If we perform a 2-gram
partition on this subtree, the subtrees obtained is shown in the
second part of Figure 6, and if we perform a 3-gram partition
on the subtree, the subtrees obtained is shown in the third
part of Figure 6. Then we count the number of each subtree
and record it. For example, there are three different subtrees
in the second part of Figure 6: one for BinaryOperation-
Operator, two for BinaryOperation-MemberReference, and
two for MemberReference-Identifier.

Algorithm 2 Get2gram
Input: a node in AST, SubtreeList which contains
subtrees.
1: function GET2GRAM(node, SubtreeList)
2: for each childnode in node.children do
3: Add the (node, childnode) into the SubtreeList
4: GET2GRAM(childnode, SubtreeList)
5: end for
6: end function

Algorithm 3 Get3gram 1
Input: a node in AST, SubtreeList which contains subtrees, and path from
the root node to the leaf node.
1: function GET3GRAM 1(node, SubtreeList, path)
2: Add the node into the path
3: if path.lenth >= 3 then
4: Add the (path[−3], path[−2], path[−1]) into the

SubtreeList
5: end if
6: for each childnode in node.children do
7: GET3GRAM 1(childnode, SubtreeList, path)
8: end for
9: Pop path[−1] from the path

10: end function

We describe the AST segmentation algorithm in Algorithm
1. The input to the algorithm is an AST and the value of n in
the n-gram. The output is subtrees after splitting using N-gram
and the mapping of each subtree to its number, which we call
SubtreeDict. The Get2gram method, the Get3gram 1 method,

and the Get3gram 2 method are described in Algorithms 2-
4. The functionality of Get2gram method is to extract the
subtrees obtained from the 2-gram division of the AST. The
functionality of Get3gram 1 method is to extract the subtrees
of the relation parent-child-grandchild (such as the two in the
bottom row of the third part in Figure 6 ) obtained from the 3-
gram division. The functionality of Get3gram 2 method is to
extract the subtrees of the relation parent-child-child (such as
the three in the top row of the third part in Figure 6) obtained
from the 3-gram division.

Algorithm 4 Get3gram 2
Input: a node in AST, SubtreeList which contains
subtrees.
1: function GET3GRAM 2(node, SubtreeList)
2: for two different child nodes of node: childnode1, childnode2 do
3: Add the (node, childnode1, childnode2) into the

SubtreeList
4: end for
5: for each childnode in node.children do
6: GET3GRAM 2(childnode, SubtreeList)
7: end for
8: end function

D. Feature Extraction

After processing in the AST division stage, an AST is
split into different numbers of subtrees with n nodes. We
then classify each subtree into different groups based on the
position of subtree nodes. A subtree with n nodes can belong
to n groups according to their positions.

When n is two, a node type can be in the first position
or in the second position. So in addition to the types of leaf
nodes, each type can be divided into two groups according
to the position. Since the leaf nodes are only in the second
position, the type of each leaf node is classified into one
group. As shown in Figure 7, BinaryOperation can be divided
into two groups: BinaryOperation at the first position and
BinaryOperation at the second position. For example, since
BinaryOperation is at the second position of the subtree
IfStatement-BinaryOperation, this subtree is classified into
the group of BinaryOperation at the second position. When
BinaryOperation is in the first position, there are three kinds of
subtrees that belong to this group, BinaryOperation-Operator,
BinaryOperation-MemberReference, BinaryOperation-Literal.
When BinaryOperation is in the second position, there are
four kinds of subtrees that belong to this group. The num-
ber of different subtrees in each group is counted to form
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the position vector of the group. That is, each number in
the position vector is actually the number of times each
subtree in this group appears in the AST. For example,
the position vector (2, 3, 1) in the Figure 7 indicates that
the subtree BinaryOperation-Operator appears two times,
BinaryOperation-MemberReference appears three times, and
BinaryOperation-Literal appears one time.
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Fig. 8. The position vectors of parent-child-grandchild relationship generated
by 3-gram

However, for the subtree obtained by 3-gram partitioning,
the grouping is a bit different from that of 2-gram. Since the
three nodes can be a parent-child-grandchild relationship, such
as the two in the bottom row of the third part in Figure 6. It
can also be a parent-child-child relationship, such as the three
in the top row of the third part in Figure 6. In that case, the
relationship of the three nodes needs to be considered first
when we group them.

If the relationship of three nodes is parent-child-grandchild,

then similar to the 2-gram, the subtree is grouped according
to the position of each node. A node type will then be divided
into three groups. As shown in Figure 8, there are two kinds
of subtrees that belong to the group that BinaryOperation at
the first position, ten kinds of subtrees belong to the group
that BinaryOperation at the second position, and four kinds
of subtrees belong to the group that BinaryOperation at the
third position.
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Fig. 9. The position vectors of parent-child-child relationship generated by
3-gram

If the relationship of three nodes is parent-child-child, there
is no difference between the two child nodes in the positional
relationship, they both belong to the second position. In this
way, the first subtree and third subtree in the top row of
the third part in Figure 6 are actually the same kind of
subtree. Then the node types in this relationship are divided
into two groups according to position, which are the first
position and the second position. As shown in Figure 9, the
subtree MethodInvocation-MemberReference-BinaryOperation
contains BinaryOperation in the second position, so this
subtree is grouped into the BinaryOperation in the second
position. As we can see in the Figure 9, the group BinaryOp-
eration in the first position has four kinds of subtrees, and the
group BinaryOperation in the second position has five kinds
of subtrees.

According to such a principle, we aggregate the subtrees
obtained from all AST splits and group these subtrees. Each
subtree has a fixed position, and each group has a fixed number
of subtrees. The algorithm for subtree grouping is described in
Algorithm 5. The input of Algorithm 5 is the subtrees obtained
by AST division of all methods, and the output is the order of
all subtrees after grouping, which we call SubtreeOrderList,
and the number of subtrees contained in each group, which
we call GroupLenthList. We create a reverse index for the
SubtreeOrderList and let each subtree point to its index to get
the PositionDict.

All subtrees obtained by partitioning the AST of a method
are classified and the number of various subtrees contained
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in each group is counted to form a vector, which is the
position vector of this group. That is, each number in the
position vector is actually the number of times each subtree
in this group appears in the AST. For example, in Figure 7,
Figure 8, and Figure 9, the vector below each group is the
position vector of the corresponding group. Different n means
different number of groups, and subsequently different number
of position vectors. For example, when n is 2, there are 116
position vectors in total. When n is 3, there are 268 position
vectors in total.

Algorithm 5 Get PositionDict and GroupLenthList
Input: AllSubtrees obtained by AST division of all methods.
Output: SubtreeOrderList, the order of all subtrees after group-
ing and GroupLenthList, the number of subtrees contained in each
group.
1: for each subtree in AllSubtrees do
2: if the relationship of nodes in subtree is parent-child-grandchild

then
3: parent← subtree[0]
4: child← subtree[1]
5: grandchild← subtree[2]
6: Add the subtree into the group0[parent]
7: Add the subtree into the group1[child]
8: Add the subtree into the group2[grandchild]
9: else if the relationship of nodes in subtree is parent-child-child

then
10: parent← subtree[0]
11: child1← subtree[1]
12: child2← subtree[2]
13: Add the subtree into the group3[parent]
14: Add the subtree into the group4[child1]
15: if child1! = child2 then
16: Add the subtree into the group4[child2]
17: end if
18: end for
19: for each group in (group0, group1, group2, group3, group4) do
20: for each node in group do
21: for each subtree in group[node] do
22: Add the subtree into the SubtreeOrderList
23: end for
24: Add the group[node].lenth into the GroupLenthList
25: end for
26: end for

while ( b  != 0  )(  b !=  0
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Fig. 10. Calculate the similarity of two methods to obtain the feature vector

According to this operation, after obtaining the position
vectors of all groups of each method, the similarity calculation
is performed on the vectors of the same group corresponding
to two methods. The similarity results of all groups compose
the similarity vector of the two methods. Figure 10 shows
the similarity calculation for the position vectors of the same
group of two methods. Take the first vector for similarity
calculation and get a similarity result. Then take subsequent
vectors until all vectors are taken. When n is 2, there are 116
groups in total, so the number of similarity calculation results
obtained is 116. These 116 results form a 116-dimensional

similarity vector, which is the feature vector of the two
methods. When n is 3, the feature vector of the two methods is
268-dimensional. As for the similarity calculation method, we
evaluate the similarity between two vectors by using cosine
similarity, which calculates the cosine of the angle between
the two vectors. The calculation formula is as follows:

cos(θ) =
Σn

i=1AiBi√
Σn

i=1A
2
i

√
Σn

i=1B
2
i

(2)

E. Classification

In the classification phase, we choose to use machine
learning models for the classification of code pairs because
of their strong classification capability. Machine learning has
a wide range of applications in many fields such as data
analysis and mining, pattern recognition, bioinformatics, and
so on. Specifically, we select four common machine learning
algorithms (i.e., k-nearest neighbor (KNN) [24], random forest
(RF) [25], decision tree (DT) [26], adaptive boosting (Ad-
aboost) [27], gradient boosting decision tree (GDBT) [28],
and extreme gradient boosting (XGBoost) [29]) to examine
the detection effectiveness of Goner. These algorithms are
the more popular machine learning algorithms that are often
used for classification problems. After obtaining the similarity
vectors on all code pairs including clone pairs and non-clone
pairs, we treat these vectors with labels as training data for a
machine learning model employed as a code clone detector.
Given a new similarity vector obtained from a pair of codes
to be detected, the detector can output the corresponding label
(i.e., clone or not clone).

IV. EXPERIMENT

In this section, we strive to address the following research
questions:

• RQ1: how Goner performs under various algorithm
choices and different n of N-gram?

• RQ2: How effective is Goner in detecting different types
of code clones compared to other code clone detectors?

• RQ3: Does the consideration for location information
in the feature extraction phase have a positive effect on
detection?

• RQ4: Does the use of machine learning algorithms have
a positive effect on detection?

• RQ5: What is the runtime overhead during the process
of code clone detection by Goner?

• RQ6: Why is Goner effective in detecting semantic code
clones?

A. Experimental Settings

1) Dataset
To answer the six questions posed above, we run our

experiments on two datasets. The first dataset is a widely
used dataset (i.e., BigCloneBench [13]). It contains more than
eight million labeled clone pairs with code granularity at the
function level, which can well meet the needs of our experi-
ments. Since it is difficult to distinguish the boundary between
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Type-3 and Type-4, after textual and lexical normalization of
these two clone types, the similarity at line-level and token-
level is calculated. Type-3 and Type-4 are further divided into
three sub-categories according to the size of similarity. These
sub-categories include: i) Strongly Type-3 (ST3), displaying
a similarity range of 70-100%, ii) Moderately Type-3 (MT3),
displaying a similarity range of 50-70%, and iii) Weakly Type-
3/Type-4 (WT3/T4), displaying a similarity range of 0-50%.

The second dataset is Google Code Jam [15], an online
programming competition from Google that contains 1,669
projects pertaining to 12 distinct competition problems. The
different competition projects that solve different problems are
semantically and syntactically dissimilar to each other, so we
regard them as non-clone pairs. Different projects for the same
competition problem are written by different programmers, so
they are syntactically different and semantically similar, and
we treat them as semantic clone pairs.

For the BigCloneBench dataset, we randomly select 270,000
clone pairs from the extensive pool of eight million clone
pairs to ensure that an equal number of non-clone code pairs,
amounting to 270,000, are included in our analysis. The
clone pairs we selected include 48,116 clone pairs of Type-
1 (T1), 4,234 clone pairs of Type-2 (T2), 21,395 clone pairs
of Strongly Type-3 (ST3), 86,341 clone pairs of Moderately
Type-3 (MT3), and 109,914 clone pairs of Weakly Type-3/Type-
4 (WT3/T4). For the Google Code Jam dataset, we selected all
275,570 semantic clone pairs and randomly selected 270,000
non-clone pairs from a pool of 1,116,376 non-clone pairs.

To conduct training and testing, we employ the ten-fold
cross-validation method. It means that we divide the entire
dataset into ten equal parts, and each part is used as the testing
set while the remaining parts are used for training the model.
We record F1, precision, and recall for each validation, and
take the average of ten records as the final clone detection
metrics.

2) Implementations
During the AST generation phase, we use the Python library

Javalang [23] to obtain the abstract syntax tree of the methods
since the experimental dataset consists of code written in
the Java programming language. The cosine similarity is
calculated using the Python library Sklearn [30] in the feature
extraction stage. In the classification stage, Sklearn is also
used to implement KNN, Random Forest, and Decision Tree
classification algorithms. All the experiments were carried out
on a server running the Ubuntu 20.04.2 LTS operating system,
with 64GB RAM and an Intel (R) Xeon (R) Gold 6248R CPU
with 8 cores.

3) Comparative Systems
There are already various methods for detecting code clones,

but most of them are not publicly available. Therefore, we
select the following state-of-the-art and open source code clone
detection methods to measure the advantages and disadvan-
tages of Goner by comparing the detection results and the
running overhead.

SourcererCC [2]: a popular token-based code clone detector
with the capability to handle large-scale code. Deckard [8]:
a popular AST-based code clone detector which clusters the
vectors of AST subtree. RtvNN [16]: a popular RNN-based

code clone detector which encodes source code tokens and
ASTs. ASTNN [10]: a popular AST-based code clone detector
which splits a large tree into certain statement trees and
trains an RNN model to detect code clones. TBCNN [17] :
a popular clone detection detector based on AST and utilizes
convolutional neural network. CDLH [9] : a popular clone
detection method based on AST and utilizes long short-term
memory network. Amain [18] : a popular clone detection
detector based on AST and builds Markov Chains Model.
SCDetector [19] : a popular graph-based code clone detector
which extracts the CFG of a method and apply centrality
analysis to detect code clones. DeepSim [6] : an advanced
clone detection tool that employs a deep neural network and
based on graph. FCCA [20] : an advanced clone detection tool
based on graph that uses hybrid code representations with high
accuracy.

For the parameter settings2 of these tools, we select the
parameters reported in their published papers since they can
perform best with these parameters.

4) Metrics
As in previous work [6], [19], we adopt the widely used

metrics, Precision (P), Recall (R), and F-measure (F1), to
measure the detection effectiveness of Goner.

B. RQ1: Contrast of Diverse Methods

To illustrate the effectiveness of different methods and
different parameters in detecting clones, we set up comparison
experiments in this subsection. We select 270,000 clone pairs
and an equal number of 270,000 non-clone pairs from BCB
as we mentioned in the Experimental Settings to complete
the experiment. In the subtree segmentation stage, n is taken
as two and three, respectively. When n is taken as two, 116-
dimensional similarity features will be obtained in the feature
extraction stage. When n is three, 268-dimensional similarity
features will be obtained. The similarity features are put into
various machine learning algorithms, including KNN, RF, DT,
Adaboost, GDBT, and XGBoost. They are leveraged to train
and save the models. As for the selection of parameters, we
choose one and three as the neighbor parameters of KNN
because these two numbers are the most commonly used.
Similar to [18], [31], [32], we use the default parameters for
RF, Adaboost, GDBT, and XGBoost.

From Figure 11, it can be seen that both F1 score, precision
and recall are the best results obtained by performing 2-
gram segmentation on AST using XGBoost to train similarity
features. For example, when 2-gram is selected for subtree
segmentation, the F1 scores of Random Forest algorithm,
Decision Tree algorithm, 1NN algorithm, 3NN algorithm, Ad-
aboost algorithm, GDBT algorithm, and XGBoost algorithm
are 98.15%, 96.34%, 97.39%, 96.87%, 97.67%, 96.53%, and
98.80%, respectively. when 3-gram is selected for subtree
segmentation, the F1 scores of these four machine learning al-
gorithms are 98.11%, 96.39%, 97.34%, and 96.78%, 97.62%,
96.49%, 98.77%, respectively. The random forest algorithm is
actually a combination of multiple decision trees. XGBoost

2The parameters are on website: https://github.com/SiyueFeng99/GonerCode.
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Fig. 11. F1 score, Precision and Recall of clone detection using different machine learning classification methods and different parameters

is an integrated learning method that implements classifica-
tion and regression tasks by building multiple decision trees.
Therefore, the prediction results of XGBoost algorithm are
relatively outstanding. However, the running time of XGBoost
is relatively high compared to RF, which also has ideal
detection results. For example, XGBoost takes 113.52 seconds
to complete the training phase, while RF takes only 87.98
seconds to complete. Under the premise of ensuring similar
detection results, using RF can be more scalable. Therefore,
we choose to use RF to complete the subsequent comparison
experiments.

The difference between the 2-gram and 3-gram effects is
not significant. In fact, when we adopt 2-gram to extract the
subtrees, we can obtain 116 position vectors and the largest
dimension is 34. For 3-gram, the number of position vectors
we obtained is 268 and the largest dimension is 337. In the
AST division phase, 2-gram takes 12 seconds to complete the
operation on 73,319 files, while 3-gram takes 76 seconds to
complete it, almost triple the time. In the feature extraction
phase, 2-gram takes only 2.5 seconds to extract the similarity
vectors of one million code pairs, while 3-gram takes 4.45
seconds to complete. In other words, 2-gram model consumes
less runtime and requires less memory. Therefore, we use 2-
gram to commence our comparative experiment.

The answer to RQ1: Goner can achieve ideal detection
effectiveness by using 2-gram in the subtree segmentation
stage and RF algorithm in the classification stage.

C. RQ2: Overall Effectiveness

In this subsection, we discuss the overall performance of
Goner in detecting code clones compared to ten state-of-the-
art code clone detectors. From the experimental results in the
previous subsection, it can be seen that the detection effect of
using 2-gram in the subtree segmentation stage and using the
RF algorithm in the classification stage is ideal, so in this part
we use 2-gram and Random Forest algorithm to complete the
comparison.

1) Results on GCJ
First, we evaluate the effectiveness on the GCJ dataset. As

we mentioned in the Experimental Settings, all clone pairs
in the GCJ dataset are semantic clones. The comparative
detection results of ten comparative systems and Goner are
shown in Table I.

As can be seen from the results in the Table I, Goner
achieves a recall, precision, and F1 score of 92%. Compared
to other clone detection tools, Goner’s recall and F1 scores are
highest, the precision is higher than most comparison tools.

For Token-based approaches, SourcererCC has high pre-
cision but very poor recall. This is because SourcererCC
calculates similarity by counting the number of tokens that
are identical for two methods. The similarity between two
methods, M1 and M2, denoted as S(M1,M2), is calculated
by dividing the count of identical tokens in M1 and M2 by
the maximum number of tokens present in either M1 or M2.
Due to the consideration of only token-level information in the
analysis, semantic clones are not detected, leading to a low
recall. RtvNN has high precision but low recall. According to
findings from Zhao et al. [6], the computed distances using
RtvNN is at least 2.0 and at most 2.8. When the distance
threshold is reduced to achieve a precision of 90%, the recall
rapidly decreases to less than 10%. Therefore, RtvNN cannot
have high recall and precision at the same time.

For Tree-based approaches, Deckard parses the program
to obtain AST, and then the feature vectors of each subtree
within the AST are clustered using predefined rules to identify
code clones. However, in the process of generating abstract
syntax trees by the parser, we found that over 50% of the code
clone pairs cannot be detected due to different tree structures,
so the recall is low. Among the tree-based comparison tools,
CDLH is another tool that is not very effective in detecting
semantic clones. That’s because it utilizes an LSTM network,
which is trained to learn representations encompassing hash
functions, structural information, and code fragments, which
are lexical and syntactic features of the code, so the effect
of detecting semantic clones is not ideal. In contrast, TBCNN
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TABLE I
THE RESULTS OF CLONE DETECTION CONDUCTED ON GCJ AND BCB

DATASETS

Group Method GCJ BCB
R P F1 R P F1

Token SourcererCC 0.11 0.43 0.17 0.07 0.98 0.14
RtvNN 0.90 0.20 0.33 0.01 0.95 0.01

Graph
SCDetector 0.87 0.81 0.82 0.92 0.97 0.94
DeepSim 0.82 0.71 0.76 0.98 0.97 0.98

FCCA 0.90 0.95 0.92 0.92 0.98 0.95

Tree

Deckard 0.44 0.45 0.44 0.06 0.93 0.12
ASTNN 0.87 0.95 0.91 0.94 0.92 0.93
TBCNN 0.89 0.91 0.90 0.81 0.90 0.85
CDLH 0.70 0.46 0.55 0.74 0.92 0.82
Amain 0.91 0.93 0.92 0.97 0.99 0.98

Our tool Goner 0.92 0.92 0.92 0.97 0.99 0.98

and Amain have a better ability to detect semantic clones.
The effectiveness of TBCNN stems from the use of sliding
convolution kernels to capture the structural features of ASTs,
but limited by the problem of missing contextual information
over long distances and the long-term dependence of the
original semantics of the source code, TBCNN does not have
the best detection results. Amain possesses the capability to
detect semantic clones by converting the original AST into
a Markov chain model to extract the structural information
in the AST, and the use of machine learning algorithms also
improves the detection capability of Amain. ASTNN constructs
ASTs of code fragments and splits the entire AST into small
statement trees. Then a recursive encoder is designed to
capture utterance-level lexical and syntactic information and
represent them as utterance vectors. In addition, the use of
neural networks gives ASTNN a high precision, however, AST
segmentation brings the disadvantage of a bit low recall.

For Graph-based approaches, SCDetector analyzes the
centrality of individual basic blocks within the control flow
graph to preserve semantic details, however the detection
effectiveness diminishes due to the decrease in the num-
ber of shared tokens caused by variations in the employed
APIs and discrepancies in graph structures. DeepSim uses
binary matrices to represent variables, basic code blocks,
and the relationships between them. The consideration of
the semantics of the method and the use of deep learning
models enable DeepSim to achieve satisfactory performance on
semantic clone detection. FCCA extracts both tokens, which
are unstructured representations, and the AST and CFG, which
are structured representations of the code. By combining the
comprehensive hybrid code representation with a deep learning
model featuring the attention mechanism, FCCA is equipped to
identify most semantic code clones with the highest precision.

Overall, Goner outperforms other code clone detectors, and
is excellent at detecting most of the semantic code clone pairs
within the Google Code Jam dataset, and has a good ability
to detect semantic clones.

2) Results on BCB
Then, we analyze the F1 score, precision, and recall when

detecting all types of clones on BCB, the comparative detec-
tion results of ten comparative systems and Goner are shown
in Table I.

From the results, it can be seen that Goner outperforms

all our benchmark code clone detectors in both precision and
F1 score. Such results indicate that Goner has an excellent
ability to detect code clones on the BCB dataset. In addition,
compared to the detection results on the GCJ dataset, the
detection precision of almost all comparative systems has
improved. This is because the clone pairs on the GCJ dataset
are all semantic clones, and methods that only rely on the
syntax information of the code will not detect semantic clones
in GCJ well. It is also possible that there are two programs
in the dataset that are syntactically similar but implement
completely different functionality, resulting in low precision.

TABLE II
THE F1, PRECISION, AND RECALL IN DETECTING EACH TYPE OF CLONE

OF Goner

Metrics T1 T2 ST3 MT3 WT3/T4
F1 1.00 1.00 1.00 0.99 0.96

Precision 1.00 1.00 1.00 1.00 0.99
Recall 1.00 1.00 1.00 0.99 0.93

Moving forward, we conduct an analysis of the F1 score,
recall, and precision for each of the five types and compare
their F1 score with advanced code clone detector, and the
comparison results are presented in Table II. Notably, the
performance of Goner is exceptional across all three metrics
for detecting T1, T2, ST3, and MT3, with scores exceeding
99%. In the case of detecting WT3/T4, Goner attains a
remarkable F1 score of 96%, precision of 99%, and recall of
93%. This result proves that Goner’s processing of program
semantic information is effective.

Table III shows the F1 score of different code clone detec-
tors in the detection of five distinct types of code clones. It
can be seen that Goner surpasses our baseline comparison
technique in detecting each of the different types of code
clones. Notably, when it comes to the detection of WT3/T4
code clones, the F1 scores achieved by SourcererCC, RtvNN,
Deckard, ASTNN, TBCNN, and CDLH are 2%, 0%, 2%, 92%,
86%, and 82% respectively, Goner showcases a higher F1
score of 96%. Compared with these tools, Goner greatly
improves the efficiency of detecting WT3/T4 clones. It shows
the effectiveness and superiority of Goner in processing pro-
gram semantic information and detecting semantic clones, and
Goner detects code clones well. Compared with SCDetector,
DeepSim, and FCCA, which can also detect WT3/T4 clones
with good performance, Goner is more scalable than them.
Because they all need GPU to complete the training phase
of the deep neural network, and Goner only needs the CPU
to complete the training of the machine learning model,
in other words, Goner requires fewer computing resources.
Compared with Amain, Goner also performs slightly better
when detecting semantic clones.

The answer to RQ2: Compared with other code clone
detectors, Goner is excellent in detecting code clones on both
GCJ dataset and BCB dataset, especially in detecting semantic
clones.

D. RQ3: The Significance of Position
To illustrate that our algorithm for computing similarity

features based on position information of subtrees is effective
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TABLE III
F1 FOR EACH CLONE TYPE ON BCB

Group Method T1 T2 ST3 MT3 T4

Token SourcererCC 1.00 1.00 0.65 0.20 0.02
RtvNN 1.00 0.97 0.6 0.03 0.00

Graph
SCDetector 1.00 1..00 0.97 0.97 0.94
DeepSim 0.99 0.99 0.99 0.98 0.95

FCCA 1.00 1.00 0.99 0.97 0.95

Tree

Deckard 0.73 0.71 0.54 0.21 0.02
ASTNN 1.00 1.00 0.99 0.98 0.92
TBCNN 1.00 1.00 0.93 0.80 0.86
CDLH 1.00 1.00 0.94 0.88 0.82
Amain 1.00 1.00 0.99 0.99 0.95

Our tool Goner 1.00 1.00 1.00 0.99 0.96

for clone detection, we implement an ablation experiment on
BCB and GCJ datasets using 2-gram. Specifically, we input the
similarity vectors obtained in the feature extraction phase by
considering (i.e., which we called Goner in Table IV) as well
as not considering (i.e., which we called Goner- in Table IV)
position information into the RF machine learning algorithm
for training and testing, respectively. We record their respective
detection results in Table IV.

TABLE IV
RECALL, PRECISION, AND F1 OF GONER CONSIDERING AND NOT

CONSIDERING POSITION INFORMATION IN DETECTING CLONES

Dataset Method Dimension R P F1

GCJ Goner 107 0.92 0.92 0.92
Goner- 58 0.88 0.89 0.89

BCB Goner 116 0.97 0.99 0.98
Goner- 63 0.96 0.98 0.97

From the experimental results recorded in the table, it can
be seen that on the two datasets, the consideration of the
node position information in the subtree has a positive effect
on the detection of code clones. For example, on the GCJ
dataset, the F1 score is 91.94% when we consider the location
information to extract features, and only 89.05% when the
location information is not considered, a decrease of nearly
3%. We believe that the position information of the nodes in
the subtree can largely reflect the structure of the AST, and the
different positional relationships of the two nodes can reflect
the different logical structures of the program, thus containing
different program information. Therefore, the method that
considers positional information can achieve better detection
results. At the same time, we exclude the effect of decreasing
the dimension of the similarity vector on the detection effect
of Goner-. From the results in Section IV-G, it can be known
that even if only the first 58-dimensional vectors of Goner
are retained, better results than Goner- can be obtained. It can
be explained that, compared with Goner-, Goner retains more
semantic information by analyzing the position information of
nodes, so it has a better detection effect.

The answer to RQ3: The consideration for location infor-
mation in the feature extraction phase does have a positive
effect on detection.

E. RQ4: The Significance of Using Machine Learning
To illustrate the improvement in the effectiveness of using

machine learning algorithms for clone detection, this part

compares it to detecting clones using a simple threshold-based
approach. We use 2-gram on the GCJ dataset to extract vectors
of a pair of methods, and then calculate the cosine similarity
between these two vectors. If the similarity result is larger than
the threshold, we will report them as a clone pair, otherwise,
they will be considered as a non-clone pair.

TABLE V
RECALL, PRECISION, AND F1 OF GONER BY USING SIMPLE

THRESHOLD-BASED APPROACH AND MACHINE LEARNING ALGORITHMS
IN DETECTING CLONES

Threshold / ML Method Recall Precision F1
0.6 0.99 0.51 0.67
0.65 0.99 0.51 0.67
0.7 0.98 0.51 0.67
0.75 0.96 0.52 0.68
0.8 0.92 0.54 0.68
0.85 0.85 0.57 0.68
0.9 0.68 0.63 0.65
RF 0.92 0.92 0.92

As shown in Table V, the threshold-based approach achieves
the best F1 score of 0.68 when the threshold is 0.8, but it is still
far below the detection effect of 0.92 obtained by using the RF
algorithm. This result well reflects the excellent superiority of
machine learning algorithms in classification, and the use of
machine learning algorithms can indeed improve the detection
effect of code clones.

The answer to RQ4: The use of machine learning algo-
rithms does have a positive effect on clone detection.

F. RQ5: Scalability

In this subsection, we measure the scalability of Goner by
analyzing the runtime overhead of four phases. From subsec-
tion IV-B, we know that ideal detection results can be obtained
when using 2-gram and the Random Forest algorithm. So
we record the running overheads of the 2-gram and Random
Forest algorithm.

To complete the runtime overhead comparison, we initially
select one million code pairs randomly from the GCJ dataset
to serve as our test data. It was recorded that it took only
2.5 seconds to generate features for one million clone pairs.
Next, we compare the runtime performance of Goner and the
other ten systems. In Table VI, we give the training and testing
overheads of our comparative systems and Goner. The training
time includes both the training time for machine learning and
the time of previous data processing, including the generation
and segmentation of the AST and the extraction of features.

The training overheads of SourcererCC and Deckard are
both zero because they have no training phase. SourcererCC
takes a small number of time to detect clones because it
only analyzes the source code tokens. Deckard also takes
little time to detect clones, but as shown in Tables I and
Table III, its detection performance is not good. RtvNN has
no advantage in running overhead, and its ability to detect
semantic clones is notably limited. In the case of DeepSim,
FCCA, ASTNN, TBCNN, and CDLH, these methods took a
super long time to complete the training phase, and even
though their prediction phase didn’t take an exaggeratedly
long time, it still took longer than Goner. For SCDetector
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TABLE VI
RUNTIME ON ANALYZING ONE MILLION CODE PAIRS

Group Method Training Prediction

Token-based SourcererCC - 16s
RtvNN 5,206s 35s

Graph-based
SCDetector 2,937s 139s
DeepSim 13,545s 34s

FCCA 56,769s 91s

Tree-based

Deckard - 72s
ASTNN 16,096s 2,894s
TBCNN 41,168s 86s
CDLH 45,317s 90s
Amain 1,017s 32s

Our tool Goner 311s 24s

and Amain, although they save a lot of time compared to the
above five tools, they still take more time overhead (i.e., 3,076
seconds and 1,041 seconds) than Goner. For Goner, we only
need to spend about 335 seconds in total (i.e., 311 seconds
for training and 24 seconds for testing) for one million clone-
pair samples detection. In other words, Goner is about 56
times (i.e., 18,990/335=56.7) faster than ASTNN, nine (i.e.,
3,076/335=9.2) times faster than SCDetector, and three (i.e.,
1,041/335=3.1) times faster than Amain.

In summary, Goner has a larger runtime overhead than
the token-based approach (i.e., SourcererCC) because Goner
incorporates the semantics of the program into its analysis
and detection process. However, due to the utilization of
machine learning techniques and n-gram variants to segment
the original abstract syntax tree, Goner has the capability to
detect semantic code clone. In comparison to ASTNN, Goner is
about 51 times (i.e., 16,096/311=51.7) faster in training phase
and 120 times (i.e., 2,894/24=120.6) faster in predicting phase.

The answer to RQ5: Goner only takes about 335 seconds
in total to detect one million clone pairs, it takes less time
than most comparison tools.

G. RQ6: Interpretability

To explore in more depth why Goner has such an excel-
lent performance in detecting semantic clones, in this part,
we analyze the importance of each feature of Goner. The
advantage of using the RF algorithm lies in its interpretability,
as it enables us to gather the importance values of all the 107
features employed in the model. We rank these features by
their weights, and then identify the features that carry more
significance in the detection process. Due to space constraints,
we can only present the top ten features in Table VII. Among
them, “ child” indicates that the node of this type is in the
position of the child node, and “ parent” indicates that the
node of this type is in the position of the parent node.

By observing the ranking of feature weights, we find two
remarkable phenomena. First, the node types that appear in the
top ten retain more semantic information and are therefore
more important. For example, ForStatement connects state-
ments in the body of a for loop, these statements are often a
concentrated representation of the functionality implemented
by a method, containing a wealth of semantic information.
BinaryOperation represents a binary operation (e.g., “a<=0”),
which is usually found in conditional judgments such as If

TABLE VII
TOP TEN FEATURES OF Goner IN DETECTING SEMANTIC CODE CLONES

Rank Feature Name Weight
1 ForStatement child 0.070754
2 StatementExpression parent 0.063626
3 BinaryOperation child 0.060112
4 BasicType child 0.049270
5 ArrayCreator parent 0.042091
6 BinaryOperation parent 0.037299
7 MemberReference parent 0.035472
8 Literal child 0.034041
9 BlockStatement parent 0.033277

10 VariableDeclarator parent 0.032617

statements, For and While conditional judgment statements.
These statements are most likely to be a concentration of
method functionality, with control flow information and rich
semantics. Therefore BinaryOperation is important for the
representation of semantics in methods as it connects different
statements. The nodes connected by ArrayCreator can reflect
the structure information related to the array such as the array’s
type and size, such as “new double[5]”. The same data
structure can reflect the same functionality, so the relevant
information related to arrays plays a crucial role in detection.

Second, nodes of the same type will have different levels
of importance due to their different locations. For example,
ForStatement is ranked first when it is in the child position
and 31st when it is in the parent position. This is because
ForStatement represents the statements related to the For loop.
When ForStatement is a child node, its parent node is usually
the outer nest, which reflects the structure of the method and
thus contains semantic information. When ForStatement is a
parent node, the connected child nodes are statements within
the loop body, which will change according to different loop
requirements. Therefore, ForStatement parent is not as im-
portant as ForStatement child. StatementExpression is ranked
second when it is in the parent position and 21st when it
is in the child position. This is because StatementExpression
can point to different statement types, For example, when
the statement is an assignment statement, the child node of
StatementExpression is Assignment, and when the statement is
a function call, the child node is MethodInvocation. Therefore,
the child nodes connected by StatementExpression in the
abstract syntax tree (AST) can indeed reflect the semantic
information of the method. When StatementExpression is a
child node, its parent node is usually BlockStatement, which
represents a block of statements such as function body, which
is not helpful for the embodiment of method semantics.
Therefore, StatementExpression child is not as important as
StatementExpression parent.

To analyze the contribution of these features more clearly,
we construct similarity vectors of varying lengths (ranging
from 1 to 107) by selecting the top n features in descending
order of importance. Then the F1 scores for clone detection
using similarity vectors of different lengths are recorded in
Figure 12. We find that using only one feature for classification
can achieve an F1 score of 0.7074. With the increasing number
of features, the detecting effect becomes better and better.
When the vector length reaches about 50, the ideal F1 score
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Fig. 12. F1 scores of Tritor when selecting different numbers of features

(0.92) can already be basically achieved, which means that
only the first 50 important features can enable Goner to have
excellent semantic clone detection capabilities.

The answer to RQ6: The extraction of features with strong
semantic properties gives Goner the ability to detect semantic
clones.

V. DISCUSSIONS

Why our method is called N-gram-like model. Our
method is derived from the traditional N-gram method which
is used to segment strings. Therefore, there are both differences
and similarities between them. The difference is that the
division unit of the traditional n-gram method is token, while
the unit of our tree-based N-gram-like model is the node in
the AST. Although the N-gram method and our N-gram-like
model are different in form, they share the same division
principle. They both start from the starting position, divide
the connected n units into groups, and traverse to the last
unit to complete the division. Our method is inspired by the
traditional N-gram method but differs from it. Therefore, our
method is named as Tree-based N-gram-like model.

Why Goner is superior to other approaches. First, the
extraction of the intermediate representation of the program,
the abstract syntax tree, enables Goner to process the semantic
information of the program efficiently. Thus, Goner has a
good ability to detect semantic clones. Second, the use of
N-gram-like model to partition the original abstract syntax
tree makes it easy and convenient for Goner to preserve the
syntactic information embedded in the AST without dealing
with the complex tree structure. Third, we focus on classifying
each subtree according to its positional information, so the
formed features are rich in positional information, which in
turn carry and preserve the semantic features of the program to
a greater extent. Fourth, compared to calculating the similarity
between code pairs directly and determining whether a code
pair is a clone through a threshold, we put the similarity
between code pairs into the machine learning model, which
greatly enhances the accuracy of clone detection. In fact, we
have tried to use N-gram-like to segment the AST to obtain
the features and directly calculate the similarity of the two
programs to determine whether the code pair is a clone by

setting a threshold. The accuracy of this approach is very
bad, demonstrating the effectiveness of classification based on
location information, as well as the effectiveness of machine
learning algorithms for classification.

Threats to Validity. The first threat comes from the dataset
we used to verify validity and scalability. The code pairs in
the BCB dataset, a widely used benchmark dataset for code
clone detection, are manually constructed and classified by
several experts. Differences in code pairs and changes in their
structure are small and can be easily detected. Therefore, the
results obtained by using only the BCB dataset for validation
are biased and not representative of the entire open source
project. To mitigate the impact of the dataset, we added
experiments conducted on the GCJ dataset, which was written
by participating programmers in 12 different competition
problems containing 1,669 projects, closer to the real-world
code situation.

The second threat comes from the logging of time overhead.
Different machine states, such as CPU usage, can affect
the runtime results. The time overhead varies across real-
world scenarios, so we cannot obtain absolutely accurate and
generalized data. To mitigate this threat, we ran the experiment
ten times and recorded the time overhead for each time. The
average time overhead for ten runs is reported in the paper,
rendering our results more generalizable.

Future work. This system has universal applicability in
programming languages. While our experiments primarily
focused on Java code, it is important to note that extending
the capabilities of our approach to code written in languages
other than Java is feasible with some modifications. Indeed,
it can be adapted to other languages by simply changing its
static analysis tool according to the programming language.
In addition, through the observations from Figure 12, we find
that the top 50 features can achieve the ideal detection effect.
Therefore, we may use different feature selection techniques
in the future to make further trade-offs to make Goner more
scalable while maintaining the existing good detection effect.

VI. RELATED WORK

We focus on the current researches about clone code detec-
tion in this section. According to the different representations
generated by the source code, existing clone code detection
methods can be divided into five categories, text-based, token-
based, tree-based, graph-based and metric-based.

For text-based clone detection techniques [33]–[40], these
techniques compare the similarity of two codes by considering
the source code as a series of lines or strings. Johnson [33]
extracts fingerprints on the source code and then matches the
corresponding fingerprints to detect clones. Roy et al. [35] first
normalizes the clone and then matches the longest common
subsequence of the code text. These methods do not consider
the syntax and semantics of the program and only detect those
clones with high text similarity by string matching, making it
difficult to find semantic clones.

For token-based clone code detection techniques [1], [2],
[41]–[45], these methods perform lexical analysis of the pro-
gram code to convert the source code into token sequences and
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detect code clones by finding duplicate token subsequences.
SourcererCC [2] calculates similarity by counting the number
of tokens that are identical for two methods. However, the
approach based on token cannot detect semantic clones.

For tree-based clone code detection techniques [8]–[12],
[46], [47], adopt a parsing process to transform the program
into a tree structure, capturing its semantic information, and
then perform detection using tree matching. Deckard [8]
can use locality sensitive hashing (LSH) to cluster similarity
vectors within the AST to detect clones for any grammatically
specified language. CDLH [9] first use a binary tree instead
of the original AST, and then uses Tree-LSTM [48] to encode
the tree into a vector to measure similarity. In the case of
ASTNN [10], the abstract syntax tree (AST) is divided into
multiple subtrees according to predefined rules, and uses a
bidirectional RNN model to integrate the vectors encoded by
the subtrees into the final vector representation. Jo et al. [12]
using a tree-based convolutional neural network (TBCNN) to
perform clone detection. The tools based on tree are generally
good at detecting semantic clones. However, tree processing
and tree matching take a long time, so the scalability is poor.

Graph-based code clone detection techniques [3]–[7], [19],
adopt a parsing process to convert the program into various
graph representations, just like PDG or CFG, these techniques
utilize subgraph matching algorithms [3], [4] to detect code
clones. For DeepSim [6], the control flow and data flow of the
code are transformed into semantic representations encoded as
high-dimensional sparse matrices, which are converted into a
classification problem of binary feature vectors to detect code
clones. CCGraph [7] filters the reduced PDG using two steps
and finally uses an approximate graph matching algorithm to
identify the clone pairs. For SCDetector [19], the CFG is
treated as a social network, and the concept of centrality is
applied to each block within the graph. Similar to the tree-
based approach, the use of graph isomorphism and graph
matching makes the graph-based approach poorly scalable.

Metric-based methods [49]–[57] exploit the properties of the
code to assess the degree of similarity. Metrics can be obtained
from intermediate representations such as tree or graph, for
example, Balazinska et al. [50] use AST as metric to detect
code clones. Metrics can also be directly derived from code
itself, Patenaude et al. [51] detect clones on metrics of different
categories (e.g., classes, hierarchies, and couplings). Oreo [52]
has high precision and recall because it combines machine
learning, software metrics, and information retrieval.

The methods based on text and token have the least run-
time overhead, but cannot detect semantic clone. Graph-based
methods have the capability to detect semantic clones, but
obtaining the graph structure typically requires the code to
be compiled, which cannot be carried out on some fine-
grained code fragments. The tree-based approach is being
widely used because it can preserve the semantic information
without compiling it. Even for a small code snippet, the
resulting AST can be quite intricate. So there are some hybrid
code representation methods to detect clones that have good
scalability while ensuring accuracy. For example, FCCA [20]
selects multiple code representations, including ASTs, CFGs,
and sequence tokens, to fuse into a hybrid representation, an

attention mechanism was employed to identify code clones.

VII. CONCLUSION

This paper presents a novel and scalable AST-based ap-
proach namely Goner for detecting semantic code clones. To
avoid heavy-weight tree matching, Goner builds N-gram-like
model to segment the original AST, and generates features
based on the location information of subtrees with the aim
of efficient code clone detection. We test Goner on the
BigCloneBench dataset and Google Code Jam dataset. Based
on the experimental results, it is evident that Goner surpasses
ten current state-of-the-art code clone detectors in terms of
the effectiveness of detecting semantic clones. Compared to
another state-of-the-art tree-based semantic code clone detec-
tor (i.e., ASTNN) in terms of scalability, Goner is about 51
times faster in training phase and 120 times faster in predicting
phase.
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