
IEEE TRANSACTIONS ON RELIABILITY 1

An Empirical Study on Android Malware
Characterization by Social Network Analysis

Haojun Zhao, Yueming Wu, Deqing Zou, Hai Jin

Abstract—Android malware detection has always been a hot
research field. Prior work has validated that graph-based An-
droid malware detection methods are effective, and several works
have been proposed to regard the call graph of an app as
a social network for more efficient classification. However, a
social network contains many properties and there is a lack of
perception that which social network properties are more useful
in differentiating malware from benign apps. Therefor, in this
paper, we present the first empirical study to analyze Android
malware by different social network properties. We conduct
extensive statistical analysis on 100,000 Android apps and apply
three feature ranking methods to research the ability of 57 social
network properties on malware detection. Moreover, in an effort
to validate the effectiveness of these social network properties
on malware detection, we implement a tool called SNADroid by
using these properties as features for models training and use
it to complete classification. Our study reveals that the Average
Triangles Number is the most impactful social network property
in distinguishing malware from benign apps. Combined with the
experimental results and in-depth analysis, we present the 15
most effective features for graph-based malware detection using
social properties as a guideline.

Index Terms—Android Malware, Social Network Analysis,
Empirical Study.

I. INTRODUCTION

SOCIAL networks have fundamentally changed how people
produce and consume online information, further reducing

access barriers and enabling new forms of interaction between
people, things, information, and services. Social network anal-
ysis is a way to understand how the network interacts. As
a result of the high effectiveness and scalability of social
network analysis, it has been used in many study fields, such
as biological networks [1], transportation networks [2], and
affiliation networks [3]. Social network analysis is becoming
more and more popular, and several works [4]–[7] have been
proposed to use it for Android malware analysis.

Existing Android malware detection methods extract dif-
ferent types of features from apps and utilize them to train

Haojun Zhao, Deqing Zou are with National Engineering Research Center
for Big Data Technology and System, Services Computing Technology and
System Lab, Hubei Engineering Research Center on Big Data Security,
School of Cyber Science and Engineering, Huazhong University of Science
and Technology, Wuhan, 430074, China (e-mail: haojunzhao@hust.edu.cn,
deqingzou@hust.edu.cn).

Yueming Wu (corresponding author) is with the School of Computer Sci-
ence and Engineering, Nanyang Technological University, 639798, Singapore
(e-mail: wuyueming21@gmail.com).

Hai Jin is with National Engineering Research Center for Big Data Tech-
nology and System, Services Computing Technology and System Lab, Cluster
and Grid Computing Lab, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, 430074, China (e-
mail: hjin@hust.edu.cn).

classifiers for conducting classification. For instance, [8], [9]
pay attention to the permissions requested by applications
and built models to detect malware. However, it is possible
for benign applications to request more permissions than
necessary, which may also lead to a high false positive
rate [10]. In order to obtain more comprehensive features
from an app, Drebin [11] uses a time-intensive static analysis
to extract features, which includes not only permissions but
also Application Programming Interface (API) calls. So many
features can indeed improve the accuracy of detection results,
however, it is not enough robust because it lacks attention
to structure and contextual information of the program be-
haviors. To obtain more robust features, many works have
been proposed to extract program semantics using graph-based
methods. Techniques such as [12]–[17] have validated these
graph-based methods are highly effective for Android malware
detection. Nevertheless, they suffer from low scalability when
conducting graph matching to detect malware because a graph
of an app often owns thousands of function nodes. Most of the
works have expensive running overhead (i.e., the analysis time
on an app of DroidSIFT and Apposcopy is 175.8 seconds [13]
and 275 seconds [14], respectively), which demonstrate their
low efficiency in malware detection.

To complete more efficient graph-based malware detection,
MassVet [18] characterizes apps by building view graphs with
complicated UI structures. In order to ensure the graph match-
ing is highly scalable, MassVet adopts a similarity comparison
algorithm that appeared in their former work [19] for the
analysis of the recovered view graphs. However, MassVet is
originally designed to detect repackaged malware, so it may
lead to a false positive when processing a new malicious app.
Frenklach et al. [20] propose a static Android application
analysis method based on Application Similarity Graph (ASG)
combined with neural networks, but it is easily bypassed by
malware masquerading as benign software. In an effort to
detect more general malware, another state-of-the-art method
(MalScan [4]) has been proposed to detect malware effectively
and efficiently. Instead of traditional heavyweight program
analysis, it describes the function call graph of an applica-
tion as a complex social network and adopts social-network-
centrality analysis on sensitive API calls to extract program
semantic features. Then they perform extensive evaluations to
verify the high effectiveness of MalScan. However, to achieve
high scalability on market-wide mobile malware detection,
MalScan only considers one social network property (i.e.,
node centrality). In reality, a social network includes many
properties, such as density, radius, diameter, and clustering
coefficient. Although social network analysis has been demon-

IEEE TRANSACTIONS ON RELIABILITY 2

strated to be effective in malware detection, we have no idea
which social network properties are more useful in detecting
Android malware.

In this paper, we present the first empirical study to explore
the ability of different social network properties on Android
malware detection. In practice, although there have been some
graph-based works demonstrating the effectiveness of using
social networks for malware detection, they all use only simple
and individual social network node property (i.e., node cen-
trality). In other words, there is a lack of research to study the
ability of different social network properties on graph-based
malware detection, especially those social network properties
at the whole graph scale. Therefore, we conduct empirical
research through various social network properties to mine
which properties are more different between malicious and
benign apps call graphs as well as more effective for malware
detection. As social network properties are an effective way
to measure the logical properties of a graph, our empirical
conclusions can be extended to not only social network-based
but also all graph-based malware detection works and provide
them solid theoretical support.

Specifically, we first construct an Android app dataset by
crawling APK files from AndroZoo [21], our final dataset
includes 75,000 benign apps and 25,000 malicious apps. Given
an APK file, we then extract the function call graph by
lightweight static analysis. After obtaining the call graph,
we treat it as a social network and utilize social network
analysis to dig out 57 social network properties (Table I).
Then three feature ranking methods are employed to rank
these properties for finding the most informative properties on
malware detection. From the research results, we observe that
Average Triangles Number, Average Katz Centrality, Degree
Assortativity Coefficient, and Maximal Harmonic Centrality
are more capable of differentiating malware from benign
apps, while Minimal Harmonic Centrality, Minimal Close-
ness Centrality, Minimal Betweenness Centrality, and Minimal
Shortest Path Length have no ability to differentiate between
malware and benign applications. We interpret in detail why
these social network properties are highly distinguishable for
machine learning model and their distribution characteristics
between benign and malware. In an effort to validate the
effectiveness of these social network properties on Android
malware detection, we leverage these properties to construct
feature vectors and feed them into machine learning models.
We develop a prototype system, SNADroid, and evaluate it
with our dataset. The experimental results show that SNADroid
is capable of detecting Android malware.

In summary, this paper makes the following contributions:

• We present the first empirical study on the impact of dif-
ferent social network properties on Android malware de-
tection. We systematically evaluate the malware detection
capabilities of 57 commonly used social network proper-
ties through extensive comparative experiments and three
feature ranking methods (i.e., T-test, normalized mutual
information, and maximum information coefficient).

• We implement an automatic Android malware detection
system called SNADroid using social network properties

and prove the effectiveness of different social network
properties on Android malware detection.

• Through in-depth analysis of the experimental results,
we distill a total of 15 most effective social network
properties in three categories as a guideline for graph-
based malware detection work.

II. METHODOLOGY

A social network is a social structure that consists of a
group of social actors, such as individuals or organizations,
along with the relationships and interactions between them1.
Social networks are valuable for measuring graph properties
and uncovering the underlying topological relationships within
graphs. Similarly, when analyzing a program, we can view
the functions within the program as user nodes in a social
network, and the calling relationships between these functions
as social relationships between the user nodes. By adopting
this perspective, we can leverage the concept of social network
to describe and analyze the function call graph of the program.
This approach allows us to apply social network analysis to
gain insights into the structure and behavior of the program.
For example, we can examine properties such as centrality,
clustering, and connectivity within the function call graph,
enabling us to understand the patterns of function interactions
and identify important functions within the program.

A. Method Overview

Figure 1 presents the procedures of our empirical study
which includes four main phases: Static Analysis, Feature
Extraction, Feature Ranking, and Classification.

• Static Analysis: This stage aims to extract the function
call graphs of apps through static analysis, where each
node is a function, either an API call or a user-defined
function.

• Feature Extraction: After obtaining the call graph of
applications, we regard the call graph as a complex social
network and extract 57 different social network properties
from the graph.

• Feature Ranking: In this phase, we utilize three feature
ranking methods (i.e., T-test, normalized mutual informa-
tion, and maximal information coefficient) to research the
capability of 57 social network properties on distinguish-
ing benign apps from malware.

• Classification: Given the rankings of 57 social network
properties, we select the corresponding social network
properties according to their rankings to construct the
feature vectors. These feature vectors are used to train
classifiers for Android malware detection.

In particular, we implement a custom Android malware
detection system called SNADroid for subsequent experimental
work.

B. Static Analysis and Feature Extraction

To extract the function call graph from an app’s APK
file, we utilize static analysis techniques implemented within

1https://en.wikipedia.org/wiki/Social network

IEEE TRANSACTIONS ON RELIABILITY 3

Feature Extraction

Social Network

Properties

Static Analysis

Function Call

Graph

Feature Ranking

Social Network

Properties Ranking

Classification
Benign APPs

Malicious APPs

Fig. 1. Procedures of our empirical study

Androguard [22]. Androguard provides the necessary func-
tionality to analyze the structure and components of an APK
file, including building the function call graphs. Once we
have obtained the function call graphs, we consider them as
complex social networks and apply social network analysis
techniques to uncover various properties in these graphs. By
treating the call graphs as social networks, we can leverage
existing methodologies from social network analysis to gain
insights into the program’s behavior. It’s important to note
that both call graphs and social networks are representations
of dynamic behaviors using static graphs. In the case of
function call graphs, they capture the program’s behavior
by representing the relationships between functions, where
each edge of the call graph may signify multiple function
invocations. We expect to discover more potential logical
topological features in the program call graph through social
network analysis. In order to conduct extensive and profound
research on social properties, we end up extracting a total of
57 social network properties from a function call graph which
cover almost all common social network properties. We divide
all social network properties into three categories: whole graph
topology properties, node properties, node cluster properties.

Whole graph topology properties are used to characterize
the whole network from different aspects and some of the
details are shown in TABLE I. For instance, the size of the
network can be characterized by nodes, edges, diameter, and
radius; the cohesiveness of the network can be described by
density, average clustering coefficient, and component number;
and the structure of the network can be represented by clique
number, cycles number, and triads census. Moreover, centrality
measures [23]–[27] are used to quantify the importance of
a node in the network. However, in this paper, we focus
on studying the properties of a whole network instead of
individual nodes within the network. Therefore, we only select
the average, maximal, and minimal centrality values among
all the nodes within the network as node properties for each
centrality measure. As for the node cluster properties, they
reflect the topological characteristics of a social network which
are suitable to be measured by triads census. According to the
different edge relations between any three user nodes in a
network, there are 16 different triads types in total [28]. We
focus on the number of 16 triads types possibly presenting
in a network. In other words, triads census includes a total
of 16 social network properties, corresponding to the number
of 16 different types of triads in one network (i.e., 003, 012,
102, 201, 210, 300, 021C, 021D, 021U, 030C, 030T, 111D,
111U, 120C, 120D, and 120U in Figure 2). In function call
graph, the triads census reflects the close relationship between
function nodes, and reveals whether the program function calls

TABLE I
DESCRIPTIONS OF SOCIAL NETWORK PROPERTIES

Social Network
Property Description

Nodes The number of nodes in a network.
Edges The number of edges in a network.

Density The density of the network.
Diameter The maximum eccentricity of the network.
Radius The minimum eccentricity of the network.

Eccentricity
Number

The maximum distance from the node to other nodes in
the network.

Periphery The set of nodes with eccentricity equal to the diameter.
Degree

Assortativity
Coefficient

The measurement of the similarity of connections in the
network with respect to the node degree.

Bridge Number The number of the edges that don’t belong to any cycle.

Degree Centrality The centrality that for each node is the fraction of nodes it
is connected to.

Katz Centrality The centrality for the nodes based on the centrality of their
neighbors.

Harmonic
Centrality

The centrality that for each node u is the sum of the
reciprocal of the shortest path distances from all other

nodes to u.

Closeness
Centrality

The centrality that for each node u is the reciprocal of the
average shortest path distance to u over all n-1 reachable

nodes.
Betweenness

Centrality
The centrality that for each node is the sum of the fraction

of all-pairs shortest paths that pass through the node.
Clique Number The size of the largest clique in the graph.
Maximal Clique

Number The maximal clique number in the network.

Largest Clique Size For each node is the largest size of the complete subgraph
containing it.

Average Triangles
Number

The average of the number of triangles that include a node
as one vertex.

Transitivity The fraction of all possible triangles present in the graph.

Average Clustering
Coefficient

The local clustering of each node in G is the fraction of
triangles that actually exist over all possible triangles in its

neighborhood. The average clustering coefficient of a
graph G is the mean of local clusterings.

Strongly Connected
Components

Number

The number of strongly connected components in the
network.

Weakly Connected
Components

Number

The number of weakly connected components in the
network.

Attracting
Components

Number
The number of attracting components in the network.

Algebraic
Connectivity The second smallest eigenvalue of its Laplacian matrix.

Cycles Number
The number of the minimal collection of cycles such that

any cycle in the network can be written as a sum of cycles
in the basis.

Simple Cycles
Number The number of the close path where no node appears twice.

Reciprocity The ratio of the number of edges pointing in both
directions to the total number of edges in the network.

Average Shortest
Path Length The average of the shortest path length.

Maximal Shortest
Path Length The maximum of the shortest path length.

Minimal Shortest
Path Length The minimum of the shortest path length.

Shortest Path
Number The number of shortest path.

Triads Census The triads census is a count of how many of the 16
possible types of triads are present in a directed graph.

IEEE TRANSACTIONS ON RELIABILITY 4

238 V. Batagelj, A. Mrvar / Social Networks 23 (2001) 237–243

constant, or k(n) = log n, or k(n) = √
n). For some interesting ideas about the structure of

large networks see (Barabasi et al., 1999, http://www.nd.edu/∼networks).
Graph G determines a function

Link(u, v) =
{

1 uRv

0 otherwise

that we shall use in our algorithm.

2. The algorithm

2.1. Basic idea

All possible triads (Wasserman and Faust, 1994, p. 244) can be partitioned into three
basic types (see Fig. 1):

• the null triad 003;
• dyadic triads 012 and 102; and

Fig. 1. Types of triads.

Fig. 2. Types of triads

are close, frequent and coherent.
Note that some social network properties (e.g., clustering

coefficient) are defined only for undirected graphs. Therefore,
we first convert the function call graph as an undirected graph
when extracting these properties.

C. Feature Ranking

The measurement of the correlation between a feature and
class variables is called feature ranking in machine learning,
whose purpose is to select the most informative features. Com-
pared with machine learning models and algorithms, feature
selection determines the upper limit of machine learning per-
formance. Therefore, in this stage, we aim at ranking all social
network property features and digging out which features are
useful in characterizing mobile malicious behaviors. As a
matter of fact, there have proposed certain feature importance
measurement methods such as T-test and Pearson Correlation.
Besides, some machine learning algorithms such as Random
Forest and Logistic Regression can also score the training
features by themselves. To make our ranking results more
general and interpretable, we utilize the three most widely
used feature ranking methods, namely T-test, Normalized Mu-
tual Information (NMI), and Maximal Information Coefficient
(MIC) to commence our feature ranking phase. We present the
introduction of these three feature ranking methods as follows:

1) T-test: T-test utilizes the t-distribution theory to infer the
probability of a difference occurring, then comparing whether
the divergence between the two means is significant. That is, a
T-test examines the t-statistic, the t-distribution values, and the
degrees of freedom to determine the probability of discrepancy
between two sets of data. Let S2

1 , S
2
2 be the sample variance

and n1, n2 be the sample capacity, then the T-test is performed
by

t =
X1 −X2√

(n1−1)S2
1+(n2−1)S2

2

n1+n2−2 (1
n1

+ 1
n2

)

P-value is the probability or significance when the null hypoth-
esis H0 is true after statistical testing. The null hypothesis H0 is
rejected if the calculated p-value is less than a pre-determined

threshold value α (e.g., 0.5, 0.05), which is referred to as the
level of significance.

2) Normalized Mutual Information: Normalized Mutual
Information aims to put the value of mutual information into
[0, 1] to evaluate the quality of the algorithm. The formula
plays as

NMI(X;Y) = 2
I(X;Y)

H(X) +H(Y)

where I(X;Y) is the mutual information of the two variables
and H(X), H(Y) are the information entropy respectively.
Besides, let the joint distribution of two stochastic variables
X, Y be P(X,Y) and the edge distributions be P(X), P(Y), then
these statics are performed as

I(X;Y) =
∑
x∈X

∑
y∈Y

P (X,Y)log
P (X,Y)

P (X)P (Y)

H(X) = −
∑
i∈X

P (Xi)logP (Xi)

In this paper, the NMI value of each social network property
is between 0 and 1. NMI(X;Y)=0 indicates that there is no
correlation between X and Y, while NMI(X;Y)=1 means that
Y is completely inferable by knowing X. The bigger the
value of NMI, the stronger the correlation is between X and Y.

3) Maximal Information Coefficient: Maximal Information
Coefficient(MIC) applies mutual information to continuous
random variables and measures the degree of association
between two factors. Compared to Mutual Information, MIC
is more accurate because of its universality, fairness, and
symmetry. It discretizes the relationship between two variables
in a two-dimensional space and uses a scatter plot to represent.
Then it divide the space into a certain number of intervals in
the x, y direction and check the position of the scatters in each
square. MIC is performed as

MIC(X;Y) = maxa∗b<B
I(X;Y)

log2min(a, b)

where a,b are the numbers of divided grids in the x, y
direction, which is essentially the grid distribution and B is the
variable which is about 0.6 power of the amount of data. More
generally, MIC has the following three important properties:
1) If the variable x,y presence function, then when the sample
increases, MIC values towards 1; 2) If the variable x,y can
have a parametric equation c(t) = [x(t), y(t)] when the sample
is increased, MIC inevitably tends to 1; 3)If the variable
x,y independently of one another, then when the sample
is increased,MIC values inevitablytends to 0. In this paper,
MIC(X;Y) is nonnegative in [0,1]. MIC(X;Y)=0 indicates no
correlation, while MIC(X;Y)=1 means Y is inferable from X.

For each social network property X, the correlation between
X and class Y can be computed by the above-mentioned
methods. These calculated values are used to evaluate the
rankings of all social network properties.

IEEE TRANSACTIONS ON RELIABILITY 5

D. Classification

From the above subsection, we can obtain the rankings of
these 57 social network properties on differentiating Android
malware from benign apps. Given the rankings of different
social network properties, we then build classifiers by select-
ing different properties based on their rankings to perform
malware detection. We totally choose four different learning
algorithms: 1-Nearest Neighbor (1-NN), 3-Nearest Neighbor
(3-NN), Random Forest, and Decision Tree for classification.
These four classifiers are implemented by the scikit-learn
python library [29]. For the Random Forest, we adopt the
default parameters to commence our experiments 2. Each
model is trained by using feature vectors obtained from a
training dataset and then performing classification on a testing
dataset. All the experimental results are presented in Section
III by performing 10-fold cross validations on our dataset. 10-
fold cross-validation is a technique where the dataset is divided
into 10 equally-sized folds. The models are then trained and
tested 10 times, each time using a different fold as the testing
set and the remaining nine folds as the training set. This
approach ensures that every sample in the dataset is used for
both training and testing, reducing the potential bias introduced
by a single train-test split.

III. EXPERIMENTS

In this section, we aim at answering the following research
questions:

• RQ1: How different are social network properties be-
tween function call graphs of benign apps and malicious
apps?

• RQ2: Which social network properties are more useful in
differentiating Android malware from benign apps?

• RQ3: What is the effectiveness of different social network
properties in detecting Android malware?

TABLE II
SUMMARY OF THE DATASET USED IN OUR EMPIRICAL STUDY

Category #Apps Average Size (MB)
Benign apps 75,000 3.45

Malicious apps 25,000 3.26
Total 100,000 3.40

A. Dataset and Metrics

In this paper, we conduct the first empirical study on
Android malware characterization by social network analysis.
AndroZoo [21] is a growing collection of Android Appli-
cations collected from several sources, including the official
Google Play app market. Therefore, it can comprehensively
represent the features of existing Android apps. We randomly
download 100,000 APK files from AndroZoo as the dataset for
our empirical study, and all of them have been analyzed by
different AntiVirus products in VirusTotal [30]. We leverage
the detection reports to filter and generate our dataset. An APK

2More detailed information of parameters are available in the official
website: https://scikit-learn.org/.

we consider as benign only if it’s all reports show normal. For
collecting malware samples, we download APK files that are
reported as malicious by several AntiVirus. Because a program
is very likely to be a false positive if only one AntiVirus
product flags the program as malware. In order to ensure the
feature learning of malicious apps and fit the fact that benign
software is more than malicious software in the real world,
our final dataset has 75,000 benign applications and 25,000
malicious applications as shown in Table II. All the APK files
of our dataset are available in github3, by this researchers can
conduct reproducible study.

Since the Android malware detection is a binary classi-
fication task, we adopt widely used metrics to measure its
performance. The descriptions of our used metrics are as
follows:

• True Positive (TP): the number of samples correctly
classified as malware.

• True Negative (TN): the number of samples correctly
classified as benign samples.

• False Positive (FP): the number of samples incorrectly
classified as malware.

• False Negative (FN): the number of samples incorrectly
classified as benign samples.

• Precision=TP/(TP+FP). The correct rate of detection.
• Recall=TP/(TP+FN). The percentage of malware that are

successfully detected.
• F1=2∗Precision∗Recall/(Precision+Recall). A compre-

hensive metric of detection.

B. Social Network Properties Distribution

Our first study is to research the difference in social network
properties between function call graphs of benign apps and
malicious apps. Given an APK file, we first perform static
analysis to obtain the function call graph and then dig out
the 57 social network properties by in-deep social network
analysis. After collecting the 57 social network properties of
all 100,000 apps in our dataset, we investigate the differences
in these properties between benign and malicious applications
through statistical analysis.

As shown in Table III, we present the mean, median,
interquartile range, and mode of these social network proper-
ties of benign and malicious applications, respectively. From
the results in Table III, we can see that the mean, median,
and interquartile range of some social network properties are
similar between benign and malicious apps. For instance, the
mean of Diameter, the median of Periphery, the interquartile
range of Average Katz Centrality and so on. However, some
social network properties differ greatly between benign and
malicious applications, not only in node centrality-related
properties but also in many others, especially for several types
of triads. For example, the mean, median, and interquartile
range of 021C for benign apps are 7,123.8, 5,458, and 9,141.3
while are 9,104.2, 7,886, and 11,071 for malicious apps,
respectively. This is mainly because malicious apps usually
have simpler logical functions and structures than benign apps,

3https://github.com/johorun/SNADroid.

IEEE TRANSACTIONS ON RELIABILITY 6

TABLE III
THE MEAN, MEDIAN, INTERQUARTILE RANGE, AND MODE OF 57 DIFFERENT SOCIAL NETWORK PROPERTIES IN BENIGN APPS AND MALICIOUS APPS

Social Network Properties Mean Median Interquartile Range Mode
Benign Malware Benign Malware Benign Malware Benign Malware

Nodes Number 3701.6 3685.3 3120 3125 4752.3 4291.3 86 98
Edges Number 7271.1 8707.4 5914 7644 9317.0 10356.5 103 104

Density 0.0021 0.0022 0.0007 0.0008 0.0014 0.0012 0.0141 0.0109
Diameter 2.0861 2.0260 1.6529 1.8333 0.6690 0.6778 4.6667 3.1667
Radius 1.3607 1.3377 1.1893 1.2667 0.3719 0.3124 2 1.6667

Eccentricity Number 9.6263 9.7334 9.6582 9.9696 1.8166 1.5906 8.1512 4.4388
Periphery 3.4474 2.9491 2.3204 2.6172 0.6965 0.6472 5 5

Reciprocity 0.0011 0.0005 0.0006 0.0002 0.0017 0.0007 0 0
Algebraic Connectivity 0.0001 0.0047 0 0 0 0 0 0

Degree Assortativity Coefficient -0.1429 -0.1166 -0.1084 -0.1113 0.0706 0.0516 -0.5885 -0.2030
Bridge Number 1621.6 1443.2 1310 1178 2128 1701.3 53 76

Average Degree Centrality 0.0042 0.0044 0.0013 0.0015 0.0028 0.0025 0.0282 0.0219
Maximal Degree Centrality 0.0891 0.0923 0.0699 0.0718 0.0219 0.0208 0.2588 0.2680
Minimal Degree Centrality 0.0014 0.0015 0.0003 0.0003 0.0007 0.0006 0.0118 0.0103

Average Katz Centrality 0.0253 0.0238 0.0152 0.0140 0.0167 0.0146 0.1069 0.1008
Maximal Katz Centrality 0.3042 0.2881 0.3076 0.2947 0.1433 0.1298 0.2122 0.1379
Minimal Katz Centrality 0.0214 0.0198 0.0124 0.0110 0.0136 0.0115 0.0947 0.0908

Average Harmonic Centrality 0.0032 0.0033 0.0014 0.0015 0.0024 0.0024 0.0201 0.0127
Maximal Harmonic Centrality 0.1186 0.1139 0.1109 0.1128 0.0322 0.0267 0.1471 0.0619
Minimal Harmonic Centrality 0 0 0 0 0 0 0 0
Average Closeness Centrality 0.0028 0.0029 0.0011 0.0012 0.0020 0.0020 0.0180 0.0121
Maximal Closeness Centrality 0.0907 0.0874 0.0818 0.0838 0.0291 0.0211 0.1420 0.0561
Minimal Closeness Centrality 0 0 0 0 0 0 0 0

Average Betweenness Centrality 1.97E-05 1.35E-05 2.06E-06 1.78E-06 6.61E-06 7.45E-06 2.35E-04 4.05E-05
Maximal Betweenness Centrality 9.97E-04 7.34E-04 4.27E-04 2.54E-04 5.75E-04 6.42E-04 8.82E-03 2.15E-03
Minimal Betweenness Centrality 0 0 0 0 0 0 0 0

Clique Number 11817.97 13570.3 9735 12090.5 15156 16307.5 189 209
Maximal Clique Number 6704.01 7959.7 5467.5 6932 8613.3 9476.8 103 97

Largest Clique Size 3.8770 4.0241 4 4 0 0 4 4
Average Triangles Number 0.5929 0.8503 0.5535 0.8347 0.3224 0.5112 0 0.2143

Transitivity 0.0103 0.0097 0.0102 0.0093 0.0058 0.0039 0 0.0054
Average Clustering Coefficient 0.0263 0.0298 0.0268 0.0298 0.0092 0.0089 0 0.0340

Strongly Connected Components Number 3688 3679 3100 3122 4729 4280 86 98
Weakly Connected Components Number 200.6 90.9 70 40 397 74 3 6

Attracting Components Number 1665.6 1756.5 1464 1647 1945 1883.3 60 75
Cycles Number 3765.5 5110.2 2823 4359.5 4516.3 6183.8 20 12

Simple Cycles Number 7440.2 79.1 8 4 38 14 0 0
Average Shortest Path Length 3.1308 2.8745 3.1895 2.9349 1.4420 0.7570 1.7024 1.2662
Maximal Shortest Path Length 11.451 11.178 13 11 5 4 14 11
Minimal Shortest Path Length 1 1 1 1 0 0 1 1

Shortest Path Number 3.71E+04 3.88E+04 2.79E+04 2.98E+04 4.88E+04 4.63E+04 205 139
003 2.56E+10 2.33E+10 5.04E+09 5.06E+09 3.41E+10 2.96E+10 9.44E+04 1.43E+05
012 4.28E+07 4.91E+07 1.79E+07 2.34E+07 6.41E+07 7.11E+07 7184 8561
102 2.91E+04 1.70E+04 4.93E+03 2.57E+03 5.23E+04 1.62E+04 0 0

021D 3.60E+04 5.47E+04 2.70E+04 4.75E+04 4.13E+04 5.97E+04 565 643
021U 1.65E+05 2.18E+05 7.29E+04 1.11E+05 1.99E+05 2.84E+05 95 25
021C 7123.8 9104.2 5458 7886 9141.3 11071 74 33
111D 10.593 9.725 2 1 21 12 0 0
111U 40.820 38.001 18 8 65 44 0 0
030T 804.78 1117.4 650 965 942 1344 0 7
030C 0.8134 0.6094 0 0 1 1 0 0
201 0.5178 0.8209 0 0 0 0 0 0

120D 0.5698 0.2125 0 0 1 0 0 0
120U 8.9381 4.8215 7 0 17 9 0 0
120C 0.4426 0.2581 0 0 1 0 0 0
210 0.0077 0.0086 0 0 0 0 0 0
300 0.0014 0.0006 0 0 0 0 0 0

with less complexity and nesting of function calls. Intuitively,
malicious apps have more 102, 120D, 120U, and 120C types
of triads while benign apps have more 210D, 210U, 210C, 201
types of triads. Furthermore, the other graph properties such
as the Average Shortest Path Length and the Average Triangles
Number of malware are also much smaller than those of benign
apps. The such difference indicates that the structure of call
graphs of benign and malicious apps are different.

Additionally, as for Minimal Harmonic Centrality, Minimal
Closeness Centrality, Minimal Betweenness Centrality, and
Minimal Shortest Path Length, the mean, median, interquartile
range, and mode of benign and malicious apps are the same.
We also check all the values of these four properties from
our dataset, and the result suggests that there is no difference

in these four social network properties between benign and
malicious apps. In conclusion, there are some big differ-
ences in several social network properties between benign
and malicious apps, such as Weakly Connected Component
Number, Average Triangles Number, some node centrality and
triads properties. These social network properties all reveal the
functional behavior complexity and logical characteristics of
a program, so that we can utilize them to better characterize
the difference between malware and benign applications.

C. Social Network Properties Ranking

In this part, we adopt three feature ranking algorithms
(i.e., T-test, normalized mutual information, and maximal
information coefficient) to obtain the rankings of 57 social

IEEE TRANSACTIONS ON RELIABILITY 7

network properties on 100,000 Android apps. The ranking
results for 57 social network properties are presented in Table
IV. It is obvious that the rankings of 57 properties are different
when we apply different feature ranking methods. For instance,
the top 1 ranking is Weakly Connected Component Number
when we apply the T-test to rank these properties, while
is Average Katz Centrality and Average Triangles Number
for normalized mutual information and maximal information
coefficient, respectively. It is reasonable because the definitions
and analysis processes of different feature ranking methods
are different. However, the top-ranking properties computed
by NMI and MIC share a similar set. There are 20 same
properties among the top 21 ranking properties obtained by
NMI and MIC, such as Average Katz Centrality, 003, and
Degree Assortativity Coefficient. The only different property
among the top 21 ranking properties by normalized mutual
information is Maximal Closeness Centrality, while is Shortest
Path Number for maximal information coefficient. The such
result suggests that the ranking results generated by NMI and
MIC are consistent.

Although the ranking result of T-test is quite different from
NMI and MIC, there are 4 same properties among the top
20 ranking properties generated by T-test, NMI, and MIC.
They are Average Triangles Number, Average Katz Central-
ity, Degree Assortativity Coefficient, and Maximal Harmonic
Centrality. This is mainly because compared with NMI and
MIC, T-test is a statistical test, which is more inclined to
capture the distribution and statistical characteristics between
targets. When ranking the social property features of the global
graph, T-test can capture the differences more directly and
concisely, while NMI and MIC are more suitable for the
association mining of complex features, which may introduce
new noise and cause misjudgment. In the subsequent malware
detection experiments, it is also proved that the features
screened by T-test are more effective, and we will discuss
this in Section III-D. In addition, no matter which feature
ranking methods we use to generate the rankings, Minimal
Harmonic Centrality, Minimal Closeness Centrality, Minimal
Betweenness Centrality, and Minimal Shortest Path Length are
almost the lowest. It happens because there is no difference
in these four social network properties between benign and
malicious applications.

In conclusion, Average Triangles Number, Average Katz
Centrality, Degree Assortativity Coefficient, and Maximal Har-
monic Centrality can be the most informative social net-
work properties in differentiating malware from benign apps.
Minimal Harmonic Centrality, Minimal Closeness Centrality,
Minimal Betweenness Centrality, and Minimal Shortest Path
Length are useless for detecting Android malware.

D. Malware Detection Effectiveness

In this part, we focus on evaluating the effectiveness of so-
cial network properties on Android malware detection. We use
a custom Android malware detection system named SNADroid
for experiment evaluation. In particular, we commence our
evaluations from the following three aspects:

• Malware detection by individual social network property:
We use individual social network property to detect
malware.

• Malware detection by different sets of social network
properties: We select different sets of properties to detect
malware according to their rankings obtained by three
feature ranking methods (i.e., T-test, NMI, and MIC)
and four machine learning classifiers (i.e., 1NN, 3NN,
Random Forest, and Decision Tree).

• In-depth analysis: Through manual analysis and com-
bined with experimental results, we further explain why
some properties can greatly improve the detection effect
of malware while others cannot.

1) Malware detection by individual social network prop-
erty: To validate the capability of different social network
properties on detecting Android malware, we totally con-
duct 57 experiments by using individual property to train
classifiers and detect malware. Table V presents the results,
which include the f-measure and ranking by adopting different
classifiers (i.e., 1NN, 3NN, Random Forest, and Decision
Tree). The last column of Table V shows the average value
of the four f-measures generated by four different classifiers.
From the results in Table V, we can observe that the Average
Triangles Number is the most informative social network
property among these 57 properties on Android malware
detection no matter what machine learning algorithms are used
to train classifiers. The f-measure can be up to 65% when
we select Decision Tree to train a model for classification.
Social network properties with the top 3 average f-measures
are Average Triangles Number, 021D, and Average Shortest
Path Length, which are the same as the top 3 ranking results
generated by the maximal information coefficient. Moreover,
as shown in Table IV, there are 4 same properties (i.e.,
Average Triangles Number, Average Katz Centrality, Degree
Assortativity Coefficient, and Maximal Harmonic Centrality)
among the top 20 ranking properties generated by T-test,
normalized mutual information, and maximal information co-
efficient. The average f-measures of these four properties are
61.05%, 50.75%, 49.75%, and 48.74%, respectively. Similarly,
the f-measure of 4 useless social network properties (i.e.,
Minimal Harmonic Centrality, Minimal Closeness Centrality,
Minimal Betweenness Centrality, and Minimal Shortest Path
Length) are both 0%. Such result demonstrates that they have
no ability to detect Android malware. In one word, through
the ranking results in Table IV and f-measure results in Table
V, it’s observed that the Average Triangles Number is the most
impactful social network property to detect Android malware
among our 57 selected properties.

2) Malware detection by different sets of social network
properties: From the above subsections, we can obtain the
rankings of these 57 social network properties on Android app
classification. To validate the effectiveness and evaluate the
capability of different social network properties for malware
detection, we apply four machine learning algorithms (i.e.,
1NN, 3NN, Random Forest, and Decision Tree) to construct
classifiers. The classification results are presented in Figure 3.

From Figure 3, we observe that the f-measure and accuracy
differ according to the selected machine learning algorithms.

IEEE TRANSACTIONS ON RELIABILITY 8

TABLE IV
57 SOCIAL NETWORK PROPERTIES RANKED BY T-TEST, NORMALIZED MUTUAL INFORMATION, AND MAXIMAL INFORMATION COEFFICIENT

Rank T-test Normalized Mutual Information Maximal Information Coefficient
Score Social Network Properties Score Social Network Properties Score Social Network Properties

1 92.1346 Weakly Connected Components Number 0.2276 Average Katz Centrality 0.2777 Average Triangles Number
2 82.2572 Reciprocity 0.2276 003 0.2525 Average Shortest Path Length
3 80.2028 Average Triangles Number 0.2275 Degree Assortativity Coefficient 0.2393 021D
4 60.8373 021D 0.2275 Maximal Harmonic Centrality 0.2299 Maximal Betweenness Centrality
5 59.0988 120U 0.2275 012 0.2223 Average Clustering Coefficient
6 47.9220 030T 0.2273 Average Harmonic Centrality 0.2222 Density
7 47.4446 Average Katz Centrality 0.2273 Minimal Katz Centrality 0.2170 Eccentricity Number
8 47.1155 102 0.2272 Average Shortest Path Length 0.2150 Transitivity
9 46.2216 Degree Assortativity Coefficient 0.2271 Maximal Clique Number 0.2148 Maximal Clique Number
10 45.6354 Cycles Number 0.2265 Eccentricity Number 0.2131 Average Degree Centrality
11 41.9794 120D 0.2262 Transitivity 0.2125 Average Closeness Centrality
12 41.8129 Average Shortest Path Length 0.2262 Maximal Degree Centrality 0.2092 012
13 38.3122 021C 0.2256 Average Degree Centrality 0.2088 Degree Assortativity Coefficient
14 33.7793 120C 0.2255 Average Clustering Coefficient 0.2081 Minimal Katz Centrality
15 32.3855 Largest Clique Size 0.2251 Average Closeness Centrality 0.2078 Average Harmonic Centrality
16 29.9640 Edges Number 0.2237 Density 0.2074 003
17 28.5950 Maximal Shortest Path Length 0.2211 Average Triangles Number 0.2051 Average Katz Centrality
18 24.8178 Maximal Harmonic Centrality 0.2111 021U 0.2042 Shortest Path Number
19 23.7565 Clique Number 0.2055 Maximal Closeness Centrality 0.2041 Maximal Degree Centrality
20 21.8198 Bridge Number 0.2003 Maximal Betweenness Centrality 0.2004 021U
21 21.2898 030C 0.1969 021D 0.1936 Maximal Harmonic Centrality
22 20.5907 021U 0.1885 Shortest Path Number 0.1933 021C
23 20.4283 Transitivity 0.1428 Clique Number 0.1925 Maximal Closeness Centrality
24 19.3343 Maximal Betweenness Centrality 0.1392 Reciprocity 0.1900 Maximal Shortest Path Length
25 17.5675 Maximal Degree Centrality 0.1344 102 0.1900 Clique Number
26 14.7496 012 0.1302 021C 0.1875 Cycles Number
27 13.1881 Maximal Clique Number 0.1231 Edges Number 0.1852 Edges Number
28 11.6695 Average Betweenness Centrality 0.1206 Maximal Shortest Path Length 0.1720 Periphery
29 11.3592 Diameter 0.1061 Cycles Number 0.1716 030T
30 10.6431 Attracting Components Number 0.0969 Periphery 0.1712 Diameter
31 9.3745 Minimal Katz Centrality 0.0935 Diameter 0.1669 Radius
32 9.2361 Radius 0.0857 Minimal Degree Centrality 0.1647 Minimal Degree Centrality
33 9.2324 Maximal Katz Centrality 0.0853 Nodes Number 0.1636 Nodes Number
34 8.6244 003 0.0842 Strongly Connected Components Number 0.1623 Strongly Connected Components Number
35 7.9743 Algebraic Connectivity 0.0756 Radius 0.1574 Bridge Number
36 7.6083 Average Harmonic Centrality 0.0701 030T 0.1560 Attracting Components Number
37 7.4903 Periphery 0.0654 Attracting Components Number 0.1469 Reciprocity
38 7.2986 Eccentricity Number 0.0643 Bridge Number 0.1347 Average Betweenness Centrality
39 6.9116 Maximal Closeness Centrality 0.0595 111U 0.1270 102
40 6.1165 Shortest Path Number 0.0548 Average Betweenness Centrality 0.1212 Weakly Connected Components Number
41 5.3164 111U 0.0470 Weakly Connected Components Number 0.1175 111U
42 4.1140 111D 0.0424 111D 0.0757 111D
43 4.0607 201 0.0371 Maximal Katz Centrality 0.0667 Simple Cycles Number
44 3.4272 Density 0.0345 120U 0.0661 Maximal Katz Centrality
45 3.4272 Average Clustering Coefficient 0.0330 Simple Cycles Number 0.0584 120U
46 3.2890 300 0.0307 120D 0.0279 120D
47 3.2572 Average Closeness Centrality 0.0259 120C 0.0249 120C
48 3.0424 Average Degree Centrality 0.0177 030C 0.0209 030C
49 2.0233 Simple Cycles Number 0.0173 201 0.0166 201
50 1.3608 Minimal Degree Centrality 0.0127 Algebraic Connectivity 0.0129 Largest Clique Size
51 0.8126 Nodes Number 0.0120 Largest Clique Size 0.0022 Algebraic Connectivity
52 0.6316 210 0.0013 300 0.0001 210
53 0.4446 Strongly Connected Components Number 0.0007 210 0.0001 300
54 0.0000 Minimal Betweenness Centrality 0.0000 Minimal Betweenness Centrality 0.0000 Minimal Betweenness Centrality
55 0.0000 Minimal Closeness Centrality 0.0000 Minimal Closeness Centrality 0.0000 Minimal Closeness Centrality
56 0.0000 Minimal Harmonic Centrality 0.0000 Minimal Harmonic Centrality 0.0000 Minimal Harmonic Centrality
57 0.0000 Minimal Shortest Path Length 0.0000 Minimal Shortest Path Length 0.0000 Minimal Shortest Path Length

For instance, the accuracy of 1NN is 81.9% when we choose
the ranking first social network property (i.e., Average Trian-
gles Number) obtained by maximal information coefficient to
detect malware while is 82.8%, 80.5%, and 82.5% for 3NN,
Random Forest, and Decision Tree, respectively. In addition,
we can achieve better performance when we select Decision
Tree to build a classifier and use it to detect malware. For
example, the accuracy can be up to 91.6% when the classifi-
cation algorithm is Decision Tree, while is 90.0%, 88.5%, and
88.9% for 1NN, 3NN, and Random Forest. Moreover, Figure
3 also presents that the detection effectiveness can be different
when we select different ranked social network properties as
features to detect malware. This happens because that the
ranking of a social network property can be different when we

apply different feature ranking methods. In fact, the detection
performance will both be better as the number of top-ranking
properties increases regardless of which feature ranking meth-
ods are used. However, the effectiveness in detecting malware
will decrease slightly as more social network properties are
added. It is normal because the top-ranked properties have a
stronger ability to differentiate between malware and benign
applications. Correspondingly, lower-ranking properties are
less efficient for malware detection, and can even lead to some
false positives when adding these properties into classifiers.
For instance, the accuracy of 1NN is 69.1% when we select
the top one property ranked by T-test to detect malware while
is 88.0% when the number of selected properties increased to
the top 10. Unfortunately, it drops to 83.7% when we employ

IEEE TRANSACTIONS ON RELIABILITY 9

TABLE V
THE F-MEASURE AND CORRESPONDING RANKINGS OF 57 SOCIAL NETWORK PROPERTIES GENERATED BY 1NN, 3NN, RANDOM FOREST, AND

DECISION TREE

Social Network Property 1NN 3NN Random Forest Decision Tree Average
F1 Ranking F1 Ranking F1 Ranking F1 Ranking F1 Ranking

Average Triangles Number 0.6420 1 0.6389 1 0.5119 1 0.6493 1 0.6105 1
021D 0.5981 14 0.6029 4 0.3806 2 0.6174 3 0.5498 2

Average Shortest Path Length 0.6216 3 0.6049 3 0.3234 6 0.6240 2 0.5435 3
Maximal Degree Centrality 0.6106 4 0.5887 5 0.2848 9 0.6011 7 0.5213 4
Maximal Clique Number 0.6097 5 0.5856 6 0.2712 14 0.6054 6 0.5180 5

Eccentricity Number 0.6023 10 0.5855 7 0.2745 12 0.6093 5 0.5179 6
Average Harmonic Centrality 0.6048 8 0.5777 10 0.2742 13 0.5838 14 0.5101 7

021U 0.5760 22 0.5708 16 0.2915 7 0.5934 10 0.5079 8
Average Katz Centrality 0.6050 7 0.5825 8 0.2574 19 0.5851 13 0.5075 9

003 0.6074 6 0.5767 12 0.2286 28 0.6110 4 0.5059 10
Transitivity 0.5967 15 0.5778 9 0.2758 11 0.5729 17 0.5058 11

Minimal Katz Centrality 0.6016 11 0.5770 11 0.2640 16 0.5739 16 0.5041 12
012 0.5940 19 0.5664 22 0.2569 20 0.5989 8 0.5040 13

Maximal Closeness Centrality 0.5852 21 0.5680 19 0.2546 21 0.5918 11 0.4999 14
Degree Assortativity Coefficient 0.5954 17 0.5673 20 0.2296 27 0.5978 9 0.4975 15

Shortest Path Number 0.5601 23 0.5703 17 0.2514 23 0.5802 15 0.4905 16
Maximal Harmonic Centrality 0.5953 18 0.5664 21 0.2025 35 0.5852 12 0.4874 17
Average Clustering Coefficient 0.6025 9 0.5757 13 0.2186 31 0.4924 24 0.4723 18

Maximal Betweenness Centrality 0.6266 2 0.6073 2 0.3301 5 0.2992 38 0.4658 19
Average Degree Centrality 0.5992 13 0.5744 14 0.1896 38 0.4937 23 0.4642 20

021C 0.5040 25 0.5356 24 0.2693 15 0.5474 18 0.4641 21
Cycles Number 0.4804 28 0.5075 28 0.3343 3 0.5271 22 0.4623 22
Edges Number 0.4983 26 0.5227 26 0.2905 8 0.5366 20 0.4620 23
Clique Number 0.5155 24 0.5339 25 0.2415 25 0.5470 19 0.4595 24

Maximal Shortest Path Length 0.4933 27 0.5197 27 0.2804 10 0.5316 21 0.4562 25
Average Closeness Centrality 0.5963 16 0.5696 18 0.1926 37 0.4655 27 0.4560 26

Density 0.6006 12 0.5719 15 0.2067 34 0.4323 32 0.4529 27
030T 0.4317 35 0.4381 35 0.3302 4 0.4564 29 0.4141 28

Nodes Number 0.4412 34 0.4772 29 0.2286 29 0.4888 25 0.4090 29
Strongly Connected Components Number 0.4424 33 0.4662 31 0.2267 30 0.4823 26 0.4044 30

Diameter 0.4534 30 0.4617 32 0.2403 26 0.4565 28 0.4030 31
Periphery 0.4516 31 0.4531 33 0.2103 32 0.4420 30 0.3893 32

Radius 0.4039 39 0.4350 36 0.2518 22 0.4056 34 0.3741 33
Attracting Components Number 0.4262 36 0.4329 37 0.1834 39 0.4380 31 0.3701 34

Minimal Degree Centrality 0.4486 32 0.4709 30 0.2068 33 0.3534 36 0.3699 35
Bridge Number 0.4112 38 0.4311 38 0.2014 36 0.4291 33 0.3682 36

102 0.4657 29 0.4495 34 0.1290 43 0.3630 35 0.3518 37
Reciprocity 0.3766 41 0.3843 40 0.2604 18 0.3206 37 0.3355 38

Average Betweenness Centrality 0.5903 20 0.5594 23 0.1238 44 0.0498 46 0.3308 39
Weakly Connected Components Number 0.3595 43 0.3571 42 0.1760 41 0.2921 39 0.2962 40

111U 0.3163 44 0.3064 45 0.2607 17 0.2908 40 0.2936 41
Maximal Katz Centrality 0.2483 46 0.3307 44 0.2442 24 0.2443 41 0.2669 42

120U 0.4178 37 0.3844 39 0.0744 46 0.0751 45 0.2379 43
Simple Cycles Number 0.2759 45 0.3423 43 0.1640 42 0.1385 43 0.2302 44

111D 0.2292 47 0.2441 46 0.1771 40 0.1808 42 0.2078 45
201 0.3759 42 0.0908 48 0.0886 45 0.0890 44 0.1611 46

030C 0.0604 49 0.3840 41 0.0000 51 0.0000 51 0.1111 47
120D 0.3973 40 0.0021 51 0.0015 49 0.0017 49 0.1007 48

Largest Clique Size 0.1781 48 0.1436 47 0.0000 52 0.0000 52 0.0804 49
120C 0.0194 50 0.0102 49 0.0109 47 0.0122 47 0.0132 50

Algebraic Connectivity 0.0058 51 0.0058 50 0.0057 48 0.0058 48 0.0058 51
210 0.0014 52 0.0012 52 0.0004 50 0.0002 50 0.0008 52
300 0.0002 53 0.0000 53 0.0000 53 0.0000 53 0.0001 53

Minimal Harmonic Centrality 0.0000 54 0.0000 54 0.0000 54 0.0000 54 0.0000 54
Minimal Closeness Centrality 0.0000 55 0.0000 55 0.0000 55 0.0000 55 0.0000 55

Minimal Betweenness Centrality 0.0000 56 0.0000 56 0.0000 56 0.0000 56 0.0000 56
Minimal Shortest Path Length 0.0000 57 0.0000 57 0.0000 57 0.0000 57 0.0000 57

all the social network properties to conduct malware detection.

3) In-depth analysis: In this part, we further analyze the
previous experimental results to clarify the causes of the
difference in feature distribution between benign and mali-
cious apps. From Figure 3, we can find that all experimental
results tend to be the best when the top 15-20 features are
selected, which is also in line with the fact that the top 20
features of different measurement methods in Table IV are
largely consistent. In addition, the features screened by T-test
have better performance than NMI and MIC. For a clearer
illustration, we draw a Venn diagram in Figure 4 for the
top 25 features sorted by the three features. It can be seen
that the number of intersection features between T-test and

other methods is 15, which is also the number of features
with the highest classification performance. However, the
number of intersections between NMI, MIC and other methods
is 25. Obviously, the classification effect of the experiment
has declined at this time. Therefore, we can conclude that
the optimal and minimum social property feature set is the
intersection of T-test and feature sets of other methods, and the
set size is 15. Therefore, we can screen out the most effective
15 social properties and divide them into three categories:
whole graph topology properties, node properties, and node
cluster properties (shown in Table VI).

a) Whole graph topology properties: This kind of prop-
erties describe the differences of benign and malicious apps in

IEEE TRANSACTIONS ON RELIABILITY 10

� �

� � �

� � �

� � �

� � �

� � �
��

�
��

��
��

� � � � � �
�
 	 �
� 	 � �
� �

� �

� � �
� � � �

� � � 	 � � � � � � � � � � �
 � � � � � � � � � �

(a) 1NN

� �
� � �

� � �

� � �

� � �

� � �

� � �

��
�

��
��

��

� � � � � �
�
 	 �
� 	 � �
� �

� �

� � �
� � � �

� � � 	 � � � � � � � � � � �
 � � � � � � � � � �

(b) 3NN

� �
� � �

� � �

� � �

� � �

� � �

� � �

� � 	

� �

��
�

��
��

��

� � � � � �
�
 	 �
� 	 � �
� �

� �

� � �
� � � �

� � � 	 � � � � � � � � � � �
 � � � � � � � � � �

(c) Random Forest

� �
� � �

� � �

� � �

� � �

� � �

� � �

� � 	

� �

��
�

��
��

��

� � � � � �
�
 	 �
� 	 � �
� �

� �

� � �
� � � �

� � � 	 � � � � � � � � � � �
 � � � � � � � � � �

(d) Decision Tree

� �
� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

��
��

��
��

� � � � � �
�
 	 �
� 	 � �
� �

� �

� � �
� � � �

� � � 	 � � � � � � � � � � �
 � � � � � � � � � �

(e) 1NN

� �
� � � �

� � � �

� � � �

� � � �

� � � �

��
��

��
��

� � � � � �
�
 	 �
� 	 � �
� �

� �

� � �
� � � �

� � � 	 � � � � � � � � � � �
 � � � � � � � � � �

(f) 3NN

� �
� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

��
��

��
��

� � � � � �
�
 	 �
� 	 � �
� �

� �

� � �
� � � �

� � � 	 � � � � � � � � � � �
 � � � � � � � � � �

(g) Random Forest

� �

� � � �

� � � �

� � � �

� � � �

� � � �

��
��

��
��

� � � � � �
�
 	 �
� 	 � �
� �

� �

� � �
� � � �

� � � 	 � � � � � � � � � � �
 � � � � � � � � � �

(h) Decision Tree

Fig. 3. The f-measure and accuracy of four classifiers when increasing the number of social network properties according to their rankings obtained by T-test,
NMI, MIC, 1NN, 3NN, Random Forest, and Decision Tree, respectively

0

12.5

25
25

T-test

25

NMI

25

MIC

Number of elements: specific (1) or shared by 2, 3, ... lists

11

3

16

2

10

1

10 0

0

2

2 12
11

T-test NMI

MIC

Size of each list

Fig. 4. The Venn diagrams of the top 25 effective features obtained by
different feature ranking methods.

TABLE VI
THE MOST EFFECTIVE 15 SOCIAL PROPERTIES IN GRAPH-BASED

MALWARE DETECTION

Category Social Property

whole graph
topology

Average Triangles Number, Average Shortest Path Length,
Transitivity Edges Number, Clique Number,

Maximal Shortest Path Length

node
Maximal Degree Centrality, Average Katz Centrality,

Degree Assortativity Coefficient, Maximal Harmonic Centrality,
Maximal Betweenness Centrality

node cluster 021D, 021U, 003, 012, 021C

a whole graph scale. As a result of the differences in benign
and malicious apps functionality, the overall characteristics of
the function call graph may also be different. For example, as
shown in Table III, malware and benign apps have roughly the
same Nodes Number, while the Clique Number of benign apps
is smaller. This means that the maximum clique in benign apps
call graphs has fewer vertices, that is, the calling relationship
between functions is more sparse and difficult to form cliques
in benign apps. The same is true for the Average Triangles
Number, benign apps are much smaller than malware in this
property. This indicates that malware is more likely to own
triangle call loops, while benign software has deeper and more
sparse function calls, making it relatively difficult to form
triangle loops.

In our analysis, we find that the distribution of the other
whole graph topology properties also conforms to the intuitive
features of benign and malicious apps, and these whole graph
topology properties are an important reference for graph-based
malware detection.

IEEE TRANSACTIONS ON RELIABILITY 11

b) Node properties: These properties measure the po-
sition and importance of a single node in the graph. Using
individual node social centrality to handle sensitive functions
of call graphs for malware detection has been shown to be
effective [4], [5]. However, researchers lack an understanding
of the overall function centrality distribution between benign
and malicious apps. At the scale of the whole graph, Degree,
Katz, Harmonic, Betweenness and their derived properties
are still valid features to distinguish between malware and
benign applications. This can help researchers more directly
obtain general analysis results when the sensitive functions are
unknown.

c) Node cluster properties: As far as we know, the
current work of graph-based malware detection focuses on the
single node or global call graph properties. Through social
network analysis of triads, we observe that the distribution
of the clusters formed by three functions and their calling
relationships are also very different in malware and benign
software. Thus, we name this kind of characteristics as node
cluster property.

For example, in malware, the proportion of simple triads
types (i.e., 021D, 021U, 021C) is much higher than that of
complex types (i.e., 120D, 120U, 120C), and the situation
is reversed in benign apps (although the absolute number of
triads in benign apps is smaller than that in malware). To
a certain extent, this reflects the difference between benign
and malicious apps in terms of function calls. We suggest
that researchers pay attention to the consideration of cluster
node distribution properties in future malware analysis work,
especially 003, 012, 021D, 021U, and 021C cluster types.

E. Time Overhead
In addition to effectiveness, another significant factor af-

fecting the practicality of malware detection is the runtime
overhead. In this section, we evaluate the running overhead
of our work and use the Mean time to detect (MTTD) of
each sample as the evaluation metric. The experiment is being
repeated 10 times to obtain MTTD. In general, the running
time overhead consists of three stages: preprocessing time,
feature processing time, and classification time.

The preprocessing stage mainly includes using Androguard
for program static analysis and program function call graph
construction. At this stage, the MTTD of each sample in our
dataset is 0.31 seconds.

The feature processing stage is mainly to conduct social
network analysis on the program function call graph and
obtain various social network properties. At this stage, the
analysis time will vary depending on the different social
properties and the analysis time overhead corresponding to
each social property is shown in the Table VII. We can see that
the most time-consuming social properties are those related
to node centrality, such as Maximal Harmonic Centrality,
Average Katz Centrality, etc. This is because compared with
other simple global statistical features, these features require
calculating the centrality of all graph nodes one by one before
obtaining the statistical results.

The classification stage is mainly the process of the classifier
classifying the feature vector. We take SNADroid as an exam-

TABLE VII
THE FEATURE PROCESSING TIME OVERHEAD OF EACH SOCIAL PROPERTY

Social Network Property Feature
Processing (s)

Nodes Number <0.001
Edges Number <0.001

Density <0.001
Diameter <0.001
Radius <0.001

Eccentricity Number <0.001
Periphery <0.001

Reciprocity <0.001
Algebraic Connectivity <0.001

Degree Assortativity Coefficient <0.001
Bridge Number <0.001

Average Degree Centrality 0.014
Maximal Degree Centrality 0.014
Minimal Degree Centrality 0.014

Average Katz Centrality 0.746
Maximal Katz Centrality 0.746
Minimal Katz Centrality 0.746

Average Harmonic Centrality 0.793
Maximal Harmonic Centrality 0.793
Minimal Harmonic Centrality 0.793
Average Closeness Centrality 0.501
Maximal Closeness Centrality 0.501
Minimal Closeness Centrality 0.501

Average Betweenness Centrality 0.619
Maximal Betweenness Centrality 0.619
Minimal Betweenness Centrality 0.619

Clique Number 0.003
Maximal Clique Number 0.003

Largest Clique Size 0.003
Average Triangles Number 0.07

Transitivity <0.001
Average Clustering Coefficient 0.017

Strongly Connected Components
Number 0.009

Weakly Connected Components
Number 0.007

Attracting Components Number 0.007
Cycles Number 0.002

Simple Cycles Number 0.002
Average Shortest Path Length 0.011
Maximal Shortest Path Length 0.011
Minimal Shortest Path Length 0.011

Shortest Path Number 0.011
003 0.005
012 0.005
102 0.005

021D 0.005
021U 0.005
021C 0.005
111D 0.005
111U 0.005
030T 0.005
030C 0.005
201 0.005

120D 0.005
120U 0.005
120C 0.005
210 0.005
300 0.005

ple to give reference results. Since SNADroid has fewer feature
dimensions (up to 57 dimensions), its classification speed is
extremely fast. Regardless of whether KNN or random forest
is used, the average classification time for each sample is less
than 0.001 seconds.

Overall, our work is lightweight, and even with high time
complexity social network node properties, it can run several
times faster than other works [4].

IV. RELATED WORK

Android Malware Detection. At present, many Android
malware detection works that rely on syntactic features [8], [9],
[11], [31]–[34] or program semantics [4]–[7], [10], [12]–[17],

IEEE TRANSACTIONS ON RELIABILITY 12

[20], [35]–[49] have been proposed. Wang et al. [9] employ
three feature ranking methods to sort individual permissions
by their risk and use the top risky permissions detecting mal-
ware. Unfortunately, this method is less efficient in detecting
Android malware as a result of missing program behavior
semantics. Drebin [11] processing apps for detailed features
with extensive static analysis. However, it only focuses on the
existence of some specific strings (i.e., restricted API calls
name) and thus it may be bypassed by obfuscation because
of ignoring program behavior information. Zhu et al. [48]
comprehensively consider permission, API calls, and system
events, but their accuracy rate is not high, only 88%. Zhao
et al. [47] try to mine the correlation of sensitive API calls
with malware, but their processing is too simple to deal with
complex situations. Zhang et al. [46] extract the API calls in
operands of malware and abstract them to their package names.
They focus on top-level abstraction, thus the granularity is
too coarse. Also for API calls, Shen et al. [15] characterize
API calls by constructing a complex information flow analysis
structure, but this method is highly manual.

Graph-based Methods. DroidSIFT [13] extracts contextual
API dependency graphs in a weighted manner to address
the static analysis-based malware deformation problem. Ap-
poscopy [14] leverages static taint analysis to generate a new
program representation called Inter-Component Call Graph
for malware detection. Nevertheless, DroidSIFT [13] and
Apposcopy [14] are both time-intensive, taking 175 and 258
seconds to analyze a program, respectively. MaMaDroid [35]
extracts abstract function call sequences from the call graph
and builds a behavioral model to characterize malware. One
flaw of this method is that it is easily circumvented by the
specially defined packages of attackers which are similar to
the official packages of Java, Android, and Google [50], and
another limitation is that it requires a huge amount of memory
while analyzing due to its large cumbersome features. [35].
Gao et al. [16] mine the local call relationship of the malware
FCG for detection by graphlet sampling, however, this method
lacks the overall attention and its effect is mediocre. Frenklach
et al. [20] believe that the key to classifying application
behavior lies in their common reusable building blocks, thus
they propose a static Android application analysis method
based on Application Similarity Graph (ASG) combined with
neural networks. Ou et al. [17] propose a novel static sensitive
subgraph-based feature for Android malware detection, named
S3Featrue. Specifically, they develop a sensitive function call
graph (SFCG) by extending a function call graph through
tagging sensitive nodes on it to represent Android applications
with high-level characteristics.

Social Network Analysis on Malware Detection. Several
works [4], [5], [7], [51], [52] have been presented to detect
malware using social network analysis. Alasmary et al. [51]
first abstracts Android and IoT malware samples into Control
Flow Graph (CFG) to represent the semantics of each sample.
Then some social network properties such as components and
average closeness centrality are extracted from the CFG to
build a comparative model for detecting new IoT malware.
Jang et al. [53] design a novel system to detect Windows mal-
ware based on the analysis of some social network properties

such as the average distance obtained from a system call graph.
MalScan [4] detects Android malware by treating the function
call graph of a program as a social network and adopting node
centrality analysis to obtain the sensitive API centrality in the
global call graph. Similarly, IntDroid [5] treats function call
graphs of apps as social networks and applies social network-
based centrality analysis to unearth the central nodes within
call graphs. After obtaining the central nodes, the average
intimacies between sensitive API calls and central nodes are
computed to represent the semantic features of the graphs. To
detect covert malware, Wu et al. [7] analyze the homophily of
call graphs with the social network. However, the above works
only focus on a single social network property. Our work is the
first attempt to examine the ability of different social network
properties on Android malware characterization, and present a
set of the most effective social network properties for graph-
based malware analysis. We will introduce the advantages and
effects of our work in the discussion section.

V. DISCUSSION

In this section, we discuss the application value, limitations
and future trends of our work.

Application Value. In our work, we extract 57 social
network properties of function call graphs on 100,000 Android
apps and rank them by performing three feature ranking
methods. We focus on researching the ability of different social
network properties on distinguishing malware from benign
apps and provide theoretical guidance for other graph-based
malware analysis work. To highlight the advantage of our
study, we conduct a guide experiment on MalScan. MalScan
only uses social network node centrality properties as features
for malware detection and achieves better performance than
other state-of-the-art work (such as PerDroid and MaMaDroid)
[4]. Based on Table VI, we directly expand the feature
vector of MalScan by 15 dimensions, and the performance of
MalScan is improved by 0.3%-2.1% on different datasets. This
demonstrates that our work is an effective guide for graph-
based work using social network properties.

Limitations. As our research object is the global function
call graph, some unimportant node information in graph may
introduce noise. In addition, in real scenarios, malicious sam-
ples are often packed to hinder static analysis. This is indeed a
common limitation of all static analysis based-work and may
affect the analysis results.

Future Trends. In future work, we plan to use some social
network properties to conduct local analysis of sensitive func-
tions. Moreover, we will consider introducing an automatic
unpacking module to reduce the negative impact of software
packing. Furthermore, we intend to measure graph properties
in more metrics, and adopt more feature ranking methods
to discover more impactful properties on Android malware
characterization.

VI. CONCLUSION

In this paper, we present the first empirical study to explore
the ability of 57 social network properties on differentiating
malware from benign apps. To excavate the most informative

IEEE TRANSACTIONS ON RELIABILITY 13

properties to detect malware, we apply three feature ranking
methods to generate the rankings of these 57 social network
properties. Study results indicate that the Average Triangles
Number is the most impactful property on Android malware
characterization among 57 social network properties. More-
over, we also demonstrate the capability of these properties
on Android malware detection and distill the 15 most effective
features as guidelines for graph-based malware analysis.

ACKNOWLEDGEMENT

We would like to thank the reviewers for their insightful
comments, which have improved the quality of this paper. This
work is supported by the Hubei Key Project under Grant No.
2023BAA024.

REFERENCES

[1] H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai, “Lethality and
centrality in protein networks,” Nature, 2001.

[2] R. Guimera, S. Mossa, A. Turtschi, and L. N. Amaral, “The worldwide
air transportation network: Anomalous centrality, community structure,
and cities’ global roles,” Proceedings of the National Academy of
Sciences, vol. 102, no. 22, pp. 7794–7799, 2005.

[3] K. Faust, “Centrality in affiliation networks,” Social Networks, 1997.
[4] Y. Wu, X. Li, D. Zou, Y. Wei, X. Zhang, and H. Jin, “Malscan: Fast

market-wide mobile malware scanning by social-network centrality anal-
ysis,” in Proceedings of the 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE’19), 2019.

[5] D. Zou, Y. Wu, S. Yang, A. Chauhan, W. Yang, J. Zhong, S. Dou,
and H. Jin, “Intdroid: Android malware detection based on api intimacy
analysis,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 30, no. 3, pp. 1–32, 2021.

[6] H. M. Kim, H. M. Song, J. W. Seo, and H. K. Kim, “Andro-simnet:
Android malware family classification using social network analysis,”
in 2018 16th Annual Conference on Privacy, Security and Trust (PST).
IEEE, 2018, pp. 1–8.

[7] Y. Wu, D. Zou, W. Yang, X. Li, and H. Jin, “Homdroid: detecting
android covert malware by social-network homophily analysis,” in
Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2021, pp. 216–229.

[8] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru,
and I. Molloy, “Using probabilistic generative models for ranking risks
of android apps,” in Proceedings of the 2012 ACM Conference on
Computer and Communications Security (CCS’12), 2012.

[9] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang, “Exploring
permission-induced risk in android applications for malicious application
detection,” IEEE Transactions on Information Forensics and Security,
2014.

[10] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: An information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems, 2014.

[11] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket.” in Ndss, vol. 14, 2014, pp. 23–26.

[12] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck, “Structural detection
of android malware using embedded call graphs,” in Proceedings of the
2013 ACM Workshop on Artificial Intelligence and Security, 2013.

[13] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware android mal-
ware classification using weighted contextual api dependency graphs,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS’14), 2014.

[14] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantics-
based detection of android malware through static analysis,” in Pro-
ceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE’14), 2014.

[15] F. Shen, J. Del Vecchio, A. Mohaisen, S. Y. Ko, and L. Ziarek, “Android
malware detection using complex-flows,” IEEE Transactions on Mobile
Computing, vol. 18, no. 6, pp. 1231–1245, 2018.

[16] T. Gao, W. Peng, D. Sisodia, T. K. Saha, F. Li, and M. Al Hasan,
“Android malware detection via graphlet sampling,” IEEE Transactions
on Mobile Computing, vol. 18, no. 12, pp. 2754–2767, 2018.

[17] F. Ou and J. Xu, “S3feature: A static sensitive subgraph-based feature for
android malware detection,” Computers & Security, vol. 112, p. 102513,
2022.

[18] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou,
and P. Liu, “Finding unknown malice in 10 seconds: Mass vetting
for new threats at the {Google-Play} scale,” in 24th USENIX Security
Symposium (USENIX Security 15), 2015, pp. 659–674.

[19] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on android markets,” in
Proceedings of the 36th International Conference on Software Engineer-
ing (ICSE’14), 2014.

[20] T. Frenklach, D. Cohen, A. Shabtai, and R. Puzis, “Android malware
detection via an app similarity graph,” Computers & Security, vol. 109,
p. 102386, 2021.

[21] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,” in
Proceedings of the 13th Working Conference on Mining Software
Repositories (MSR’16), 2016.

[22] A. Desnos and G. Gueguen, “Androguard: Reverse engineering and
pentesting for android applications.” https://github.com/androguard/
androguard, 2011.

[23] L. C. Freeman, “Centrality in social networks conceptual clarification,”
Social networks, 1978.

[24] L. Katz, “A new status index derived from sociometric analysis,”
Psychometrika, 1953.

[25] M. Marchiori and V. Latora, “Harmony in the small-world,” Physica A:
Statistical Mechanics and its Applications, 2000.

[26] M. Piraveenan, M. Prokopenko, and L. Hossain, “Percolation central-
ity: Quantifying graph-theoretic impact of nodes during percolation in
networks,” PloS one, 2013.

[27] M. R. Faghani and U. T. Nguyen, “A study of xss worm propagation and
detection mechanisms in online social networks,” IEEE Transactions on
Information Forensics and Security, 2013.

[28] V. Batagelj and A. Mrvar, “A subquadratic triad census algorithm for
large sparse networks with small maximum degree,” Social networks,
2001.

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[30] H. Sistemas, “Virustotal - free online virus, malware and url scanner,”
https://www.virustotal.com/, 2022.

[31] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-level features
for robust malware detection in android,” in Proceedings of the 9th
International Conference on Security and Privacy in Communication
Systems (SecureComm’13), 2013.

[32] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and I. Molloy,
“Android permissions: A perspective combining risks and benefits,” in
Proceedings of the 17th ACM Symposium on Access Control Models
and Technologies (ACMT’12), 2012.

[33] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of
my market: detecting malicious apps in official and alternative android
markets.” in NDSS, vol. 25, no. 4, 2012, pp. 50–52.

[34] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, “Significant
permission identification for machine-learning-based android malware
detection,” IEEE Transactions on Industrial Informatics, 2018.

[35] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross,
and G. Stringhini, “Mamadroid: Detecting android malware by building
markov chains of behavioral models,” in Proceedings of the 2017 Annual
Symposium on Network and Distributed System Security (NDSS’17),
2017.

[36] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “Appcontext:
Differentiating malicious and benign mobile app behaviors using con-
text,” in Proceedings of the 37th International Conference on Software
Engineering (ICSE’15), 2015.

[37] J. Allen, M. Landen, S. Chaba, Y. Ji, S. P. H. Chung, and W. Lee,
“Improving accuracy of android malware detection with lightweight
contextual awareness,” in Proceedings of the 34th Annual Computer
Security Applications Conference (ACSAC’18), 2018.

[38] W. Yang, M. Prasad, and T. Xie, “Enmobile: Entity-based character-
ization and analysis of mobile malware,” in Proceedings of the 40th
International Conference on Software Engineering (ICSE’18), 2018.

[39] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,
and E. Bodden, “Mining apps for abnormal usage of sensitive data,”
in Proceedings of the 37th International Conference on Software Engi-
neering (ICSE’15), 2015.

IEEE TRANSACTIONS ON RELIABILITY 14

[40] A. Machiry, N. Redini, E. Gustafson, Y. Fratantonio, Y. R. Choe,
C. Kruegel, and G. Vigna, “Using loops for malware classification
resilient to feature-unaware perturbations,” in Proceedings of the 34th
Annual Computer Security Applications Conference (ACSAC’18), 2018.

[41] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “Madam: Effective
and efficient behavior-based android malware detection and prevention,”
IEEE Transactions on Dependable and Secure Computing, 2018.

[42] A. Narayanan, M. Chandramohan, L. Chen, and Y. Liu, “A multi-view
context-aware approach to android malware detection and malicious
code localization,” Empirical Software Engineering, 2018.

[43] Y. Feng, O. Bastani, R. Martins, I. Dillig, and S. Anand, “Automated
synthesis of semantic malware signatures using maximum satisfiabil-
ity,” in Proceedings of the 2017 Annual Symposium on Network and
Distributed System Security (NDSS’17), 2017.

[44] J. Garcia, M. Hammad, and S. Malek, “Lightweight, obfuscation-
resilient detection and family identification of android malware,” ACM
Transactions on Software Engineering and Methodology, 2018.

[45] J. Zhang, Z. Qin, H. Yin, L. Ou, and Y. Hu, “Irmd: malware variant
detection using opcode image recognition,” in 2016 IEEE 22nd Interna-
tional Conference on Parallel and Distributed Systems (ICPADS). IEEE,
2016, pp. 1175–1180.

[46] P. Zhang, S. Cheng, S. Lou, and F. Jiang, “A novel android malware de-
tection approach using operand sequences,” in 2018 Third International
Conference on Security of Smart Cities, Industrial Control System and
Communications (SSIC). IEEE, 2018, pp. 1–5.

[47] C. Zhao, W. Zheng, L. Gong, M. Zhang, and C. Wang, “Quick and
accurate android malware detection based on sensitive apis,” in 2018
IEEE International Conference on Smart Internet of Things (SmartIoT).
IEEE, 2018, pp. 143–148.

[48] H.-J. Zhu, Z.-H. You, Z.-X. Zhu, W.-L. Shi, X. Chen, and L. Cheng,
“Droiddet: effective and robust detection of android malware using static
analysis along with rotation forest model,” Neurocomputing, vol. 272,
pp. 638–646, 2018.

[49] J. McGiff, W. G. Hatcher, J. Nguyen, W. Yu, E. Blasch, and C. Lu,
“Towards multimodal learning for android malware detection,” in 2019
International conference on computing, networking and communications
(ICNC). IEEE, 2019, pp. 432–436.

[50] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and
K. Ren, “Android hiv: A study of repackaging malware for evading
machine-learning detection,” IEEE Transactions on Information Foren-
sics and Security, 2019.

[51] H. Alasmary, A. Khormali, A. Anwar, J. Park, J. Choi, D. Nyang, and
A. Mohaisen, “Analyzing, comparing, and detecting emerging malware:
A graph-based approach,” arXiv e-prints, pp. arXiv–1902, 2019.

[52] Y. Wu, S. Dou, D. Zou, W. Yang, W. Qiang, and H. Jin, “Contrastive
learning for robust android malware familial classification,” IEEE Trans-
actions on Dependable and Secure Computing, no. 01, pp. 1–14, 2022.

[53] J.-w. Jang, J. Woo, J. Yun, and H. K. Kim, “Mal-netminer: malware clas-
sification based on social network analysis of call graph,” in Proceedings
of the 23rd International Conference on World Wide Web (WWW’14),
2014.

