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DeepFPD: Browser Fingerprinting Detection via
Deep Learning with Multi-Modal Learning and

Attention
Weizhong Qiang, Kunlun Ren, Yueming Wu, Deqing Zou, and Hai Jin

Abstract—Browser fingerprinting is a stateless tracking tech-
nique that poses a significant security threat to users’ pri-
vacy. However, the distinction between fingerprinting and non-
fingerprinting scripts is far from well-defined, making the detec-
tion of fingerprinting scripts very challenging. Existing methods
for detecting browser fingerprinting are based on heuristics
or machine learning, and thus either require strictly defined
rules or are not able to learn the features of fingerprinting
scripts comprehensively, failing to detect a significant fraction
of fingerprinting scripts.

To detect browser fingerprinting more effectively, we propose a
deep learning-based detection method, DeepFPD, in which multi-
ple script modalities including tokens, abstract syntax trees, and
control flow graphs are learned by using different specific neural
networks to obtain lexical, syntax, and control flow information of
the script code. Moreover, the attention mechanism is introduced
to enhance the effectiveness of DeepFPD. The experimental
results on the training dataset and test dataset constructed based
on real-world scripts show that DeepFPD outperforms the state-
of-the-art work with an F1-measure improvement of 8.3% and
18.7%, respectively.

Index Terms—Web privacy, Tracking, Browser fingerprinting
detection, Multi-modal learning, Attention mechanism.

I. INTRODUCTION

Browser fingerprinting is a technique of tracking web
browsers through the visible configuration and settings of
a website to browsers. Since Eckersley et al. [1] came up
with the concept of “browser fingerprinting”, many researchers
have revealed new information for generating the browser
fingerprints [2]. It is widely recognized as an abusive practice
and a huge threat to browser users’ privacy [3], [4], yet its
stateless nature makes it difficult to detect. Many studies
have measured the deployment of browser fingerprinting on
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the Web, and different methodologies have been used. For
example, Nikiforakis et al. [5] used the fingerprinting codes
provided by three companies as the basis for identifying
fingerprinting scripts. Acar et al. [6] proposed the FPDetective,
a framework for identifying fingerprinting scripts by finding
behaviors directly related to fingerprinting activities. Engel-
hardt et al. [7] proposed a large-scale online measurement
of tracking (including fingerprinting) and used some heuristic
rules to filter fingerprinting scripts. However, existing studies
rely on manual analysis and hard-coded heuristics, which are
strictly defined to avoid a high false positive rate but result in
a high false negative rate. In addition, with the development
of browser fingerprinting techniques, it is difficult for heuristic
rules to capture fingerprinting behaviors that evolve.

Even though the process of collecting browser information
is relatively simple, analyzing this information to identify
browser fingerprints is rather complicated, as the distinction
between benign and fingerprinting scripts is far from well-
defined. Learning-based methods are very suitable for solving
classification issues with less well-defined boundaries, and
thus they have also been used for identifying browser finger-
printing. Iqbal et al. [8] proposed a machine learning method
based on the syntactic and semantics of the code to detect
browser fingerprinting, representing scripts as abstract syntax
trees (ASTs) and using a decision tree-based classifier. Their
method achieved 99.9% accuracy in classifying fingerprint-
ing scripts, which demonstrates the advantages of machine
learning in detecting browser fingerprinting. However, the false
negative rate of their method is relatively poor. In their static
analysis, only the features extracted from the AST are used,
while the deep structural features of the code are ignored.
Moreover, they use a relatively simple decision tree-based
algorithm. Their methods do not fully utilize the semantics
of the code.

The browser fingerprinting detection methods based on
static analysis are necessary. They have higher coverage and
consume fewer resources compared to methods based on
dynamic analysis. However, it is not easy to analyze source
code to accurately understand its semantics and thus detect
browser fingerprinting. The semantic information of the scripts
consists of not only shallow source code information, such as
variable names and API sequences, but also deep structural
information, such as the control structure of the code, which
is ignored by the previous learning-based methods [8].

To fill the gap, we propose DeepFPD, a static deep learning-
based method for detecting browser fingerprinting, which
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utilizes multi-modal representations of scripts. Deep learn-
ing has been proven to have great potential for modeling
source code in recent years [9]–[13]. We utilize different
neural networks to learn lexical, syntactic, and control flow
information in tokens, ASTs, and CFGs (control flow graphs),
respectively. Specifically, we use a long short-term memory
(LSTM) network to learn the token sequence directly. The
AST is first transformed into a sequence of tuples and then
learned using another LSTM. A gated graph neural network
(GGNN) is used to process the CFG. Furthermore, we are not
utilizing these three forms separately but aggregating them. We
aggregated the three kinds of information at the network level,
using an attention mechanism to assign weights. In this way,
DeepFPD fully utilizes the information of the code, which
leads to a better ability to detect browser fingerprinting.

We train DeepFPD and perform 10-fold cross-validation
on a dataset of 10,806 scripts, including 1,272 fingerprinting
scripts and 9,534 non-fingerprinting scripts. The evaluation
results show that DeepFPD can achieve 99.4% accuracy,
97.6% F1-measure, 0.1% FPR (false positive rate) and 3.8%
FNR (false negative rate) in detecting fingerprinting scripts,
significantly outperforming the state-of-the-art method FP-
Inspector [8], with 8.3% higher F1-measure and 6.4% lower
FNR, respectively. In addition, we evaluate DeepFPD on
2,082 randomly selected scripts from the huge number of
scripts crawled on real-world websites and not in the above
dataset. Manual analysis is conducted to label these 2,082
scripts, and the results evaluated on these scripts show that
the performance of DeepFPD decreases compared to cross-
validation, but is still the best compared to FP-Inspector and
other methods, with an F1-measure of 65.6%, which is 18.7%
higher than FP-Inspector, and 35.2%-50.7% higher than other
methods.

We summarize our main contributions as the following:

1) We propose a deep learning-based method for the de-
tection of browser fingerprinting, DeepFPD, in which
different specific neural networks are leveraged to learn
multiple modalities of scripts, including tokens, ASTs,
and CFGs.

2) We aggregate the three kinds of information of scripts
at the network level and use an attention mechanism to
assign weights to make them an organic whole, leading
to a better ability to detect browser fingerprinting.

3) We conduct exhaustive experiments and evaluate the ef-
fectiveness of DeepFPD on real-world scripts. Through
the experimental results, we demonstrate that utilizing
multiple modalities and attention mechanisms is indeed
beneficial to improve the performance of the detection
method.

The remainder of this paper is organized as follows. Sec-
tion II presents the motivation example for illustrating the
proposed multi-modal approach. Section III introduces the
design of DeepFPD in detail. Section IV presents the exper-
imental evaluation of the performance of DeepFPD, as well
as the contribution of multi-modal and attention mechanisms
to DeepFPD. Section V discusses the limitation of DeepFPD.
Section VI introduces some related works. Section VII con-

cludes this paper.

II. MOTIVATION EXAMPLE

To better illustrate the key insight of our proposed approach,
we present a motivation example here. Script 1 shows a
font fingerprinting script that fingerprints the browser by
enumerating the fonts supported by the browser. Script 2 is
a normal script whose purpose is to configure the browser’s
settings. The ASTs obtained from these two scripts are very
similar. Figure 1 shows the main part of two scripts’ ASTs
of the two scripts above. The approach of Iqbal et al. [8] to
detect fingerprinting scripts is to transform the script into an
AST, then extract features from the AST as the features of the
script, and finally utilize a decision tree classifier to obtain
the result. It is obvious that this approach can hardly be used
to distinguish between the two scripts above, since they have
almost the same ASTs. However, it can be noticed that the
two scripts are very different at the lexical level. Therefore, if
the AST and lexical information of the script can be leveraged
in combination, it will be easier to distinguish the two scripts.
1 baseFonts = [’monospace’,’sans-serif’,’serif’];
2 fontList = [’...’];
3 baseFontsSpans = baseFonts.map(createSpan)
4 fontSpans = {}
5 for (font in fontList){
6 fontSpans[font] = baseFonts.map((baseFont) => createSpanWithFonts(font,

baseFont))}
7 defaultWidth = {}
8 defaultHeigh = {}
9 for (index = 0; index < baseFonts.length; index++){

10 defaultWidth[baseFonts[index]] = baseFontsSpans[index].offsetWidth
11 defaultHeigh[baseFonts[index]] = baseFontsSpans[index].offsetHeight}
12 avalibleFontList = []
13 for (font in fontList){
14 if(baseFonts.some((baseFont, baseFontIndex) =>
15 fontSpans[baseFontIndex].offsetWidth !== defaultWidth[baseFont] ||
16 fontSpans[baseFontIndex].offsetHeight !== defaultHeigh[baseFont])== true)
17 avalibleFontList.append(font)}

. Script 1: A fingerprinting script example

1 default_set = {radio: 0, checkbox: 0, file: 0,
2 password: 0, image: []}
3 show_image = []
4 remote_set = {
5 radio: !0, checkbox: !0, file: !0, password: !0, image: [...]}
6 opt_list = []
7 for (b in remote_set){
8 opt_set[b] = remote_set[b]}
9 for (b = 0; b < remote_set[’image’].length;b++){

10 if(b < 10) show_image[b] = opt_set[’image’][b]}
11 for (b in default_set){
12 if(opt_set[b])
13 opt_set[b] = na(b)}

. Script 2: A normal script example

1 baseFonts = [’monospace’,’sans-serif’,’serif’];
2 fontList = [’...’];
3 baseFontsSpans = baseFonts.map(createSpan)
4 fontsSpans = {}
5 font = fontList[0]
6 fontsSpans[font] = baseFonts.map((baseFont) => createSpanWithFonts(font,

baseFont))
7 defaultWidth = {}
8 defaultHeigh = {}
9 for (index = 0; index < baseFonts.length; index++){

10 defaultWidth[baseFonts[index]] = baseFontsSpans[index].offsetWidth
11 defaultHeigh[baseFonts[index]] = baseFontsSpans[index].offsetHeight}
12 avalibleFontList = false
13 fontSpans = fontsSpans[font]
14 if(baseFonts.some((baseFont, baseFontIndex) =>
15 fontSpans[baseFontIndex].offsetWidth !== defaultWidth[baseFont] ||
16 fontSpans[baseFontIndex].offsetHeight !== defaultHeigh[baseFont])){
17 avalibleFontList = true}

. Script 3: A slightly modified version of Script 1

Moreover, without considering the full semantics of the
script, it will not be sufficient to distinguish scripts. For
example, Script 3 is a slightly modified script of Script 1,
and its purpose is to determine whether a font is available in
the browser. It can be seen that the token sequences of the
two scripts are very similar, but the semantics of them are
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considerably different. The reason for this huge difference in
semantics is that the control structure of the script is modified,
and this difference can be seen in the CFGs.

Fig. 1. The main part of Script 1’s and Script 2’s ASTs

In summary, using only one form to represent scripts is not
enough, so it is necessary to use multiple forms of scripts,
including token, AST, and CFG, to more accurately identify
scripts.

III. SYSTEM DESIGN

A. Overview

In this section, we introduce DeepFPD, a deep learning-
based approach that can learn multi-modal representations of
JavaScript code to detect browser fingerprinting. DeepFPD
consists of three main components, namely, dataset collection,
script conversion, and classifier based on multi-modal neural
network.

B. Dataset Collection

DeepFPD is based on deep learning and therefore requires
a large amount of labeled data for training, but so far there
is no available dataset. Therefore, we can only crawl scripts
from real-world websites and then label them based on a
combination of heuristic rules and manual analysis.

First, the scripts are crawled from large-scale websites.
Then, possible fingerprinting scripts are selected from them
by using the heuristic rules in [7] and [8]. Englehardt et al.
[7] define the detection rules for several types of fingerprinting,
which include canvas fingerprinting, canvas font fingerprint-
ing, webRTC-based fingerprinting, and AudioContext finger-
printing. Iqbal et al. [8] make some slight modifications to
these rules to reduce the false positives. We use the version of
Iqbal et al. directly, details of which can be found in their
paper. Additionally, if there is a collection of attributes or
screen APIs, it is also selected as a suspicious script for further
analysis. Next, these selected scripts are manually analyzed.
When performing manual analysis, the scripts are analyzed
by two reviewers independently, and only if both are sure that
a script is a fingerprinting script, it is labeled as a positive
sample.

Since fingerprinting scripts represent only a very small
fraction of real-world scripts, the number of positive samples
we can obtain is relatively small. Therefore, the data published
by Iqbal et al. [8], which contains fingerprinting scripts, i.e.
positive samples, are used to extend the positive samples.

Specifically, we remove the duplicated samples and combine
the two sets of fingerprinting scripts to form the positive
samples in our dataset.
1 canvas.width = 122
2 canvas.height = 110
3 context.globalCompositeOperation = ’multiply’
4 arrayList = [[’#f2f’, 40, 40],[’#2ff’, 80, 40],
5 [’#ff2’, 60, 80]]
6 for (const i in arrayList) {
7 context.fillStyle = arrayList[i][0]
8 context.beginPath()
9 context.arc(arrayList[i][1], arrayList[i][2], 40, 0, Math.PI * 2, true)

10 context.closePath()
11 context.fill()}
12 context.fillStyle = ’#f9c’
13 context.arc(60, 60, 60, 0, Math.PI * 2, true)
14 context.arc(60, 60, 20, 0, Math.PI * 2, true)
15 context.fill(’evenodd’)
16 canvas.toDataURL()

. Script 4: A canvas fingerprinting script example

C. Script Conversion

As mentioned above, it is not enough to just utilize tokens to
represent code. We simultaneously utilize different represen-
tations of the code to obtain the lexical, syntactic, and control
flow information of the code. Specifically, we get the lexical
information from tokens of the script. The abstract syntax tree
(AST) is a tree-like data structure specialized for representing
the syntactic structure of program code. We exploit it to get
the syntactic information. The control flow graph (CFG) is a
graphical data structure used to represent the control flow of
code. We utilize it to get the control flow information. Overall,
we convert the scripts into tokens, ASTs, and CFG, and we
obtain richer information about the script by utilizing these
three forms simultaneously.

1) Tokens: In 2012, Hindle et al. [14] first pointed out
that programs are human-written languages with a repetitive
nature, with several statistical characteristics that can theoret-
ically be captured by language models. Based on this theory,
deep learning methods can be used to learn the probability dis-
tribution among code tokens, thereby modeling the probability
of code token sequences.

To collect tokens of the script, we first tokenize the source
code. Since the script code includes many custom words, a
large number of words will be obtained after tokenization,
many of which may interfere rather than benefit the model.
These custom words are low-frequency words, which are
usually the noise for code classification. Therefore, a word
is only preserved if its frequency exceeds the threshold, or
if it is part of JavaScript APIs. For the determination of the
frequency, we rely on the empirical “Pareto principle”, that
is to say, the corpus obtained by this frequency can reduce
the length of the script’s token sequence to about 20% of its
original length, and the final empirical value used is 50.

2) ASTs: Unlike natural languages, the syntactic structure
of programming languages is very standardized. We apply
AST, which is an abstract representation of the syntactic
structure of the source code, to reveal information about
the syntactic of the script. An AST represents the syntactic
structure in the form of a tree, and each node in the tree
represents a structure in the code.

ASTs have been used in previous studies to construct
features for learning-based methods [8], [9], [15]–[19]. In
DeepFPD, the AST of the script is traversed to form a
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Fig. 2. System overview of DeepFPD

Fig. 3. A schematic of converting AST of Script 4 into tuples

sequence, and then it is modeled using a sequence-based
model.

To retain more syntactic information, sequences of tuples
are extracted from the AST instead of directly converting to
sequences of nodes by traversing the tree. Specifically, the leaf
nodes of an AST represent the most basic syntactic units of the
source code, such as identifiers, literals, operators, keywords,
and so on. The parent nodes of the leaf nodes represent
the content or syntactic structure in which these fundamental
syntax elements are located, such as if statements, while
statements, variable declarations, and so on. We use Esprima
[20], a standard-compliant ECMAScript parser, to represent
scripts as ASTs. Here only three types of leaf nodes are kept,
which are identifier, literal, and operator. Then we traverse the
AST to get all the leaf nodes and the corresponding parent
nodes. Leaf nodes and corresponding parent nodes are kept in
pairs. We save leaf nodes not by their type, but by specific
values such as variable names, strings, addition symbols, etc.
The AST is then converted into a sequence of tuples of
the form “content:value”, where content is the syntax unit,
such as IfStatement, value represents the specific value under
the specific value, such as “i”. In this way, we preserve the
correspondence between basic units in the source code and the
syntactic structures to which they belong. If we just perform
such a naive conversion, we will end up with a very large
number of tuples. To avoid this, we only consider tuples that
contain at least one keyword that matches a word in one of
the JavaScript APIs. That is, the obtained tuples whose value

canvas.width = 122

iter1 =  
iterator(arrayList)

context.fill()

!iter1.done iter1.done

canvas.toDataURL()

canvas 
iter1 
context 0 1 0

1 0 0

0 1 0 0 1 0

0 0 1

1 0 0

Fig. 4. A schematic of converting CFG of Script 4 into vectors

is not a word in one of JavaScript APIs are removed.
Script 4 shows a part of a canvas fingerprinting script.

The purpose of this script is to render the canvas and read
the rendered image data. Figure 3 shows how the AST of
Script 4 is converted into tuples. In this way, we can achieve
serialization of the AST, and thus we can represent the AST
using a similar model that represents tokens.

3) CFGs: As mentioned above, code has structural infor-
mation, which cannot be represented by using only tokens and
ASTs. The CFG is a graphical representation of all possible
paths a program may traverse during execution, which enables
access to information about the program structure.

Specifically, we obtain the CFG of each script through an
open source tool named styx [21], where each node represents
a code statement and edges indicate the flow of code execution.
There are a large number of nodes in some CFGs, not all of
which are necessary, and may also introduce noise. Also, too
many nodes can introduce a huge overhead on graph learning.
So we remove some unnecessary nodes. Only the node is
preserved when it corresponds to a statement including at least
one word matching the name of one of the script APIs or one
word with a sufficiently large frequency. Empirically, we sort
the words of all the files by word frequency and then take
the top 20%. To further facilitate subsequent graph learning,
each node of the CFG is represented by a 256-dimensional
vector. TF-IDF (term frequency–inverse document frequency)
is applied to rank the words in the script and the top 256 words
are selected. Each dimension in the node vector represents
whether the corresponding word is in the statement represented
by this node. If the statement contains one of these words,
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the value representing that sub-dimension will be set to 1,
otherwise it will be set to 0. Then the nodes whose vector
values are all zero are removed. After we remove the node, we
connect the nodes pointing to this removed node to the nodes
pointed to by this removed node. This maximizes the retention
of control information and enables information aggregation.
Figure 4 shows the CFG generated by Script 4 and how the
nodes in the CFG are converted to vectors.

D. Classifier Based on Multi-Modal Neural Network

We present a hybrid neural network for classifying finger-
printing scripts. Since different representations of the code
contain different information, we use three kinds of networks
for code embedding. We apply two LSTM-based networks to
embed tokens and features extracted from ASTs, a GGNN-
based network to embed CFGs. Then, we utilize an attention
mechanism to fuse three code embeddings.

The network to embed the tokens. Similar to natural
language, after the code is converted into tokens, the semantic
information of the code is hidden in the sequence features in
it. As recurrent neural networks (RNNs) have been successful
in natural language processing, and long short-term memory
(LSTM) improved from recurrent neural networks has also
been shown to be effective in learning sequence features
[22], [23], we use LSTM to learn the sequence features of
the code. The main difference between LSTM and RNN is
that LSTM places more emphasis on memory blocks, thus
adding memory cells to hold long-term states. An LSTM
network can remember past information and associate it with
current data. Its internal structure includes input gates, forget
gates, and output gates, enabling it to better handle long-term
dependencies.

In our network setup, tokens are passed sequentially into
the LSTM as timing sequences xi, and each result is passed
into the next layer as the input hi for the hidden layer. Thus,
tokens are embedded as follows:

hToken
i = LSTM(hToken

i−1 , w(xi)) (1)

where i = 1, ..., |x|, w is the embedding layer that maps tokens
into vectors. hToken

i−1 is the hidden state of step i − 1, and
hToken
i is the hidden state of step i. The final hidden state

hToken
|x| is the embedding of tokens of a script, notated as

uToken. The embedding is a vector of fixed length that can be
considered as encoding the lexical information of the script in
a continuous vector space.

The network to embed the ASTs. As mentioned above, the
sequence of tuples is extracted from the AST as the features.
In this way, the tree structure is converted into a sequence, and
the AST can be learned using the model that learns sequence
features.

We also use LSTM as the model for learning the AST.
Similar to the steps for processing tokens, tuples we obtain
from traversing the AST are passed sequentially into the
LSTM as timing sequences xi. The ASTs are embedded as
follows:

hAST
i = LSTM(hAST

i−1 , w(xi)) (2)

where i = 1, ..., |x|, w is the embedding layer that maps
tuples into vectors. However, since the AST contains different
information than the tokens, the model will be different in
parameters and structure from the model learning the tokens,
making the mode better embed the AST. The embedding layer
here is different from the one that embeds the tokens, with
different input and output dimensions. The final hidden state
hAST
|x| is the embedding of tuples of a script’s AST, notated

as uCFG. It can be considered as encoding the syntactical
information of the script.

The network to embed the CFGs. Different from the
tokens and ASTs, the CFGs represent the code in the form of
graphs, and the structure of the graph can well represent the
structural information of the code. Deep learning has made
considerable progress on graph data, resulting in the deep
graph neural network, a graph-based deep learning method
[24], [25].

We use the gated graph neural network (GGNN) [26], which
has the advantage of learning directed graphs, to embed the
CFG. We define the CFG as G = (V,E), where V is the set
of nodes (v, lv) of the CFG, E is the set of edges (e, le) of the
control flow, lv and le are the labels of nodes and edges. Then
we use GGNN to learn the embedding of node v in multiple
iterations. For each round t, each node v ∈ V receives the
message mv,t aggregated from its neighbours,

mv,t =
∑

v′∈N(v)

Wlehv′,t−1 (3)

where N(v) is the neighbours of vertex v, Wle maps the
message from the hidden state h of each neighbour. For each
node v ∈ V , the GGNN updates its hidden state h with Gate
Recurrent Unit (GRU).

hCFG
v,t = GRU(hCFG

v,t ,mv,t) (4)

The node vector xv is a 256-dimensional vector initialized
as mentioned above. Then the node vectors are passed into
the GRU as the initial hidden layer state. After T rounds of
iterations, the final state is used as a vector representation of
the node. A graph-level representation is generated by averag-
ing the representations of all nodes, which is the embedding
of the script’s CFG, notated as uCFG.

Attention fusion. Next, we integrate the multi-modal em-
beddings of a script into one embedding. When fusing dif-
ferent code embeddings together to accomplish subsequent
classification tasks, different parts may have different im-
portance, so the method of assigning different weights to
them is critical. The human Attention Mechanism derived
from intuition, which devotes more attention resources to
the focused target area to obtain more detailed information
about the target, thus suppressing other useless information.
The attention mechanism has been widely applied to different
types of deep learning tasks such as image classification and
natural language processing [27]–[30]. The effectiveness of
these methods has been significantly improved with attention
mechanism.

There are a variety of attention methods. In our network,
we apply self-attention [31] to fuse three distinct embed-
dings. Self-attention is a mechanism for modeling relationships
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between elements within sequence data. Self-attention is a
foundational component of the Transformer model architec-
ture, which has achieved state-of-the-art results in numerous
natural language processing tasks. It is inherently adaptable,
automatically assigning varying attention weights to different
elements.

Specifically, to compare the effect of the methods of assign-
ing weights at different levels, we implement two attention
mechanisms. One is to concatenate the three types of embed-
ding and apply self-attention to them as a whole. We refer
to this attention mechanism as global attention. The other is
to utilize multi-head attention, applying self-attention to each
type of embedding before concatenating them together. We
just refer to this attention mechanism as multi-head attention.
Note that the global attention and multi-head attenion here
refer simply to the two attention mechanisms, and the same
below.

Global attention allows the model to capture a global
representation directly on all three types of embedding.

First, the three types of embedding are concatenated to-
gether.

u = concat(uToken, uAST , uCFG), (5)

where uToken, uAST , and uCFG are the three embeddings
previously obtained, and u is the vector concatenated from
these embeddings. Then, the self-attention computation is
performed with u as the input vector.

Q = uWQ,K = uWK , V = uWV , (6)

where u is linearly transformed into three vectors: Query Q,
Key K, and Value V . WQ, WK , and WV are weight matrices
for the linear transformations. Q and K are used to calculate
the attention scores.

A = softmax(
QKT

√
dk

), (7)

where dk is the dimensionality of the Key vectors, and A is
the attention scores, that is, the weights corresponding to the
elements in u. So we can get the final representation x:

x = AV. (8)

Multi-head attention allows the model to consider multiple
perspectives including token, AST, and CFG when capturing
dependencies within the input. We perform self-attention com-
putation for each type of embedding.

Qi = uiW
Qi ,Ki = uiW

Ki , Vi = uiW
Vi , (9)

xi = softmax(
QiKi

T

√
dki

)Vi, (10)

where i denotes one of tokens, AST, and CFG. The final rep-
resentation x is obtained by concatenating the three attention
heads:

x = concat(xToken, xAST , xCFG). (11)

Finally, the output of the attention mechanism is passed
through a final linear layer and a cross-entropy loss function
to obtain the loss. We train this model with the labels of scripts.

Loss = cross− entropy(xW, y), (12)

where W is the weight matrix of the last layer, and y is the
label of the script, which is binary here.

IV. EVALUATION

In this section, we describe the experimental setup in
detail and evaluate the performance of DeepFPD in detecting
fingerprinting scripts and the contribution of different parts of
DeepFPD to its performance.

A. Dataset

We first use OpenWPM [32] to crawl scripts from Alexa
Top-10k websites and obtain 65,203 scripts. It is worth men-
tioning that some scripts that are too short or too long need
to be removed because scripts that are too short contribute
little to the deep learning task, while scripts that are too
long greatly increase memory consumption during training.
Then, for the convenience of manual analysis and without
loss of generality, we randomly select 10,000 scripts from the
remaining scripts and use the method mentioned in Section
III-B to label the positive samples and negative samples. As
a result, 229 positive samples and 9,534 negative samples are
obtained, and the remaining samples very difficult to analyze
are excluded.

Then, we remove duplicate URLs from the list reported by
Iqbal et.al [8], download those fingerprinting scripts, and com-
bine these 1,043 positive samples with the positive samples
obtained from our analysis. Finally, 1,272 positive samples
and 9,534 negative samples make up our training dataset. Note
that the experiments on the training dataset are conducted by
performing 10-fold cross-validations.

In addition, due to the lack of ground truth, to evaluate
our method more convincingly, we construct a test dataset
based on manual analysis. Similarly, to reduce the overhead of
manual analysis, but without loss of generality, we randomly
select 2,082 samples from the remaining crawled scripts for
manual analysis. In total, 62 fingerprinting scripts and 2,020
non-fingerprinting scripts are manually labeled from these
samples.

B. Evaluation Metrics

The experiments are conducted on the above dataset to test
the effectiveness of DeepFPD. The detection of fingerprinting
scripts is a kind of classification task, that is, for each input
sequence, the model outputs a classification result, which
represents the type of the sequence. Therefore, we measure the
performance of DeepFPD using widely used metrics, namely,
accuracy, precision, recall, F1-measure, false positive rate, and
false negative rate, which are defined in Table I.

C. Implementation Details

To conduct the experiments, we use Pytorch (version 1.0.1)
to implement DeepFPD, and scikit-learn (version 0.24.1) to
implement FP-Inspector [8] and other machine learning based
approaches. All experiments are performed on Ubuntu 18.04.1
with Quadro RTX 5000 and 32GB physical memory. For the
base models, we set dropout rate Pdropout to 0.1 and the
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(a) (b)
Fig. 5. Comparison of tokens network, ASTs network, CFGs network, and fusion network. (a) On the training dataset. (b) On the test dataset

TABLE I
METRICS USED IN THE EXPERIMENTS

Metrics Abbreviation Definition

Accuracy A (TP + TN)/(TP + FP + TN + FN)
Precision P TP/(TP + FP)

Recall R TP/(TP + FN)
F1-measure F1 2 ·P ·R/(P +R)

False Positive Rate FPR FP/(FP + TN)
False Negative Rate FNR FN/(FN + TP)

model dimension dmodel to 64 to conduct the experiments.
Meanwhile, the number of LSTM layers is set to 2, and the
number of GRU propagation steps is set to 5.

D. Performance

To evaluate the effectiveness of DeepFPD in detecting
fingerprinting scripts, we perform 10-fold cross-validation on
the training dataset and also test the trained model on the test
dataset. In addition, to validate the superiority of DeepFPD
over machine learning methods, we also implement Logistic
Regression (LR), K Nearest Neighbors (KNN), Support Vector
Machine (SVM), and Random Forest (RF) for comparison.
Similar to the previous method [8], these machine learning
methods utilize ASTs for classification.

TABLE II
COMPARISON OF DeepFPD AND OTHER MACHINE LEARNING METHODS

ON THE TRAINING DATASET

Methods A(%) P(%) R(%) F1(%) FPR(%) FNR(%)

LR 97.8 96.7 83.5 89.6 0.38 16.5
KNN 97.2 92.7 83.4 87.5 0.96 16.6
SVM 97.7 95.7 84.3 89.6 0.50 15.7
RF 98.5 98.0 88.5 93.0 0.24 11.5

DeepFPD 99.4 99.0 96.2 97.6 0.13 3.81

The experimental results on the training dataset are pre-
sented in Table II. Compared with other methods, DeepFPD
performs the best on all metrics, achieving 99.4% accuracy and
97.6% F1-measure. DeepFPD also achieves the best results in
terms of false positive rate and false negative rate, reaching
0.13% and 3.81%, respectively. The machine learning-based

methods perform poorly on FNR, 7.7%-12.8% higher than
DeepFPD, which suggests their inadequate ability to learn
fingerprinting script features. In terms of F1, a comprehensive
metric, DeepFPD is 4.6%-10.1% higher than them. Overall,
DeepFPD performs well on all metrics and outperforms ma-
chine learning-based methods on the training dataset.

TABLE III
COMPARISON OF DeepFPD AND OTHER MACHINE LEARNING METHODS

ON THE TEST DATASET

Methods A(%) P(%) R(%) F1(%) FPR(%) FNR(%)

LR 97.6 59.7 59.7 59.7 1.2 40.3
KNN 97.4 59.5 40.3 48.1 0.8 59.7
SVM 97.0 49.4 62.9 55.3 2.0 37.1
RF 98.3 96.6 45.2 61.5 0.1 54.8

DeepFPD 98.0 66.7 64.5 65.6 1.0 35.5

Table III shows the results of each method on the test
dataset, from which it can be seen that there is a significant
degradation in performance for all methods, and the results
show similar features to those in the training dataset, namely,
low FPR and high FNR. Although very low FPRs of 0.8% and
0.1% are achieved in KNN and RF, their FNRs are excessively
high, reaching 59.7% and 54.8% respectively. Combining the
FPR and FNR, SVM, and LR perform relatively better, but
all are worse than DeepFPD, with FPR and FNR 0.2%-
2.0% and 1.6%-4.8% higher, respectively. In terms of F1,
DeepFPD performs the best, with 4.1%-17.5% higher than
other methods.

In summary, DeepFPD performs best both on the training
dataset and test dataset. However, the performance on the test
dataset decreases compared to that on the training dataset.
The reason could be that the number of positive samples in
the training dataset is still too small, which does not contain
certain types of fingerprinting, causing some scripts in the test
dataset to be undetectable.

E. Comparison with Other Methods

In this subsection, we compare DeepFPD with three state-
of-the-art browser fingerprinting detection methods:
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• Heuristic: The detection rules are first defined by Engle-
hardt et al. [7] and then made some modifications by Iqbal
et al. [8]. We implement the rules ourselves as described
in the paper by Iqbal et al.

• Method proposed by Zalingen et al. [33]: The method
detects browser fingerprinting through static code analysis
and a support vector machine classifier. We directly use
their implementation available on GitHub [34].

• FP-Inspector [8]: Iqbal et al. propose FP-Inspector,
which combines static and dynamic analysis and uses a
decision tree classifier to detect browser fingerprinting.
Since DeepFPD is a static method, we use FP-Inpector’s
static part for comparison. The method is not open source,
so we replicate its static part in our experiments.

Table IV presents the results of DeepFPD and three com-
parative methods for fingerprinting detection on the training
dataset and test dataset. Since Heuristic does not require
training, to be consistent with the other methods, the results
are obtained by randomly sampling one-tenth of the data in
the training dataset.

From the results on the training dataset we can see that
DeepFPD performs best on all metrics. In terms of the most
comprehensive metric, F1, DeepFPD outperforms Heuristic,
Zalingen et al., and FP-Inspector by 77%, 63.8%, and 8.3%,
respectively. Heuristic performs worst, with an F1 of only
20.6%. The inflexibility of these human-set rules makes it easy
for fingerprinting scripts to escape their detection. Zalingen et
al. performs just slightly better than Heuristic, with an F1
of 33.8%. The feature extraction of JavaScript code in the
method is very simple and unable to cope with a variety of
fingerprinting scripts. FP-Inpector performs better and can
achieve 89.3% F1, but it is still significantly inferior to our
method. It only utilizes the ASTs of scripts and doesn’t have
sufficient insight into the scripts.

The performance of all three comparative methods on the
test dataset also decreases, and DeepFPD still performs signif-
icantly better than them. The only exception is that DeepFPD
has a higher FPR than Zalingen et al. However, the recall of
Zalingen et al. is very low. This suggests that despite having
a low FPR, it comes at the cost of only being able to detect
a very small fraction of fingerprinting scripts. In terms of F1,
DeepFPD is 18.7%-50.7% higher than the three methods.

Furthermore, we compare the fingerprinting scripts de-
tected by each method through manual analysis. Fingerprint-
ing scripts detected by Heuristic are all detectable by other
methods. There is only one script that Zalingen et al. detects
that DeepFPD does not. This script is slightly obfuscated
by putting all readable information such as variable names,
function names, and so on into an array, and then replacing
the use of these names with access to the array. The feature
of Zalingen et al. utilizing the suspicious JS call happens to
make it possible to detect this script. 11 scripts are detected
by FP-Inspector exclusively. These scripts are characterized by
the fact that the fingerprinting behavior is relatively obscure.
Manual analysis also requires great scrutiny to obtain its se-
mantics. The performance of learning-based methods on such
scripts is difficult to explain. On these scripts, DeepFPD may
fail compared to other learning-based methods. In practice,

a better option is to combine several different learning-based
methods to detect browser fingerprinting.

F. The Contribution of Fusion and Attention

1) Fusion: We compare three separate networks with the
fusion network to verify the effectiveness of the multi-modal
fusion. The experiments are conducted on the fusion network,
as well as separate networks that embed tokens, ASTs, and
CFGs, respectively.

Figure 5 shows the results on the training dataset and
test dataset. As shown in Figure 5a, three separate networks
achieve relatively high performance results, while DeepFPD,
which combines the three networks through a fusion layer,
outperforms any single network on all metrics. In particular,
for the F1-measure metric, the value of fusion network is 1.3%,
6.0% and 17.4% higher than that of the tokens network, the
ASTs network, and the CFGs network, respectively. For the
FNR metric, the value of fusion network is 1.4%, 3.2%, and
23.9% lower than that of the three networks, respectively.

For the results on the test dataset, as shown in Figure 5b,
a similar pattern can be seen, i.e., DeepFPD also outperforms
any single network. The F1-measure of the fusion network
is 16.5%, 17.5%, and 43.0% higher and the FNR is 25.0%,
30.6%, and 50.0% lower than those of the tokens network, the
ASTs network and the CFGs network, respectively.

Therefore, it can be concluded that DeepFPD can improve
the effectiveness in identifying fingerprinting scripts through a
multi-modal deep neural network that can learn by combining
lexical, syntactic, and structural information.

2) Attention: To find out the contribution of the attention
mechanism to the performance, we set up experiments on three
networks with and without attention, as well as experiments on
the fusion networks under the simple linear layer, the global
attention layer, and the multi-head attention layer, respectively.

Figure 6 shows the results of these networks on the training
dataset and test dataset. For the results on the training dataset,
it can be seen that the networks with attention mechanism,
whether used for embedding tokens, ASTs, or CFGs, show
more or less improvement in most metrics compared to the
networks without attention mechanism. The improvement is
particularly significant for the tokens network, with the one
with attention being 4.0% higher in F1 and 7.6% lower in FNR
than the one without attention. The performance of the network
embedding CFGs with attention is improved compared to that
without attention, with a 2.8% higher F1, but the performance
of the network embedding ASTs with attention is decreased
slightly, with a 1.8% lower F1. For the fusion network, we can
see that the network with global attention is also significantly
more effective than the network simply fused with a linear
layer, with 2.0% higher F1-measure and 2.9% lower FNR
respectively. However, the multi-head attention fusion network
performs slightly worse than the global attention network,
which could be caused by conflicts resulting from the use of
multiple layers of attention mechanisms.

The results on the test dataset also show a similar pat-
tern. The networks with the attention layer are higher in F1
compared to the ones without the attention layer. Compared
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TABLE IV
COMPARISON OF DeepFPD AND OTHER BROWSER FINGERPRINTING DETECTION METHODS

Methods Dataset A(%) P(%) R(%) F1(%) FPR(%) FNR(%)

Heuristic Training 94.8 21.9 19.4 20.6 2.5 80.6
Test 96.2 21.9 11.3 14.9 1.22 88.7

Zalingen et al. Training 95.7 35.1 33.9 33.8 2.0 66.1
Test 97.0 46.7 22.6 30.4 0.8 77.4

FP-Inspector Training 97.5 89.9 90.0 89.3 1.5 10.2
Test 95.9 38.0 61.3 46.9 3.0 38.7

DeepFPD Training 99.4 99.0 96.2 97.6 0.1 3.8
Test 98.0 66.7 64.5 65.6 1.0 35.5

(a) (b)

(c) (d)
Fig. 6. Comparison of tokens network, ASTs network, CFGs network without attention (w/o.Att) and with attention (w.Att), and the fusion network with
linear layer (Linear), global attention (G.Att), multi-head attention (M.Att). (a) The network for tokens with/without attention. (b) The network for ASTs
with/without attention. (c) The network for CFGs with/without attention. (d) The fusion network with linear layer, global attention, and multi-head attention.

to networks without the attention layer, the networks for
embedding tokens and CFGs with the attention layer are 0.7%,
and 1.3% higher in F1. The network for embedding ASTs with
the attention layer shows a significant improvement, which is
16.7% higher in F1 and 16.7% lower in FNR. For the fusion
network, global attention also performs the best, with 14.2%
and 44.9% higher in F1 and 22.2% and 55.7% lower in FNR
than linear fusion and multi-head attention.

As a result, it can be seen that the attention mechanism
helps to improve the performance of detecting fingerprinting
scripts. However, a simple linear layer, such as the linear
fusion layer described above, can be counterproductive and

even less effective than a separate network, while too many
fusion layers do not substantially improve the fusion effect,
but rather have a negative impact.

G. Runtime Overhead

In this part, we discuss the time overhead of DeepFPD.
Table V presents the average time consumed and standard
deviation of each period of DeepFPD on one file. The model is
trained for 50 epochs. The experimental results are obtained by
running DeepFPD three times on our training dataset and then
averaging the time. Note that the standard deviation of training
and classification is not included, as the optimization of
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deep learning libraries for large-scale data makes the standard
deviation here not so meaningful.

In script conversion, the time overhead of converting scripts
to tokens is small, averaging 2 ms per file. Whereas operations
involving graphs incur higher overhead, the time overhead of
converting scripts to CFGs is an order of magnitude higher
than converting scripts to tokens. The part of AST has the
highest overhead, an order of magnitude higher than CFG.
This is because we perform operations of traversing the AST
to fetch tuples, which is very computationally expensive. All
three parts of time overhead have relatively large standard
deviations. The reason for this is that their runtime is related
to file size, which varies greatly from file to file. The training
phase is the most time-consuming, more than two orders of
magnitude higher than the other parts. The classification phase,
on the other hand, is much faster, taking only about 0.1 s per
file on average.

Of all the parts, the training phase is the most time-
consuming. It may take days to train the model on large-scale
data. However, the training phase only needs to be run once. In
the practical case of detection, only the script conversion and
classification are required. That means that a file only takes
about 0.3s on average. The time is acceptable for large-scale
detection.

TABLE V
DeepFPD’S RUNTIME OVERHEAD

Period Average time consumed
per file (s)

Standard
Deviation (s)

Script Conversion
Token 0.002 0.003
AST 0.161 0.150
CFG 0.038 0.057

Training 11.520 -

Classification 0.111 -

V. DISCUSSION

Based on deep learning, our method performs well on all
metrics for identifying fingerprinting scripts, unlike previous
methods with low FPR and high FNR. This proves the advan-
tage of deep learning in terms of abstract information such as
semantics. In particular, a single modality does not contain
enough semantic information about the code. To learn the
semantics of the script code more comprehensively, inputting
the three modalities of the code into the corresponding specific
network for training, and finally performing the fusion, will
indeed improve the effectiveness. Furthermore, the attention
mechanism allows the deep network to focus more on where
the semantics of the code are determined, which is consistent
with the intuition of understanding code semantics. Given this,
we believe that DeepFPD learns the semantics of the code
more comprehensively, and therefore, there is a reason why it
performs better at identifying fingerprinting scripts. We also
believe that DeepFPD can be extended to other tasks related
to code semantics, such as identifying malicious scripts.

However, there are still some limitations of DeepFPD.

Dataset size. A sufficient number of samples is beneficial
to the effect of deep learning. However, collecting unique
fingerprinting scripts is challenging because websites usually
replicate fingerprinting scripts from each other, so only 1,272
fingerprinting scripts are included in the experiments, which is
comparable to the number reported in the previous study [8].
This may prevent DeepFPD from learning all the features of
fingerprinting scripts. To alleviate this limitation, it is neces-
sary to combine DeepFPD prediction and manual analysis on
a large scale on more sites to increase the number of positive
samples.

Obfuscated scripts. Some fingerprinting scripts are obfus-
cated to avoid detection. In our experiments, obfuscated scripts
have not been deobfuscated, which should have an impact
on their performance and needs to be further evaluated and
resolved.

VI. RELATED WORK

A. Browser Fingerprinting
Browser fingerprinting can be utilized for various purposes.

Currently, it is mainly used to identify browsers that have no
stateful identifiers, for example, the identifier in a cookie is
cleared. A browser fingerprint consists of a set of properties of
the browser. Executing a fingerprinting script in the browser
allows the tracker to access sensitive data such as browser
settings and even operating system and hardware information.
Since no information is stored on the browser side, it is entirely
stateless and difficult to detect and block.

Mayer [35] first investigated whether remote servers could
exploit differences in browser environments to identify users,
and discovered that browsers could reveal the unique com-
bination of operating systems, hardware, and browser con-
figuration. Later, Eckerley [1] conducted the Panopticlick
experiment, the first large-scale demonstration that “browser
fingerprinting” is practical, with very strong privacy implica-
tions.

Moreover, as browsers become more feature-rich, the infor-
mation covered by browser fingerprints continues to expand,
and many research efforts have been devoted to adding new
information to browser fingerprints. Researchers found that
canvas [36], WebGL [37], the audio API [7], fonts [38], the
battery API [39], CSS properties [40], [41] and browser exten-
sions [42]–[46] can be used to generate browser fingerprints.
Even some studies have uncovered information about devices
by benchmarking their CPU and GPU capabilities through
JavaScript [47]–[51].

Browser technology is developing all the time, and browser
fingerprinting is also evolving with it, and sometimes new
browser technology is even helpful in enhancing the ability
of browser fingerprinting to identify browsers. For example,
new browser features designed to enhance the user experience,
such as canvas [52] and WebGL [53], have proven to be used to
generate more aggressive fingerprints, making it more difficult
to detect fingerprinting.

B. Browser Fingerprinting Detection
In 2013, Nikiforakis et al. [5] examined scripts from Alexa

top 10,000 sites and revealed the vulnerability of the browser
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ecosystem against fingerprinting. Not long after that Acar et al.
[6] carried out a large crawl, finding 549 of the 1 million sites
performing fingerprinting. Since then, several studies have
been conducted to measure fingerprinting adoption on the Web
[7], [54], [55], which use different methods to identify finger-
printing scripts. While collecting information in the browser is
straightforward, how to identify fingerprinting scripts is much
more complicated. The difference between benign and finger-
printing scripts is unclear. Different fingerprinting detection
techniques can lead to very different fingerprint counts, which
fuels the demand for learning-based solutions.

Prior studies have explored learning-based tracking detec-
tion. Ikram et al. [56] extracted syntactic and semantic features
from JavaScript source code, which are leveraged to train
a one-class classifier to detect tracking scripts. Wu et al.
[57] extracted features from execution trace of scripts through
Web API method calls. Iqbal et al. [58] presented a graph-
based machine-learning method to detect advertisements and
trackers. Amjad et al. [59] proposed TrackerSift, which anal-
yses domain, hostname, script, and method to reveal tracking
under the cover of functional web resources. Iqbal et al. [60]
proposed KHALEESI, which detects advertising and tracking
request chains leveraging the essential sequential context.

Some approaches were proposed specifically for fingerprint-
ing detection. Rizzo et al. [61] detected fingerprinting scripts
based on features extracted from specific APIs and the use of
machine learning classifiers. Iqbal et al. [8] utilized features
extracted through the AST and execution trace of scripts to
train a machine learning classifier. Bird et al. [62] proposed
a semi-supervised machine learning approach with the central
idea that fingerprinting scripts have similar API access patterns
when generating their fingerprints. Sjösten et al. [63] looked
for the essence of fingerprinting by analyzing the pattern of
gathering information from browser APIs and communicating
the information to the network. Rizzo et al. [64] designed
an approach to detect fingerprinting script providers based on
static or dynamic analysis of JavaScript code and machine
learning. Durey et al. [65] proposed a technique that relies on
both automatic and manual decisions to identify browser fin-
gerprinting scripts. Ngan et al. [66] investigated the robustness
of a fingerprinting detection approach, FP-Inspector, against
obfuscated fingerprinting scripts.

Different from these approaches, DeepFPD utilizes token,
AST, and CFG of the code simultaneously, leveraging attention
mechanism at the network level to aggregate them. This allows
our approach to fully utilize the information of the code and
thus detect browser fingerprinting more effectively.

C. Deep Learning for Code Representation

Many studies have been proposed to utilize deep learning
for better code representation. Nguyen et al. [67] proposed the
deep neural network model Dnn4C to map lexical sequences,
syntactic symbol sequences, and type conversion sequences
into hidden vectors and fuse them into a representation of
the source code. Mou et al. [17] designed tree-structured
convolutional neural networks to capture features from ASTs
of programs for source code processing. Zhang et al. [15]

and Ben-Nun et al. [67] used the AST of the code and the
intermediate language to perform the statement-level vector
representation of the code. Alon et al. proposed models such
as Code2Vec [9], [68] and Code2Seq [16] based on encoder-
decoder to partition and represent ASTs of code as vectors.
Allamanis et al. [69] applied graph neural networks to capture
syntactic and semantic features from the AST of the source
code. Sui et al. [70], [71] proposed to preserve interprocedural
program dependence for better code embedding.

Utilizing deep learning for code representation has also
made great strides in different tasks related to code. White et
al. [12] used RNNs to extract the lexical and structural infor-
mation of the code, which greatly improved the performance
of traditional methods in the tasks of code recommendation
and code clone detection. Dam et al. [72] proposed Deep-
Soft based on LSTM for learning long-term dependencies in
software modeling for code recommendation. Zhao et al. [19]
designed a deep learning model to measure code similarity.
They encoded code control flow and data flow information
and leveraged deep learning models to learn patterns of these
hidden representations. Wan et al. [13] presented a multi-
modal attention network to represent tokens, AST, and CFG of
the code for semantic source code retrieval. Cheng et al. [73]
proposed a novel approach by utilizing a graph convolutional
network to embed code fragments into a representaion that
preserves control-flow information for vulnerability detection.
Further, some methods [74], [75] are presented to embed
feasible value-flow paths to detect vulnerabilities.

VII. CONCLUSION

In this paper, we propose DeepFPD, a deep learning-based
detection method for browser fingerprinting. In DeepFPD,
three different code representations, including tokens, ASTs,
and CFGs, are fused to obtain comprehensive code semantics.
In addition, the attention mechanism is introduced to enhance
the effectiveness of DeepFPD. To evaluate DeepFPD, a train-
ing dataset is constructed with 1,272 fingerprinting scripts
and 9,534 non-fingerprinting scripts, and then DeepFPD is
experimentally evaluated on the training dataset and a test
dataset of 2,082 samples constructed based on manual analy-
sis. The experimental results show that DeepFPD is effective
in detecting browser fingerprinting and outperforms the state-
of-the-art work, with an 8.3% increase in F1 and a 6.4%
decrease in FNR on our training dataset, and a 21.3% increase
in F1 and an 8.3% decrease in FNR on our test dataset,
respectively, and also significantly outperforms other machine
learning-based methods.
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