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Abstract—Code clone detection is intended to identify function-
ally similar code fragments, a matter of escalating significance
in contemporary software engineering. Numerous methodologies
have been proffered for the detection of code clones, among
which graph-based approaches exhibit efficacy in addressing
semantic code clones. However, they all only consider the feature
extraction of a single sample and ignore the semantic connection
between different samples, resulting in the detection effect being
unsatisfactory. Simultaneously, the majority of existing methods
can only ascertain the presence of clones, lacking the capability
to provide nuanced insights into which lines of code exhibit
greater similarity. In this paper, we advocate a novel PDG-
based semantic clone detection method namely Keybor which
can locate specific cloned lines of code by providing a fine-
grained analysis of clone pairs. The highlight of the approach
is to consider keywords as a bridge to connect PDG nodes of
the target program to retain more semantic information about
the functional code. To examine the effectiveness of Keybor, we
assess it on a widely used BigCloneBench dataset. Experimental
results indicate that Keybor is superior to 14 advanced code
clone detection tools (i.e., CCAligner, SourcererCC, Siamese,
NIL, NiCad, LVMapper, CCFinder, CloneWorks, Oreo, Deckard,
CCGraph, Code2Img, GPT-3.5-turbo, and GPT-4).

Index Terms—Code Clones, Program Dependency Graph,
Keywords, Fine-grained.

I. INTRODUCTION

CODE clone refers to the phenomenon of the duplica-
tion of entire code or code fragments. It is commonly

classified into syntactic clone and semantic clone according
to the degree of code duplication. Syntactic clones refer to
code segments with textual similarity, categorized into three
subtypes based on the level of similarity: textual similarity
(Type-1), lexical similarity (Type-2), and syntactic similarity
(Type-3). Semantic clones, also known as Type-4, pertain to
code segments with similar functionality, employing different
code syntaxes. The rapid evolution of software engineering
increases exponentially the demand for code. The prevalence
of code cloning in practical applications is on the rise due
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to its significant advantages in alleviating the time and effort
burdens on developers. However, code cloning also introduces
some disadvantages, such as increased maintenance costs due
to the propagation of vulnerabilities. Therefore, the detection
of code clones becomes very important.

Some techniques for code clone detection also exist cur-
rently. For example, methods based on tokens offer the highest
scalability and efficiency, Toma [1] extracts token types and
calculates six similarity scores to construct feature vectors. By
utilizing the new electron mismatch index and the asymmetric
similarity coefficient, CCAligner [2] can detect Type-1 and
Type-2 clones, while also showing the potential to identify
Type-3 clones. However, since they only extract tokens for tex-
tual information and lack the exploration of semantic informa-
tion, they cannot detect semantic clones. Detecting semantic
clones poses the greatest challenge. To detect Type-4 clones,
graph-based detection methods [3]–[8] and tree-based methods
[9]–[15] preserve the program details by extracting different
intermediate representations of the program. However, these
approaches either solely extract singular syntactic information
or disregard the correlation between code structures, resulting
in suboptimal performance when detecting complex semantic
clones. Learning-based code clone detection methods [6],
[10], [11], [16]–[18] have been developed to identify complex
semantic clones. However, the study [19] shows that the stud-
ied advanced deep learning models have demonstrated poor
generalization performance, and are typically time-consuming
to train. These two drawbacks make learning-based clone
detection techniques less suitable for real-world clone detec-
tion scenarios. Furthermore, these methodologies primarily
emphasize confirming the existence of clone relationships
between code pairs, yet they lack precision in pinpointing the
specific lines of code that have been cloned. Hence, there is a
pressing demand for a traditional code similarity-based clone
detection approach capable of conducting a nuanced analysis
of semantic clones at a fine-grained level.

In this paper, we develop a novel program dependency
graph (PDG)-based semantic clone detection method, Keybor.
To overcome the problem that traditional clone detection
methods often fail to capture the semantic similarity between
cloned codes and cannot accurately locate statements with high
similarity, we explicitly solve two main challenges:

• Challenge 1: How to retain more program details to
detect more semantic clones with high precision?

• Challenge 2: How to achieve finer-grained clone detec-
tion that can report statements with high similarity?



To address the first challenge, we propose to bridge the PDG
nodes of the target program using keywords and utilize the
graph embedding algorithms Struc2vec [20] and Sent2vec [21]
to extract structural features and code features respectively.
Specifically, we first distill the program details of each method
into a PDG, where each node represents a code line of the
method. Subsequently, we connect two PDGs using keyword
nodes as hubs, forming a new graph, namely PairPDG. By in-
corporating edges based on keyword connections, we can more
accurately capture the semantic associations between the code
segments. This enhancement results in a more pronounced
manifestation of semantic similarity among clone pairs.

To overcome the second challenge, we perform line-level
similarity matching. Since each node in the PDG represents a
line of code in the source code. By calculating the similarity
between nodes in two target source codes, we can identify
pairs of nodes with high similarity. This approach enables the
precise localization of similar statement pairs within the clone
pairs based on line numbers. In detail, we use Sent2vec [21] to
extract the semantic features of each line of code and achieve
fine-grained clone detection by analyzing the textual similarity
of each line of code in clone pairs.

We propose Keybor and subject it to evaluation using the
extensively employed dataset BigCloneBench [22], [23]. Key-
bor enables fine-grained detection of complex semantic clones
by connecting keywords to enrich semantic information. Our
experiments reveal that Keybor significantly outperforms 12
state-of-the-art traditional code clone detection systems and
two large language models. For example, the recall of Keybor
when detecting moderately Type-3 is 83% while our 14 com-
parative tools (i.e., CCAligner [2], SourcererCC [24], Siamese
[25], NIL [26], NiCad [27], LVMapper [28], CCFinder [29],
CloneWorks [30], Oreo [18], Deckard [9], CCGraph [7],
Code2Img [31], GPT-3.5-turbo [32], and GPT-4 [33]) can
only achieve 14%, 1%, 14%, 19%, 2%, 19%, 1%, 15%, 30%,
12%, 29%, 25%, 59%, and 77%, respectively. For fine-grained
analysis, Keybor not only reports whether two methods are
clones but also pinpoints the pairs of statements with high
similarity to help researchers conduct subsequent in-depth
analysis.

In general, the primary contributions made in this paper are
as follows:

• We use keywords to connect PDG nodes of two methods
and perform semantic feature extraction using a graph
embedding algorithm to preserve more semantic infor-
mation about the code.

• We design a PDG-based fine-grained semantic clone de-
tection method, Keybor1, which not only reports whether
two methods are clones but also can precisely locate pairs
of statements with high similarity.

• We conduct comparative evaluations with 14 systems on
BigCloneBench [22], [23] dataset. Experimental findings
confirm that Keybor has the optimal detection perfor-
mance over CCAligner [2], SourcererCC [24], Siamese
[25], NIL [26], NiCad [27], LVMapper [28], CCFinder

1https://github.com/KeyborCode2024/keybor.

[29], CloneWorks [30], Oreo [18], Deckard [9], CCGraph
[7], Code2Img [31], GPT-3.5-turbo [32], and GPT-4 [33].

II. BACKGROUND AND MOTIVATION

Before presenting our proposed system, we will commence
by establishing essential terminology that will be employed
consistently throughout this manuscript.

A. Clone Type

Code cloning pertains to the presence of identical or similar
source code fragments within a code base. Classifications of
code clones are typically delineated based on varying levels
of similarity, resulting in the general categorization into the
following four types [34], [35]:

• Type-1 (textual similarity): Code fragments that are
identical except for differences in white spaces, layouts,
and comments.

• Type-2 (lexical similarity): Code fragments that are
identical except for variations in identifier names and
lexical values, along with the differences found in Type-1
clones.

• Type-3 (syntactic similarity): Code fragments that are
syntactically similar but differ at the statement level.
In addition to the variations seen in Type-1 and Type-
2 clones, these fragments may have statements that are
added, modified, or removed.

• Type-4 (semantically similarity): Code fragments that
are syntactically dissimilar but perform the same func-
tionality.

//Type-1

private int sum(int n){

    int m = 0;

    int i = 1;

    while(i <= n){

        m += i;

        i++;

    }

    return m;

}

//Original 

private int sum(int n){

    int m = 0;

    int i = 1;

    while(i <= n){

        m += i;

        i++;

    }

    return m;

}

//Type-4

private int sum(int n){

    int m = 0;

    for (int i = 1; i <= n; i++) {

        m += i;

    }

    return m;

}

//Type-2

private int sum(int a){

    int b = 0;

    int t = 1;

    while(t <= a){

        b += t;

        t++;

    }

    return b;

}

//Type-3

private long sum(long n){

    long m = 0;

    long i = 1;

    while(i <= n){

        m += i;

        i++;

        mymtem.out.println(m);

    }

    return m;

}

Fig. 1. Examples of different clone types

In order to visually illustrate four types of code cloning,
Figure 1 provides examples of clones at various degrees
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based on the original code. The original method implements a
cumulative summation function. Type-1 to Type-4 code clones
undergo varying degrees of modification based on the original.
Type-1 code clone alters the comments, except that the two
code fragments are otherwise identical. Type-2 code clone
makes no changes to the code snippet, except that the variable
names of the original code have been replaced (i.e., a, b, t
instead of n, m, i). Type-3 code clone extends the original
fragment by one line of output while maintaining its original
syntax. Type-4 code clone substitutes the while loop with a
for loop, accomplishing equivalent functionality through an
entirely divergent syntax structure. This variant of code clone,
termed a semantic code clone, poses heightened challenges
in detection due to the potential significant alterations in the
code structure. This classification of code clones reflects the
varying degrees of similarity between code fragments, with
code clones becoming progressively less similar and more
difficult to detect from Type-1 to Type-4.

B. Program Dependency Graph

A Program Dependence Graph (PDG) is an intermediate
representation used to illustrate the dependencies between
various statements and expressions in a program. It unifies the
representation of both control and data dependencies, helping
developers understand the logical structure of a program.
PDGs are commonly used in optimization, debugging, code
analysis, and clone detection scenarios.

A PDG is a graphical structure where each node repre-
sents a statement or expression, and the edges represent the
dependencies between these statements or expressions. These
dependencies are categorized as follows:

• Data Dependence: This describes the relationship where
one statement depends on the data generated by another
statement. For example, if statement A assigns a value to
variable x, and statement B uses that value, statement B
is considered data-dependent on statement A.

• Control Dependence: This represents the control flow of
the program, indicating that the execution of a statement
depends on the result of a previous control structure’s
evaluation. For example, if the execution of statement B
depends on the condition of statement A (such as an if or
while statement), then statement B is control-dependent
on statement A.

C. Graph Embedding Algorithm

A graph is a structure consisting of nodes and edges, utilized
to represent entities and the relationships between them. A
graph can be directed or undirected, and edges can be weighted
or unweighted. In many real-world scenarios, such as social
networks, knowledge graphs, and communication networks,
data naturally exists in the form of graphs.

Graph embedding algorithms convert graph-structured data
(e.g., social network, molecular structure, knowledge graph)
into low-dimensional vector representations. This vectorized
representation makes it easier to perform machine learning and
data mining tasks, such as node classification, link prediction,
and community detection, while retaining the graph’s struc-
tural information [36], [37]. The main goal of graph embed-

ding algorithms is to encode the nodes or subgraphs of a graph
as low-dimensional real-valued vectors, while preserving as
much of the original structural information and attributes as
possible. This transformation of complex graph structures into
numerical feature vectors allows machine learning algorithms
to process them more effectively. After embedding, tasks like
similarity calculation, link prediction, and node classification
become simpler and more efficient.

Graph embedding algorithms can be divided into the fol-
lowing categories:

• Matrix decomposition-based methods: Examples include
Graph Laplacian Eigenmaps and Spectral Embedding.

• Random walk-based methods: Examples include Deep-
Walk and node2vec. These methods capture both local
and global information in the graph through the use of
random walks and embed this information into the vector
space.

• Deep learning-based methods: Examples include Graph
Convolutional Networks (GCN) and GraphSAGE. These
methods use neural networks, particularly convolutional
neural networks, to learn node representations in graphs.

D. Motivation
Keywords [38] are defined and reserved for usage within the
programming language and are generally used to form the
overall framework of a program, to express key values and
complex semantics with structure, etc. As predefined words
with a specific purpose, keywords can define the structure and
flow of a program and specify the actions that the program
should perform. For example, keywords related to the data type
definitions (e.g., int and char) determine the data types used in
a program and thus affect the data flow. The keywords related
to the program control (e.g., do and while) can determine the
direction of program execution, thereby influencing the control
flow. The majority of syntactic information in the context of
a program is made up of keywords and certain symbols, the
meaning of which effectively symbolizes the usage of that
syntactic format.

In addition, it is prohibited for programmers to define the
same identifiers as a keyword while programming. Because
of the restrictions on the naming of identifiers, keywords
become fixed, unambiguous lexical elements in the code,
which significantly facilitates recognition and understanding.
Consequently, identifying a limited and fixed number of
keywords in a program enables us to get a glimpse of the
overall general flow, behavior, and structural framework of
the code. In general, keywords provide a clear and concise
way to express program logic, which somewhat reflects the
construction of the program structure framework and the
expression of semantics. Can connecting the two codes in
a clone pair using keywords as pivotal elements result in a
more accurate capture of the semantic associations between
the codes, thus enhancing the conspicuousness of semantic
similarity between the clone pairs? We investigate existing
related work on PDG-based semantic clone detection, all of
which deal with individual PDG and have not been connected
intrinsically. Therefore, a preliminary study is conducted to
investigate whether adding keyword connections in feature
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extraction could more accurately depict the program’s feature
information.

To verify our proposed idea, 10,000 Type-4 clone pairs are
randomly chosen from the dataset BigCloneBench (BCB) [22]
to implement a controlled experiment that compared the effects
of Keyword-based connection with Non-keyword connection.
First, we extract the PDGs for each pair of clone methods to
conduct a comparative experiment on keyword connectivity
in graph form. In the Keyword-based connection experiment,
we analyze the nodes in each PDG and connect them based
on the code statements contained within the nodes and the
relevant keywords. For example, if a statement contains the
keyword “return 0;”, then that node is connected to the
“return” keyword node. If both PDGs contain the “return”
keyword, a connection is established between the two PDGs
via the “return” keyword. After completing the keyword con-
nectivity, we employ the widely used node embedding method
Struc2vec [20] to obtain the feature vectors corresponding
to the target code and compute the similarity. In the Non-
keyword connection experiments, we do not establish any
connections between the two PDGs; instead, they were treated
as two independent graphs for feature vector extraction and
similarity calculation. Figure 2 shows the similarity between
Non-keyword connection and Keyword-based connection ex-
periments.

K e y N o k e y
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0
1 . 1

Sim
ilar

ity

Fig. 2. The similarity between Keyword-based connection and Non-keyword-
based connection experiments

The results present in Figure 2 indicate that the similarity
calculated in the Keyword-based connection is significantly
higher than that in the Non-keyword connection experiments,
which indicates that bridging the two functions with keywords
provides more information to facilitate the identification of
similarities in the code. However, we discover that the average
similarity of the clone pairs was high whether or not the
keywords connection was introduced. This is because our
experiment focuses solely on the structural similarity of the
graphs and overlooks the similarity of the code. We plan to
address this limitation in our subsequent experimental designs.

Therefore, based on the observations, we propose the
method Keybor, which enriches the semantic information by
connecting keywords, thus improving the accuracy of the
detection of complex semantic clones.

III. SYSTEM

We propose a fine-grained clone detection method Keybor for
complex semantic clones based on keyword connection. To
enhance the preservation of semantic information in functional
code, keywords are utilized as connectors between PDG
nodes in the target program. After that, we employ graph
embedding methods to capture semantic features and evaluate
their similarity by Cosine Similarity of two vectors. This
section provides a comprehensive explanation of the method’s
architecture and the implementation of each component.

Algorithm 1 Keybor workflow
Input: Two methods M1 and M2 to be detected as clones or not, and the
keywords list keywords list.
Output: Detection result result.
1: // PDG Generation
2: PDG1 ← PDG GENERATE (M1)
3: PDG2 ← PDG GENERATE (M2)
4: // PDG Mergence
5: for each keyword in keywords list do
6: keyword node← NEW NODE (keyword)
7: end for
8: for each node in PDG1 do
9: if node has keyword in keywords list then

10: Connect the node with keyword node
11: end if
12: end for
13: Do the same thing for PDG2 to get merged graph PDG1 PDG2

14: // Feature Extraction
15: // Code Feature Extraction
16: vector code1 ← []
17: for each node in PDG1 do
18: vector ← SENT2VEC (node)
19: vector code1+ = vector
20: end for
21: Do the same thing for PDG2 to get vector code2
22: // Structural Feature Extraction
23: vectorslist structure1, vectorslist structure2 ← STRUC2VEC

(PDG1 PDG2)
24: vector structure1 ← []
25: for each vector in vectorslist structure1 do
26: vector structure1+ = vector
27: end for
28: Do the same thing for vectorslist structure2 to get

vector structure2
29: vector1 ← MEAN (vector code1, vector structure1)
30: vector2 ← MEAN (vector code2, vector structure2)
31: // Verifying
32: sim← SIMI COS (vector1, vector2)
33: if sim >= 0.9 then
34: result← 1
35: else
36: result← 0
37: end if

A. Overview

As depicted in Figure 3 and Algorithms 1, Keybor consists of
four main phases: PDG Generation, PDG Mergence, Feature
Extraction, and Verifying.

• PDG Generation: The objective of this stage is to
generate the corresponding PDG for each method. The
methods are provided as input, and the resulting PDGs
are produced as output.

• PDG Mergence: This stage combines two PDGs into a
unified graph by incorporating keyword nodes. It receives
two PDGs as input and outputs the integrated PDG.
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Fig. 3. System architecture of Keybor

TABLE I
JAVA KEYWORD TOPIC DIVISION IN DETAIL

Topic Keywords Topic Keywords Topic Keywords
Accsess public, private, protected Enum enum Instanceof instanceof

Jump break, continue Class class Assert assert
Loop do, for, while Interface interface Char char

Condition switch, case, default, if, else Extends extends Goto Goto
Exception try, catch, finally Boolean boolean Super super

Throw throw, throws Strictfp strictfp This this
Package package, import Abstract abstract Const const
Integer byte, short, int, long Native native Final final
Float float,double New new Void void

Synchronized synchronized Static static Transient transient
Implements implements Return return Volatile volatile

• Feature Extraction: In this stage, we extract feature by
incorporating both code and structural information. The
merged PDG serves as the input, and the output consists
of vectors that represent the features of each node in the
integrated PDG.

• Verifying: The goal of this stage is to assess whether the
code pairs are semantically similar. The stage takes the
feature vectors as input and outputs a decision.

B. PDG Generation and Mergence

We utilized the open-source code parsing tool Joern [39] to
extract the PDG [40] of a function. The PDG provides a
detailed and structured graphical representation, facilitating in-
depth program analysis and understanding.

Keywords, as a class of syntactic structure in program-
ming languages, can not only label primitive data types but
also be used to identify various program structures such
as loops, statement blocks, conditions, branches, and so on.
Furthermore, the uniqueness of keywords allows them to
serve as identifiers in code statements, reflecting the semantic
framework of the program to some extent. Therefore, within
the PDG merging procedure, we designate keyword nodes as
pivotal elements connecting the PDGs associated with the two
code segments in a clone pair. This approach aims to more
comprehensively depict the inherent relationship between the
two code segments.

Moreover, semantic clones manifest as heterogeneous code
structures that achieve identical functionality to the original
code by employing distinct identifiers, keywords, types, and
layouts. For instance, as illustrated in Figure 1, the Type-4
clone employs for loop syntax instead of while loop syntax,
resulting in dissimilarity in text or syntax between the cloned
and original code, while maintaining semantic similarity. In
this context, if keyword nodes are utilized as pivotal elements
in PDG Mergence, the “while” loop statement in the original

code would be connected to the keyword node “WHILE”,
while the “for” loop statement in the Type-4 clone would
be connected to the keyword node “FOR”. This discrepancy
in connecting different keyword nodes poses a challenge in
effectively capturing the semantic consistency between the two
loop structures.

To alleviate this situation of identical semantics but no con-
nection due to absolute matching and to maintain additional
program semantics, we categorize the 50 keywords into 33
distinct topics based on the official usage guidelines for Java
keywords [41]. The specific topic categorization is outlined in
Table I, the topic “access” encompasses keywords representing
access control, namely “public,” “private,” and “protected”; the
topic “loop” includes keywords associated with loop control,
such as “for,” “while,” and “do”; and the topic “integer”
encompasses keywords representing integer data types, in-
cluding “byte,” “int,” “short,” “long”. Subsequently, we adopt
topic nodes to replace keyword nodes as pivotal elements in
connecting PDGs, aiming for a more effective reflection of
similarities in code structure and functionality.

To provide a more comprehensive explanation of the de-
tailed steps involved in the proposed method, we elucidate
the PDG Mergence process using the original code snippet
and Type-4 code clone pair from Figure 1 as an example.
Figure 4 depicts the PairPDG for this clone pair following
step PDG Mergence. Nodes Gi and Hi in Figure 4 respectively
represent the statement nodes for the original code snippet and
the Type-4 code clone. Each node represents a line of code
within the method, and the subscript i denotes the line number
of the statement, facilitating precise identification in fine-
grained clone detection. Simultaneously, we introduce topic
nodes as pivotal elements to connect the two PDGs. Solid
edges depict the control/data dependencies within the target
program’s PDG. Dashed edges connect statements containing
keywords with their corresponding topic nodes, facilitating the
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G1 : int x  = source()

G2 : if (x < MAX)

G3 : int y = 2 * x

G4 : sink(y)

Dx

Dx

Ctrue

Dy

Ctrue

if

int

int x  = source()

if (x < MAX) int y = 2 * x

sink(y)

Dx Dx

Ctrue Dy

Ctrue

H1 : int x  = source()

H2 : if (x < MAX)

H3 : int y = 2 * x

H4 : sink(y)

Dx

Dx

Ctrue

Dy

Ctrue

G1 : private int 

sum(int n)

G2 : int m = 0;

G3 : int i = 1;

G4 : while (i <= n)

G5 : m += i;

G6 : i++;

G8 : return m;

H1 : private int 

sum(int n)

H2 : int m = 0;

H3 : for (int i = 1; i <= n; 

i++)

H4 : m += i;

H6 : return m;

loop

access

Integer

return

//Original 

1 private int sum(int n){

2  int m = 0;

3  int i = 1;

4  while(i <= n){

5  m += i;

6         i++;

7  }

8  return m;

9 }

//Type-4

1 private int sum(int n){

2  int m = 0;

3  for (int i = 1; i <= n; i++) {

4         m += i;

5  }

6  return m;

7 }

Fig. 4. PairPDG generated after the phase PDG Mergence

merging of two separate PDGs into the PairPDG. For instance,
node G3 contains the keyword int, belonging to the Integer
category, hence G3 is connected to the Integer topic node.

C. Feature Extraction

For the feature extraction of PairPDG, we select a variety of
advanced graph embedding methods to map the graph into
low-dimensional dense vectors to facilitate the subsequent
classification of clone pairs. To enhance the precision in
extracting both semantic and syntactic information from the
PDG, our proposed feature extraction strategy is divided into
two main parts: code information extraction and structural
information extraction. The extraction of code information
targets the codes corresponding to the nodes in the PDG
for word embedding, converting the corresponding codes in
the nodes into fixed vectors; The extraction of structural
information captures the connections between nodes in the
graph by analyzing the edge information within the PDG.
Finally, it obtains the structural feature vector of each node
by the node embedding algorithm.

1) Code Feature Extraction

The extraction of code features focuses on the extraction
of code information from the statement nodes. We treat the
code of a statement as text and utilize Sent2vec [21] to extract
features. Sent2vec is an alternative embedding representation
that contains the sentiment semantics of a sentence in its
embedding vector. Based on FastText [42] and Word2vec [43],
the sentence embedding is computed as the mean of the
embeddings of the individual source words that constitute it,
and the distributed representation of the sentence is trained by
using a simple but effective unsupervised target. The algorithm
surpasses the performance of the leading unsupervised model
across the majority of benchmark tasks and even outperforms
the supervised model on many tasks, highlighting the robust-
ness of the generated sentence embeddings [44], [45].

In contrast to predicting target words from character se-
quences, Sent2vec predicts target words from source word
sequences. A wide variety of open-source libraries, including
the Linux kernel, are chosen as the training set to train the
model to minimize the data leakage problem caused by the
overlap of the training and test sets. Subsequently, the code
corresponding to each node is fed into the trained model to
obtain the code vectors.

2) Structural Feature Extraction
A variety of advanced node embedding models for unsu-

pervised learning of graph-structured data are selected for the
extraction of structural information from the synthesized Pair-
PDG. Commonly used graph embedding algorithms typically
balance between the homogeneity and structural equivalence
of the graph. Specifically, the “homogeneity” of the network
denotes that the embedding of nodes adjacent to each other
should have the closest resemblance to one another (i.e.,
local neighborhood similarity). As shown in Figure 4, the
embedding expressions of node H3 and its connected nodes
H1, H4 should be close to each other, which is a reflection
of “homogeneity”. The term “structural” refers to the embed-
ding of structurally similar nodes that should be as close as
feasible. For instance, nodes G1 and H1 in the PairPDG are
connected to the same topic nodes (access and integer), and
they exhibit similar data and control dependencies in their
respective PDGs. Hence, nodes G1 and H1 exhibit analogous
structures and architectures. Consequently, their embedding
representations should be similar, reflecting “structural sim-
ilarity”. In a straightforward sense, two nodes with the same
degree are considered structurally similar, and this similarity is
strengthened if their neighboring nodes also exhibit the same
degree. In terms of clone detection, nodes with high similarity
in the two target programs in the synthesized PairPDG are
more likely to contain the same keywords (i.e., connect the
same keyword nodes) and have similar dependencies with
other nodes. As illustrated in Figure 4, the structural similarity
of nodes (e.g., G1 and H1) offers a clearer indication of the
degree of cloning corresponding to each node in the target
program. In other words, nodes with a high degree of similarity
have a more comparable structure in the graph. Due to their
high structural similarity, we can consider that these two nodes
are likely to be highly similar in clone detection. Based on
this situation, we choose the node embedding models, which
are advanced in current research and biased towards structural
similarity, to obtain a more accurate vector representation and
enhance the precision of clone detection.

In the specific implementation, we adopt two types of node
embedding models for feature extraction, one of which is the
simple Structural Node Level Embedding Model: Struc2vec
[20] and Role2vec [46]. This class of models merely reads
the graph’s node connection information and maps it to a
vector without accounting for the code information stored in
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the nodes, which subsequently needs to be synthesized with
the code feature vectors generated by Sent2vec. Struc2vec is
a framework for generating graph node vector representations
that retain structural identity. Struc2vec employs a hierarchical
structure to quantify structural similarities among distinct
nodes, constructing a multilayered graph. By traversing this
multilayered graph through weighted random walks, it gener-
ates random contexts for each node, where nodes frequently
appearing in similar contexts may share similar structures.
Subsequently, applying word2vec [47] to the sampled random
walk sequences facilitates the learning of embedding vectors
for each node. Role2vec proposes role-based graph embedding,
utilizing attributed random walks that are independent of ver-
tex identity. Rather than learning separate embeddings for each
individual node,Role2vec learns each role’s embedding by
mapping feature vectors to roles through functions that capture
the node’s role behavior, such that if they are structurally
similar, the two vertices belong to the same type.

The other is the Attributed Node Level Embedding Model:
AE [48] and MUSAE [48], which captures information about
a node from the local distribution of node attributes around
the node. These two algorithms are respectively based on
pooling (AE) and multiscale (MUSAE) learning of local feature
information for attribute node embedding. The algorithms
consider node “features” as standard basis vectors and use at-
tribute information to complement the local network structure,
outperforming similar methods in predicting node attributes,
computational scalability, and migration learning. We use the
vector generated by Sent2vec’s mapping of the node code as
an attribute of the node and feed it into the model to get the
vector of the node.

D. Verifying

After graph embedding feature extraction, each code line
gets a corresponding feature vector. Calculating the similarity
between corresponding rows yields fine-grained similarity
results. The function-level similarity involves summing the
vectors of all rows in the target function to obtain the function
feature vector, and then calculating the similarity of the
two function vectors. To quantify the similarity, we employ
the Cosine Similarity as our computational approach. Cosine
similarity is a common method for measuring the similarity
between two vectors, particularly in text and high-dimensional
data analysis. It is commonly applied in areas like text mining,
recommendation systems, and clustering analysis, making it
especially suitable for handling high-dimensional features.
The value of cosine similarity ranges from [-1, 1], where 1
represents perfect similarity, 0 signifies no similarity, and -1
signifies complete opposition, making it easy to understand
and interpret. This method assesses their similarity by com-
puting the cosine of the angle formed between the two vectors.
The formula is given by:

Simicos(A,B) = cos(θ) =
Σn

i=1AiBi√
Σn

i=1A
2
i

√
Σn

i=1B
2
i

(1)

When the similarity between two code fragments exceeds
the predefined threshold, this pair is identified as a clone pair;
otherwise, it is categorized as a non-clone pair.

IV. EXPERIMENTS

In this section, we address the following research inquiries:
• RQ1: How does the performance of Keybor vary in clone

detection under different factors?
• RQ2: Can Keybor surpass other clone detectors in per-

formance?
• RQ3: How effective is Keybor in fine-grained detection

and localization?
• RQ4: What is the runtime overhead of Keybor when

detecting code clones?

A. Experimental Settings
1) Dataset.
We choose BCB [22] as the dataset for our experiments.

This dataset is extracted from the IJaDataset [49] and has
undergone manual validation by three experts. IJaDataset
contains 25,000 items with 365 million lines of code. BCB
contains 10 types of questions and more than 8 million labeled
clone pairs and 270,000 non-clone pairs. Given the ambiguous
boundary between Type-3 and Type-4 clones, BCB classifies
Type-3 into four subcategories of weak, moderate, strong, and
very strong based on similarity scores assessed through line-
level and token-level code normalization, as shown below:
i) Very Strongly Type-3 (VST3), representing a similarity of
90-100%, ii) Strongly Type-3 (ST3), representing a similarity
of 70-90%, iii) Moderately Type-3 (MT3), representing a
similarity of 50-70%, and iv) Weakly Type-3/Type-4 (WT3/T4),
representing a similarity of 0-50%. To experiment, we ran-
domly select 250,000 cloned pairs and 250,000 non-cloned
pairs from BCB. The clone pairs we select include 48,116 T1
pairs, 4,234 T2 pairs, 4,577 VST3 pairs, 16,818 ST3 pairs,
76,341 MT3, and 99,914 WT3/T4 pairs.

2) Implementation
We conduct experiments on a server equipped with the

Ubuntu 16.04 operating system, 62GB of RAM, and a 32-core
Intel Xeon processor. Note that to ensure fairness, like previous
studies [2], [24], the scalability evaluation is run with a
restricted quad-core CPU and 12GB of RAM. To leverage the
potential of the PDG-based method for identifying code clones
based on both syntactic and semantic similarity, we incorporate
Joern [39] to facilitate the generation of PDGs corresponding
to the target code. In addition, since the dataset chosen for the
experiment uses the JAVA programming language, we choose
a Python library Javalang [50] to perform lexical analysis to
obtain the corresponding token sequences to achieve keyword
identification.

3) Comparison
The body of academic work dedicated to clone detection is

extensive, making it infeasible to conduct a comprehensive
comparison of our approach with every existing method.
Since our method is a traditional code similarity-based clone
detection approach, rather than one that uses machine learning
or deep learning models for training and prediction, we chose
not to compare our method with these detectors. Prior research
[19] has highlighted two major limitations of learning-based
clone detection methods: 1) The studied state-of-the-art deep
learning models have been shown to generalize poorly. These
methods perform well only on the dataset they are trained
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on, but their performance degrades significantly when applied
to other datasets. 2) Training them is often time-consuming.
These two drawbacks make learning-based clone detection
techniques less suitable for real-world clone detection tasks.
As a result, we do not include these detectors in our compar-
ison.

Therefore, we conduct a comparative analysis between
Keybor and the following advanced, widely-used, and non-
learning-based code clone detectors: CCAligner [2]: An ad-
vanced detector employing code window extraction and editing
distance metrics for code clone identification. SourcererCC
[24]: An advanced code clone detector computing the over-
lapping similarities of tokens between methods. Siamese [25]:
An advanced detector converting token sequences from source
code into diverse manifestations for code clone identification.
NiCad [27]: An advanced code clone detector employing
the TXL parser for calculating method similarity. NIL [26]:
An advanced code clone detector calculating the longest
common subsequence of tokens of methods. LVMapper [28]:
An advanced code clone detector that computes the count of
shared tokens and dynamic threshold. CCFinder [29]: A tool
leveraging token-based techniques specifically tailored for de-
tecting clones in large-scale codebases, achieved through com-
paring the similarity of code token sequences. CloneWorks
[30]: An efficient clone detection tool achieved by computing
modified Jaccard similarity. Oreo [18]: A metric-based code
clone detection tool that combines information retrieval and
machine learning. Deckard [9]: A clone detection tool utilizing
tree to achieve similarity by computing Euclidean distance
between vectors. CCGraph [7]: A clone detection method
based on PDG that employs an approximate graph-matching
algorithm. Code2Img [31]: A scalable code clone detection
algorithm utilizing image transformation techniques. GPT-3.5-
turbo [32]: An advanced language model for various applica-
tions, from coding assistance to creative writing. GPT-4 [33]:
An advanced language model building upon the foundation set
by GPT-3.5-turbo. It has improved instruction adherence and
is better able to handle complex tasks. When running these
tools for performance comparison, we select the parameter
configurations that are reported in their respective papers to
yield the best results.

4) Metrics
We measure Keybor’s effectiveness using the generally

accepted metrics as follows: Precision (P), Recall (R), and
F-measure (F1). P = TP

TP+FP , R = TP
TP+FN , F1 = 2∗P∗R

P+R .
Among them, true positive (TP) refers to the samples that are
correctly identified as clone pairs, false positive (FP) refers
to the samples mistakenly identified as clone pairs, and false
negative (FN) refers to the samples wrongly identified as non-
clone pairs.

B. RQ1: Different Factor Setting

To illustrate the effectiveness of different methods and differ-
ent parameters in Keybor clone detection, we set up compara-
tive experiments in this subsection. We choose 250,000 pairs
of clones and 250,000 pairs of non-clones mentioned in the
experimental data to complete the experiment. The Keybor
experiment contains three variables: different PDG synthe-

sis methods, different graph embedding tools, and different
thresholds.

For the purposes of our experiments, we employ three
alternative PDG synthesis methods: Non-keyword connection,
Keyword-based connection, and Topic-based connection. The
two target code PDGs are combined in step PDG Mergence
to create the image PairPDG. Non-keyword connection exper-
iment does not process PairPDG. Keyword-based connection
experiment adds keyword nodes to PairPDG and connects
statement nodes containing keywords to the matching key-
word nodes. Topic-based connection experiment improves on
the Keyword-based connection experiment by categorizing
keywords into 33 different topics according to their usage,
adding topic nodes to the PDG, and connecting code nodes
to the corresponding topic nodes. Furthermore, we employ
four graph embedding tools Struc2vec, Role2vec, MUSAE,
and AE for feature extraction, and select multiple verification
thresholds in the clone detection stage to obtain the optimal
value. According to the experimental results obtained by
Keybor under different variables shown in Figure 5, we derive
three conclusions.

First of all, in the case of an ideal overall precision
value, the Topic-based connection experiment is superior to
the Keyword-based connection experiment and the Keyword-
based connection experiment is superior to the Non-keyword
connection experiment for the PDG synthesis process. The
reason why the Keyword-based connection experiment out-
performs the Non-keyword connection experiment lies in the
fact that keyword connection provides more information to
assist in identifying similarities in the code. The statement
nodes containing the same keywords in two target code PDGs
can be connected by keyword nodes to capture the common
features between them. At the same time, this new PDG retains
more semantic information because the keywords can help us
identify code with similar semantics in different code blocks.
For example, if the keyword is “for”, then blocks related to
“for” may be linked together to form a larger PDG, so that
we can more accurately detect blocks with similar semantics,
even if they are in different methods.

Keyword-based connection experiments can help us identify
code that has similar semantics in different code blocks.
However, it does a poor job of capturing the deeper semantic
parallels in the code. In contrast, the Topic-based connection
experiment classifies the keywords using 33 different topics
as shown in Table I. These topics include data structures,
Accsess, Jump, etc. Each topic represents a specific semantic
concept. Then, we connect each statement node with the cor-
responding topic to form a new PDG. This approach not only
considers the keywords in the code but also the relationship
between these keywords, which can detect the code blocks
with similar semantics more accurately, thus improving the
accuracy of detection. Note that the Topic-based connection
experiment enhances the detection of similarity in heteroge-
neous code (i.e., utilizing “for” syntax instead of “while”),
helping us to better capture similarities in heterogeneous code.
However, we found that in some cases (e.g., threshold=0.4),
the results without keyword concatenation may be better. This
is due to the improper setting of the model threshold at this
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Fig. 5. F1 score and Precision of Keybor using different methods and parameters

point, i.e., the precision is too low and the recall is too high,
resulting in a low F-score. To solve this problem, we need to
readjust the thresholds to ensure that the model works better.

Secondly, we discover that Struc2vec outperforms all other
graph embedding techniques. Instead of evaluating the struc-
tural resemblance between nodes according to their properties
and edges or their positional relationships in the network,
Struc2vec leverages a hierarchical approach to assess node
similarity across multiple scales, building a multilayer graph
that encodes structural similarities and creates contextual rep-
resentations for the nodes. Compared with the other three
algorithms, Struc2vec has a more rigorous notion of what
structural similarity means and is more effective at capturing
the structural information, thus performing better in clone
detection tasks. Struc2vec’s accurate mapping of code struc-
ture information enables us to have a more comprehensive
understanding of the code’s structure and the relationship
between nodes and increases the accuracy of clone detection
and heterogeneous code detection.

TABLE II
DETECTION PERFORMANCE OF Sent2vec AND CodeBERT

Recall PT1 T2 VST3 ST3 MT3 WT3/T4
Kerbor Sent2vec 100 100 100 96 83 17 96

Kerbor CodeBERT 100 100 100 95 82 18 96

Finally, the experimental results also show that different
thresholds may produce different effects for different methods.
Therefore, the selection of thresholds needs to be tailored
to each specific case to obtain the optimal detection results.
We determine the optimal value for the validation threshold
through analysis of the experimental results. As illustrated
in Figure 5, we calculate the F1 score and precision for
threshold values from 0.4 to 0.95 with a step size of 0.05. We
select Struc2vec as the graph embedding tool for analyzing
experimental results based on the topic connection in light of
the preceding conclusion. We observe that precision improves
as the threshold increases, while the F1 score also rises,
peaking at 0.85, where it reaches 80.43%. Once the threshold
surpasses 0.85, the F1 score starts to decline noticeably. When
the threshold value is 0.85, the precision is only 82.32%, which
is not satisfactory. As a result, the threshold value of 0.9 is
eventually selected as the optimal parameter, at which point
the F1 score is 76.17% and the precision is 95.69%.

Moreover, to demonstrate the effectiveness of Sent2vec,
we replace it with the code embedding method CodeBERT
and record the results in Table II. They indicate that the
use of CodeBERT and the use of Sent2vec demonstrates
comparable performance in both recall and precision when
detecting various types of clones. However, regarding running
speed, the embedding efficiency of CodeBERT is quite slow,
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TABLE III
DETECTION PERFORMANCE OF Keybor, CCAligner, SourcererCC, Siamese, NIL, NiCad, LVMapper, CCFinder, CloneWorks, Oreo, Deckard, CCGraph, AND

Code2Img ON BCB (DUE TO THE LIMITED SPACE, WE USE THE ABBREVIATIONS OF THEIR NAMES TO REPRESENT THEM)

Tools Keybor CCA Sou Sia NIL NiCad LVM CCF Clon Oreo Dec CCG Code

Recall

T1 100 100 94 100 99 98 99 100 100 100 60 100 100
T2 100 100 78 96 97 84 99 93 98 99 52 100 100

VST3 100 99 54 85 88 97 98 62 88 100 62 80 99
ST3 96 65 12 59 66 52 81 15 64 89 31 35 93
MT3 83 14 1 14 19 2 19 1 15 30 12 29 25

WT3/T4 17 0 0 0 0 0 0 0 0 0.7 1 11 4
Precision 96 61 100 98 86 99 59 72 96 90 35 95 98

taking an average of 2.12 seconds per function, while Sent2vec
takes only 0.00049 seconds. Therefore, we chose Sent2vec for
code embedding.

Summary: When Struc2vec is chosen as the graph em-
bedding tool, Keybor based on topic connection performs
better when the threshold is set to 0.9. Keybor can achieve
better performance when selecting Sent2vec as the code
embedding method.

C. RQ2: Comparative Performance

According to the experiments in RQ1, when Struc2vec is
chosen as the feature extraction tool and connected based
on the topic, Keybor achieves the most optimal detection
efficiency when the threshold is set to 0.9. As a result,
we employ this option for subsequent overall effectiveness
experiments. We fix the parameters for each tool based on
what they claimed in their papers to yield the best results. As
with previous methods [18], [26], [27], we calculate the recall
for different clone types on the BCB dataset as well as the
overall precision across all types and compare these values of
Keybor with the selected 12 non-LLM tools.

From Table III, we notice that the recall of Keybor in each
type is much higher than the other experiments while ensuring
higher accuracy. With a precision of 96%, our recall in types
T1, T2, and VST3 all approximated 100%. The recall in type
ST3 is 96%, which is 3% better than the best-performing
tool among the remaining tools, Code2Img. The recall in type
MT3 is 83%, which is 53% better than the best-performing
tool, Oreo. The recall in type WT3/T4 is 17%, which is 6%
better than the best performing tool, CCGraph. It indicates that
Keybor demonstrates a notable improvement in clone detection
performance compared to other tools.

We discover that these nine token-based clone detectors are
ineffective in detecting Type-3 clones. This is due to the token-
based representation form just performing lexical analysis,
neglecting the code’s structural and semantic information,
resulting in a low level of code abstraction. As a result, some
complex clones that preserve identical semantic information
but differ at the syntactic level cannot be identified. Deckard
detects semantic clones using a tree-based intermediate repre-
sentation, which is slightly superior to the token-based clone
detection method but performs poorly in terms of overall
recall. Since Deckard clusters the feature vectors of subtrees
based on rules predefined by functions, it is difficult to divide
subtrees once they do not match the rules, leading to a

decrease in both recall and precision. Another tree-based code
clone detection tool, Code2Img, performs well in detecting
simpler clones, but its effectiveness significantly decreases
when dealing with complex syntactic and semantic clones.
Although Code2Img constructs an adjacency image by normal-
izing the AST and preserving the code’s structural features, its
dependence on ASTs, which primarily represent syntax rather
than semantics, hinders its effectiveness in detecting semantic
clones.

The metric-based clone detection method Oreo performs
well on types T1, T2, and VST3, but performs poorly for more
complex semantic clone detection. Although Oreo integrates
information retrieval, machine learning, and metric methods
and employs deep neural networks to handle the symmetry of
the input vectors, its feature extraction approach is still syntac-
tically and textually limited to capturing the semantic informa-
tion of Type-4 clones. In contrast, a graph-based clone detector
is able to more accurately identify semantic similarity between
codes since it can consider dependencies between code blocks,
not just their syntactic structure. Both CCGraph and Keybor
are graph-based clone detection tools, but CCGraph’s recall
is still lower than Keybor’s. Specifically, CCGraph uses a
two-stage filtering method along with an approximate graph-
matching algorithm based on the Weisfeiler-Lehman (WL)
graph kernel for detecting clones. Compared with Keybor,
CCGraph provides relatively less semantic information and
a simpler feature extraction method that does not consider the
connection between keywords and PDG nodes. Consequently,
CCGraph may encounter some difficulties in dealing with
certain types of clones, while Keybor detects them more
precisely.

As for GPT-3.5-turbo and GPT-4, known for their ex-
ceptional performance in natural language processing and
programming language tasks, to perform code clone detec-
tion via their APIs. We use the prompt “Please analyze
the following two code snippets and determine if they are
code clones. Respond with ‘yes’ if the code snippets are
clones or ‘no’ if not.” to detect clones. Since both large
language models (LLMs) require payment for usage, it is not
feasible to evaluate all 540,000 code pairs for clone detection.
Therefore, we randomly select 500 clone pairs from each
clone type, along with 3,000 non-clone pairs, to conduct
a small comparative experiment. In order to show that our
sampling results are representative of the overall results, we
use the two-sample Kolmogorov-Smirnov Test (ks-test) [51]
to compare whether a substantial difference exists between
the sample distribution and the overall distribution. The two-
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1.    byte[] outDigest = md5.digest();

2.    StringBuffer outBuf = new StringBuffer(33);

3.    for (int i = 0; i < outDigest.length; i++) {

4.        byte b = outDigest[i];

5.        int hi = (b >> 4) & 0x0f;

6.        outBuf.append(MD5Digest.hexTab[hi]);

7.        int lo = b & 0x0f;

8.        outBuf.append(MD5Digest.hexTab[lo]);

9.    }

10.  return outBuf.toString();

1.    byte[] uid = md.digest();

2.    int length = uid.length;

3.    StringBuilder digPass = new StringBuilder();

4.    for (int i = 0; i < length; ) {

5.        int k = uid[i++];

6.        int iint = k & 0xff;

7.        String buf = Integer.toHexString(iint);

8.        if (buf.length() == 1) {

9.            buf = "0" + buf;

10.      }

11.      digPass.append(buf);

12.  }

13.  return outBuf.toString();

 85.85% 

 72.22% 

 91.18% 

 70.46% 

 81.98% 

100% 

We will give a report for all pairs.

For clone pair, we will give the line 

similarity and the corresponding lines 

order in detail.

For non-clone pair, we will not report.

Report: 

(Original, Type-4): 

(1, 1, 85.85%),

(2, 3, 72.22%), 

(3, 4, 91.18%), 

(5, 6, 81.98%), 

(7, 6, 82.10%), 

(10, 13, 100%), 

(Structure, 95.17%)

// Original

// Type-4

 82.10% 

Fig. 6. Fine-grained Analysis Report

sample ks-test is a hypothesis-free distributional, flexible, and
efficient statistical method that detects significant differences
between two sample distributions and is applicable to data of
all distribution types. The BCB dataset assigns token similarity
to each code pair. We perform the ks-test with all similarity
scores for each clone type (or pairs) as the overall data and
the similarity scores of a randomly selected sample of 500
(or 3000) as the sample data. If the p-value of the ks-test is
below 0.05, it indicates a significant difference between the
sample and overall distributions, and if the p-value exceeds
0.05, it suggests that no significant difference between the
two distributions. Our experimental results show that the p-
values of the KS test for T1, T2, VST3, ST3, MT3, WT3/T4,
and nonclone are 0.89, 0.73, 0.92, 0.75, 0.73, 0.97, and 0.87,
respectively. This indicates that our randomly selected samples
are representative of the overall situation.

TABLE IV
DETECTION PERFORMANCE OF LARGE LANGUAGE MODELS GPT-3.5-turbo

AND GPT-4

Recall PT1 T2 VST3 ST3 MT3 WT3/T4
Keybor 100 100 100 96 81 21 97
GPT-4 100 98 99 94 77 15 96

GPT-3.5 100 57 85 78 59 9 95

The results, as recorded in Table IV, show that GPT-4 nearly
matches the detection performance of Keybor. This is because
GPT-4 is able to consider code structure and semantics,
recognizing clones even when function names and other details
change by identifying structural and functional similarities
between code snippets. In contrast, GPT-3.5-turbo produces
relatively poorer results due to its weaker understanding of
code semantics.

Summary: Keybor achieves superior detection perfor-
mance and equivalent accuracy compared to existing tools.
The results confirm the effectiveness of our detection
method. As for LLMs, Keybor can achieve slightly better
detection performance than GPT-4.

D. RQ3: Fine-grained Clone Analysis

Following graph embedding feature extraction in Keybor, the
nodes for each line of code will receive the matching feature
vector. Considering the fine-grained analysis focuses primarily
on comparing the similarity of each line of statement code,
Sent2vec is utilized to extract semantic feature vectors for
similarity calculation. In the fine-grained analysis experiment,
we compare each statement node to all statement nodes in
another target program in turn and evaluate the inter-node
similarity by calculating the Cosine Similarity between the
two node vectors. When the maximum value in the calculated
cosine value exceeds the line-level threshold we set, we
consider the statements corresponding to these two nodes to
be similar and report the corresponding position and similarity
of the statements.

We provide detection findings as well as a fine-grained
analysis report for cloned pairs. The fine-grained analysis
report provides similarity scores between sentences, which
serve as a foundation for overall clone vulnerability detection.
This allows users to clearly understand where the clones occur
and the basis on which the tool identifies them. For non-cloned
pairs, we will not report them. To illustrate the Keybor fine-
grained clone analysis problem more comprehensively and
clearly, we randomly select 100 WT3/T4 type clone pairs to
evaluate the effectiveness of fine-grained clone analysis. We
manually verify the accuracy of the similarity evaluations and
find that 98.12% of the results align with the ground truth. A
correctly analyzed fragment is shown as an example in Figure
6. According to the report, the overall similarity of the clone
pair (Original, Type-4) is 95.17%, which is higher than the set
threshold of 90%, so we determine it as a clone pair and give
a line-level fine-grained analysis report. In this report, we set
the line-level similarity threshold to 70%, and users can adjust
it to meet their own needs.

The report shows that variable definition and assignment
statements (e.g., (1, 1), (2, 3), (5, 6), (7,6) with similarity of
85.85%, 72.22%, 81.98%, 82.10%, respectively) and for loops
(e.g., (3, 4) with 91.18% similarity) achieve high similarity
and are accurately identified. These statement pairs present
similar syntactic structures to each other and perform localized
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TABLE V
THE RUNTIME OF Keybor AND 12 OTHER CLONE DETECTION TOOLS

Method Keybor CCA Sou Sia NIL NiCad LVM Dec CCF Clon Oreo CCG Code
1M 1m2s 52s 37s 45m1s 10s 1m48s 29s 27m12s 39s 43s 4m22s 15m10s 35s
10M 47m11s 26m3s 12m37s 14h11m 1m38s 2h10m 13m38s - 6m30s 10m35s 2h56m12s 10h21m10s 4m57s

100M 10h4m49s - 2h38m5s - 1h38m29s - 17h23m39s - - 16h13m34s 5d3h16m 17d37h46m 2h7m2s
250M 4d9h24s - 5d6h55m1s - 7h40m7s - 3d13h47m - - 2d14h3m - - 8h15m37s

additions, modifications, and deletions. For example, the clone
statement pair (1, 1) changes the names of the variables outDi-
gest and md5 in the original code to uid and md, respectively,
without altering the semantics of the program. The statement
pair (10, 13) has the same code and the calculated similarity is
100%. The report reveals that Keybor captures the contextual
and emotional information of an utterance accurately, enabling
line-level clone detection.

However, there are instances where fine-grained clone judg-
ments fail. For example, in a pair of clones with complex
semantic similarity, one method implemented cloud storage
file downloads to the local system, while the other copied
files within the local file system. Keybor correctly identi-
fies these as clone pairs. However, when analyzing fine-
grained similarity, sentences handling data transfers from an
input stream to an output stream in both functions (e.g.,
“IOUtils.copyStream(is, fout);” and “inChannel.transferTo(0,
inChannel.size(), outChannel);”) are assigned low similarity
scores (30.54%). Keybor struggles to provide correct indi-
cations for sentences where significant changes are made to
implement functions.

Summary: Our line-level similarity analysis technique
provides an accurate reflection of the similarity relation-
ships in the corresponding parts of the source code.

E. RQ4: Scalability Evaluation

This section compares the runtime of Keybor with that of 12
other clone detection tools. The LLMs do not support large-
scale code clone detection because they cost a lot of money,
so we do not compare the time overhead with two LLMs. We
use the CLOC [52] tool to divide the entire BCB dataset into
four subsets of 1M-, 10M-, 100M-, and 250M-LOC. We then
record the time consumption for each dataset.

Table V shows the time performance of each detection
tool across different dataset sizes. The “-” indicates that the
tool failed to detect the corresponding dataset. As can be
seen, for smaller datasets, seven clone detection tools exhibit
faster detection speeds. However, as the dataset size increases,
some tools either fail to complete the detection or have a
longer runtime than Keybor. For example, LVMapper takes
more than 17 hours to detect 100M LOC, and SourcererCC
takes over five days to process 250M LOC, which takes
longer than Keybor. CCAligner and Nicad trigger out-of-
memory exceptions when detecting 100M LOC and 250M
LOC codebases, indicating their limited scalability. Although
Keybor is not the fastest, it can scale to datasets as large as
250M LOC, demonstrating better scalability than most other
detection tools. Moreover, compared to the graph-based tool

CCGraph, Keybor’s runtime is significantly shorter. In future
work, Keybor aims to achieve more efficient clone detection
by adopting more advanced graph embedding techniques.

Summary: Although Keybor is not the fastest, it can still
scale to 250M LOC and is more efficient than traditional
graph-based method.

V. DISCUSSION

A. Threats to Validity

The different parameters and method settings of clone de-
tection methods have a significant impact on their perfor-
mance and execution time, and it is difficult to find the
most appropriate parameters due to the diversity of threshold
choices. To mitigate the threat, we take a series of exper-
iments to calculate F1 scores and precision for different
methods with thresholds ranging from 0.4 to 0.95 and steps
of 0.05, whereby we evaluate the performance and determine
the optimal parameters. In addition, the calculation of time
overhead is prone to errors owing to varying machine states.
To minimize the risk, we take the average value by repeating
the measurement several times to ensure the accuracy and
validity of the results. Another potential threat lies in the
accuracy of the measurements. We cannot guarantee that the
code pairs labeled as “non-clones” are truly non-clones, as
there may be instances of oversight during manual annotation.
To mitigate this threat, we randomly selected 400 reported
results for cross-validation by three independent reviewers,
similar to previous works [24]. In addition, the choice of
hardware does significantly affect the performance of different
methods. In order to ensure fairness and consistency among
different methods, the experiments of all methods are run
in the same hardware environment. Make sure to use the
same operating system, driver version, dependent libraries, and
frameworks (e.g., TensorFlow, PyTorch) versions to reduce
the performance bias due to the difference in the software
environment. Also, the CPU utilization, memory occupation,
and other information are recorded in the experiments to
confirm whether the method makes full use of the hardware
resources. Finally, the inconsistency in the results produced by
baseline tools could undermine the reliability of the research
findings. To mitigate this threat, we use the parameter settings
that are claimed to give the best results in the paper of the
baseline. However, the results of the baseline tool were still
inconsistent with its paper. We identify two possible reasons
for this phenomenon: 1) Differences in hardware, software
versions, or configuration parameters may affect experimental
results. 2) Subtle differences in the versions of tools or libraries
used in the baseline may lead to inconsistent results.
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B. Why does Keybor perform better?

First, Keybor uses the topic words to connect PDG nodes
and establish associations between the nodes of statements
containing the same keywords in the PDG of two target
codes, so as to capture the common features and the semantic
similarities between them at a deeper level. In addition, for the
characteristic that two target code similar nodes in synthetic
PDG have similar topology, Keybor implements the graph
embedding algorithm Struc2vec, which focuses on structural
similarity, for semantic feature extraction. Struc2vec constructs
a multi-layered graph to capture structural similarity, employ-
ing a hierarchical approach to assess node similarity at various
levels and generate structural contexts for the nodes. This
algorithm can handle complex code structures better, which
improves the algorithm’s performance and accuracy.

C. Limitation and Future Work

Analyzing 500,000 pairs of code clones requires 2.9 hours,
posing a challenge for its application in large-scale clone
detection. Therefore, we propose integrating Keybor with other
advanced rapid clone detection tools, positioning it as the
second step in the large-scale clone detection process to com-
plement granularity and accuracy. Through this integration, we
aim to maintain efficiency while leveraging Keybor’s strengths
in meticulous and precise clone detection. This collaborative
strategy holds the potential to achieve more desirable perfor-
mance and outcomes in large-scale clone detection tasks.

Notably, throughout the entire process of clone detection,
the graph embedding algorithm Struc2vec incurs the majority
of the time expenditure, accounting for 90% of the overall
detection time. This observation highlights the potential space
for optimizing detection efficiency. In future work, we aim to
explore lightweight graph embedding algorithms to balance
performance and time costs, reducing computational load
while preserving accuracy for large-scale software systems.

In addition, this paper focuses on detecting clones of Java
code. However, with only slight adjustments, Keybor can be
expanded to encompass additional programming languages.
For instance, we can apply Joern [39] to generate PDG and
utilize pycparser [53] to extract keywords from C source code.
Then, we can employ the same embedding algorithm and
similarity calculation technique to detect clones of C code.

VI. RELATED WORK

This section reviews existing methods for clone code detection,
mainly including text-based, token-based, tree-based, graph-
based, and metric-based techniques.

Text-based clone detection methods [27], [54]–[60] focus
solely on comparing source code as sequences of lines or
strings, ignoring the semantic meaning behind the code struc-
ture. Johnson [54] extracts the fingerprints of the functions
separately and detects the clones via the fingerprint-matching
method. Therefore, it can find almost only textual duplicates
and does not identify functionally similar code. [27] also treats
the code as text and utilizes the longest common subsequence
to detect hidden clones. These methods focus solely on text
information, using simple string matching to detect clones,
without considering program semantics or logic. As a result,

they can only identify complete clones or those with significant
textual similarity, failing to detect Type-3 or semantic clones.

The clone detection techniques based on token [2], [16],
[24], [26], [29], [48], [61], [62] extract the target program’s
token sequences by lexical analysis, and after that detecting
code clones by analyzing the repeated token subsequences.
CCFinder [29] detects clones by extracting token sequences
and applying transformation rules. SourcererCC [24] detects
clones by computing the overlap similarity and setting a
threshold, which has a simple algorithm principle and good
scalability. CCAligner [2] excels at detecting clones with large
differences. NIL [26] uses N-gram token sequences, and the
introduced inverted indexing method can effectively identify
clone candidates, and the longest common subsequence to
verify clone candidates. It is perhaps within the range of
capability when detecting the first three clones. Yet, these
approaches cannot excavate Type-4 clones.

Tree-based clone detection techniques [9]–[15], [63], [64]
parse the code as a tree and detect clones rely on a match
between two trees Deckard [9] makes use of an algorithm
named Locality Sensitive Hashing (LSH) to complete code
clone detection through clustering similar vectors obtained
from ASTs and applies to multiple languages. CDLH [10]
uses the Tree-LSTM [65] to represent the normalized binary
tree to form a vector. Instead of analyzing the whole abstract
syntax tree directly, ASTNN [11] divides the AST into sub-
trees by their own rules, then encodes the sub-trees separately,
and finally integrates the encoded vectors from sub-trees
into the complete vector representation with a bidirectional
recurrent neural network model. [12] is the first approach
to analyze tree-paths and thus perform clone detection. The
vector representation of tree-paths is learned by a compare-
aggregate model that computes the similarity of two vectors
to detect does these two codes are cloned or not.

Graph-based clone detection techniques [3]–[8], [66], [67]
extract graph representations of programs. Traditional graph-
based methods perform clone detection through subgraph
matching, e.g., [3] and [4]. However, this approach usually
takes a lot of time, so, CCGraph [7] first reduces the size
of the PDG, then performs a first rough filter using some
numerical features, and finally for each category obtained by
first filter, a second filter is performed using the similarity
of strings. DeepSim [6] treat the code similarity issue as
a binary classification issue to detect clones. It can effec-
tively detect semantic clones with completely different syntax.
SCDetector [8] regards graphs as a social network to extract
semantic tokens for code blocks, and detects Type-4 clones by
combining the rapid processing capability with the semantic
richness. [66] captures semantic information at multiple levels
and speeds up semantic clone detection by generating uniform
graph embeddings for parallel processing. [67] uses the FC-
PDG and R-GCN to capture code context and detect clones.

Metric-based clone detection techniques [18], [68]–[75]
leverage code attributes to measure the similarity between
two code snippets. These metrics can be derived from the
source code or the details of the tree or graph. For example,
[69] and [68] extract semantic features in the AST to identify
code clones. [70] uses the metrics retrieved from the source
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code to detect clones. [18] combines software metrics with
machine learning and information retrieval to detect clones,
thus achieving high precision and recall.

The approaches based on text and token are the quickest, but
they neglect program structure and semantics, and thus cannot
discover semantic code clones. Tree-based and graph-based
methods offer superior accuracy by capturing both syntactic
and semantic information more effectively, but they either
extract only single syntactic information or neglect the associ-
ation between code structures, resulting in poor performance
in recognizing complicated semantic codes. In our method,
we construct a bipartite graph framework that links the PDGs
of two methods using keywords. Following that, for semantic
feature extraction, a graph embedding approach concentrating
on structural similarity is employed, and measure their sim-
ilarity through Cosine Similarity. The addition of keywords
and graph embedding algorithms enable Keybor to achieve
accurate and effective detection of complex semantic clones.

VII. CONCLUSION

This paper introduces an innovative PDG-based approach
for detecting complex semantic clones. In our approach, we
utilize keywords as pivotal links connecting the two PDGs
corresponding to the clone pair, thereby enhancing the seman-
tic associations between similar statements. Furthermore, we
conduct line-by-line similarity matching for statements within
clone pairs, yielding more fine-grained results in clone detec-
tion. We perform comparative evaluations on BigCloneBench
[22], [23] dataset. Experimental results indicate that Keybor
significantly outperforms the 14 state-of-the-art code clone
detection systems CCAligner [2], SourcererCC [24], Siamese
[25], NIL [26], NiCad [27], LVMapper [28], CCFinder [29],
CloneWorks [30], Oreo [18], Deckard [9], CCGraph [7],
Code2Img [31], GPT-3.5-turbo [32], and GPT-4 [33].
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