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Abstract

With the continuous development of software open-sourcing,
the reuse of open-source software has led to a significant in-
crease in the occurrence of recurring vulnerabilities. These
vulnerabilities often arise through the practice of copying and
pasting existing vulnerabilities. Many methods have been pro-
posed for detecting recurring vulnerabilities, but they often
struggle to ensure both high efficiency and consideration of
semantic information about vulnerabilities and patches. In
this paper, we introduce FIRE, a scalable method for large-
scale recurring vulnerability detection. It utilizes multi-stage
filtering and differential taint paths to achieve precise clone
vulnerability scanning at an extensive scale. In our evaluation
across ten open-source software projects, FIRE demonstrates
a precision of 90.0% in detecting 298 recurring vulnerabilities
out of 385 ground truth instance. This surpasses the perfor-
mance of existing advanced recurring vulnerability detection
tools, detecting 31.4% more vulnerabilities than VUDDY and
47.0% more than MOVERY. When detecting vulnerabilities
in large-scale software, FIRE outperforms MOVERY by sav-
ing about twice the time, enabling the scanning of recurring
vulnerabilities on an ultra-large scale.

1 Introduction
Vulnerabilities refer to security issues such as errors, defects,
bugs, and other flaws in software. They arise due to logi-
cal errors, non-compliance with coding standards, low code
quality in the code-writing process, or the lack of security
testing. Vulnerabilities expose software to threats such as
information leakage, remote control, and denial of service
attacks. Exploiting vulnerabilities, hackers can compromise
the security of software systems and networks, leading to
severe consequences. Therefore, timely vulnerability detec-
tion is crucial for enhancing software security. Various meth-
ods for vulnerability detection exist today, including tradi-
tional approaches such as manual inspection, static analysis
[17, 35, 45, 46], fuzz testing [7, 12, 32, 42, 51], symbolic ex-
ecution [5, 10, 22, 44]. Additionally, there are some methods
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based on deep learning [14, 15, 26, 40, 57].
However, traditional vulnerability detection methods typi-

cally require manually defined rules and heavily rely on exper-
tise in vulnerability-related domains. Intelligent vulnerability
detection methods based on deep learning demand substantial
labeled datasets for training, depending on both the quantity
and exactness of the labeled datasets. Therefore, it is difficult
for them to achieve large-scale vulnerability detection. In fact,
with the continuous development of software open-sourcing,
reusing open-source software has become a common practice
in software development. This trend results in an increasing
number of recurring vulnerabilities. These vulnerabilities ex-
hibit similar characteristics, share code logic, or may even
be identical, hence they are also known as clone vulnerabili-
ties. Conventional vulnerability detection techniques can only
leverage the general behaviors of the majority of vulnerabili-
ties, lacking precise identification for recurring vulnerabilities
that reuse specific behavior vulnerabilities. Moreover, they
are not suitable for detecting vulnerabilities in large-scale
open-source software. Therefore, when certain vulnerabili-
ties are known, it is necessary to design novel techniques to
rapidly identify widely prevalent recurring vulnerabilities in
real-world code environments on a large scale.

Existing Approaches. Existing methods [8, 27, 29, 52, 53,
54, 56] specifically designed for detecting recurring vulnera-
bilities extract lexical, syntactic, or semantic signatures rich in
vulnerability information from known vulnerabilities. Clones
matching these signatures are considered potential vulnera-
bilities. These methods rely on the exactness of the extracted
vulnerability features. If the extracted features are too simple
or cannot precisely capture the vulnerability behavior, it may
lead to false positives or false negatives. In addition to consid-
ering vulnerability features, adding consideration for patch
information is essential to distinguish whether the function
is a patched vulnerability (false positive) or a genuine vul-
nerability. Moreover, as the size of open-source communities
continues to grow, it requires a substantial time investment to
handle the massive amount of code for detection. The time
gap between the appearance and discovery of vulnerabilities
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may lead to further propagation of vulnerabilities. Therefore,
there is a current need for a method that can: 1) Enable rapid
detection of extremely large-scale recurring vulnerabilities. 2)
Support for detecting vulnerabilities that make syntactically
different but semantically identical changes. 3) Consider the
differences between vulnerabilities and patches.

Among existing recurring vulnerability detection tools,
VUDDY [29] supports large-scale vulnerability scanning
through a length filtering technique that reduces the number
of signature comparisons. However, it can not detect clone
vulnerabilities with syntactic changes and does not consider
patch information. To address this, MOVERY [53] detects
syntactic clone vulnerabilities by adding the oldest version of
vulnerability and patch functions. However, the introduction
of control flow and data flow information and matching at
line granularity leads to low efficiency of MOVERY. Even if
MOVERY reduces the search scope by obtaining public func-
tions with identical syntax through path information, it only
reduces the number of candidate functions by half, and the
time overhead remains high. Furthermore, while MOVERY
considers the differences between vulnerabilities and patches
in most cases, it does not consider the statement order when
extracting vulnerability and patch features. This lack of con-
sideration may result in false positives by not thoroughly
analyzing the behavioral differences between vulnerabilities
and patches.

Our Approach. To address the limitations of existing tools,
we propose utilizing taint analysis to maximize the behav-
ioral differences between vulnerabilities and patches. Taint
analysis techniques have been widely employed in vulnera-
bility detection, providing a precise characterization of the
semantic behavior of software [21, 28, 37]. Specifically, we
perform taint analysis on vulnerable functions, concurrently
conducting data-flow analysis for taint propagation. This al-
lows us to extract the propagation paths of tainted markers in
the program, resulting in tainted paths. Furthermore, we not
only extract tainted paths of vulnerabilities but also perform
the same tainted path extraction operation for patches. Subse-
quently, we focus solely on the differential aspects between
vulnerabilities and patches. We consider the differential paths
as signatures of vulnerabilities and patches.

However, the use of taint analysis comes with a high cost.
To make taint analysis feasible for ultra-large-scale vulnera-
bility scanning, we propose a multi-stage filtering approach.
This approach filters vulnerabilities at three levels: simple
vulnerability features, lexical features, and syntactic features,
enabling taint analysis to be applicable to ultra-large-scale
vulnerability scanning. Firstly, we extract vector representa-
tions for each function based on their simple features. Then,
we employ our innovative Shuffle Fuzzy Bloom Filter, which
supports approximate membership queries, to filter at the level
of simple vulnerability features. Secondly, we extract token
sequences from functions and then utilize traditional token
similarity to compute the similarity between target functions

and vulnerabilities, achieving filtering at the lexical level. Fi-
nally, we incorporate patch functions, conduct static analysis
on functions to extract abstract syntax trees (ASTs), and use
improved AST similarity to calculate the similarity among
target functions, vulnerable functions, and patch functions,
achieving filtering at the syntactic level.

Evaluation. We implement a prototype system, FIRE, and
conduct testing on ten open-source software projects, com-
paring its performance with two state-of-the-art recurring vul-
nerability detectors (i.e., VUDDY [29] and MOVERY [53]).
Specifically, FIRE identifies 298 instances of recurring vul-
nerabilities, which is 2.55 times the number discovered by
MOVERY. Moreover, it achieves higher precision, with a
23.2% improvement compared to VUDDY, and a 40.4% im-
provement compared to MOVERY. The recall also increases
by 31.4% and 47%, respectively. While maintaining good
precision and recall, FIRE demonstrates high efficiency. Par-
ticularly in the case of large-scale projects, it can save half the
time compared to MOVERY. Furthermore, we also compare
FIRE with two advancing learning-based methods (i.e., RE-
VEAL [11] and VulBERTa [23]), two static analysis-based
vulnerability detectors (i.e., Checkmarx [1] and FlawFinder
[2]), and two general code clone detection tools (i.e., Sourcer-
erCC [43] and Lazar et al. [30]). The experimental results
indicate that FIRE outperforms these approaches as well.

Contribution. In summary, our method makes the follow-
ing contributions:

• We propose a scalable recurring vulnerability detection
method based on multi-stage filtering that extracts se-
mantic signatures of vulnerabilities and patches through
differential tainted paths.

• We implement a prototype system called FIRE 1 for ef-
fective and scalable detection of recurring vulnerabilities
in open-source software.

• We conduct an in-depth comparative evaluation of FIRE
against state-of-the-art vulnerability detection methods.
The results demonstrate that FIRE can achieve large-
scale vulnerability scanning with superior precision and
recall.

2 Related Work
This section introduces related works closely associated with
recurring vulnerability detection, including code clone detec-
tion methods and recurring vulnerability detection methods.

Code Clone Detection Techniques. Many techniques have
been proposed to detect code clones (e.g., [18, 24, 25, 50, 55,
59]). Some are designed for high precision in detecting com-
plex clones, while others focus on achieving high efficiency.
However, these methods primarily aim at detecting general
code clones rather than recurring vulnerabilities. There are
two reasons why code clone detectors cannot be used directly
for vulnerable code clone detection: Firstly, the code differ-

1https://github.com/CGCL-codes/FIRE.
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ences between vulnerable functions and their patched versions
are often small. Consequently, code clone detectors that fo-
cus solely on vulnerable functions may mistakenly identify
patched functions as vulnerable, leading to a high rate of
false positives. Secondly, vulnerabilities are often subtle and
context-dependent. Code clone detectors typically analyze
the entire vulnerable function, which can result in missing
the vulnerability if there are significant changes in areas unre-
lated to the vulnerability. This may lead to a high rate of false
negatives.

Recurring Vulnerability Detection Techniques. Several
techniques have been proposed for detecting recurring vulner-
abilities [8, 27, 29, 52, 53, 54, 56]. Jang et al. introduce ReDe-
Bug [27], a fast recurring vulnerability discovery technique
using a slicing window approach. However, the use of exact
matching leads to numerous false negatives, and matching
only the context information of vulnerability-modified lines
introduces many false positives. Kim et al. present VUDDY
[29], a scalable vulnerable code clone discovery technique for
large-scale software. However, VUDDY relies on normaliza-
tion and abstraction, and can only detect fully identical and
renamed clone vulnerabilities, missing variations with slight
modifications. Additionally, due to the lack of patch infor-
mation, VUDDY might misidentify already patched secure
functions as vulnerabilities. Bowman et al. propose VGRAPH
[8], a graph-based recurring vulnerability discovery technique
that is more robust to code modifications, especially for vul-
nerabilities with syntax changes. Xiao et al. introduce MVP
[56], which discovers recurring vulnerabilities with syntactic
similarity by considering code lines directly related to vulner-
abilities. Woo et al. present MOVERY [53], which identifies
recurring vulnerabilities induced by internal OSS modifica-
tions by adding information from the oldest version of vul-
nerabilities. However, these methods have limited efficiency
(i.e., they require more time overhead to detect vulnerabili-
ties), making it challenging to support large-scale recurring
vulnerability detection.

In this paper, we propose an accurate and scalable recurring
vulnerability detection method, which is designed for large-
scale security assessments of open-source software. This ap-
proach employs multi-stage filtering to address the efficiency
issues present in current methods. Additionally, it enhances
detection effectiveness by utilizing differential taint paths to
extract semantic signatures for vulnerabilities and patches,
thereby addressing the issues of current methods that do not
consider the differences between vulnerabilities and patches,
and neglect semantic information.

3 Filtering Phase
As shown in Figure 1, our proposed method (i.e., FIRE) com-
prises two phases: filtering phase and vulnerability identifi-
cation phase. The filtering phase improves efficiency by re-
ducing the number of candidate functions. The vulnerability
identification phase improves the effectiveness by distinguish-

ing between vulnerabilities and patches through tainted paths
enriched with semantic information.
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Figure 1: The overview of our method

In this part, we focus on introducing the filtering phase
of FIRE. Figure 1 gives the overview of our filtering phase,
which consists of three stages: Bloom Filter, Token Filter,
and AST Filter. The precision of the three-stage filtering
increases incrementally, accompanied by a gradual increase
in time overhead. However, each filtering stage in our method
significantly reduces the number of functions to be inspected
in the subsequent stage. This substantially improves the over-
all speed of our method. In the filtering phase, the source
code of the target software is input, and the output is poten-
tially vulnerable target functions with vulnerability and patch
function pairs similar to them.

3.1 Bloom Filter
Bloom Filter is a concise data structure that uses a bit array to
represent a set and efficiently determines whether an element
belongs to that set. It is known for its high space and time effi-
ciency and finds applications in various network-related tasks
such as traffic identification [19], optimal replacement [39],
longest prefix matching [16], route lookup [9], and packet
classification [6]. If we abstract the recurring vulnerability
detection as a set inclusion problem, determining whether a
function is vulnerable is equivalent to checking if it belongs
to the set of vulnerabilities. Despite the potential for false pos-
itives in Bloom Filter, our method leverages them as a filter
to discard functions that clearly do not meet the conditions.
For functions that may incur false positives, subsequent filter-
ing stages are implemented to address them. Given the rapid
speed of Bloom Filter, they are particularly suitable as the first
filtering stage in our method to eliminate highly dissimilar
functions. Therefore, we consider using Bloom Filter for the
first stage of our filtering process.

3.1.1 Preprocessing
Before filtering with Bloom Filter, we preprocess all functions
in the target software. Developers often add comments and
empty lines to aid in code writing and understanding. These
comments may introduce unnecessary noise for recurring vul-
nerability detection. To address this, we begin by removing
comments and blank lines from each function before perform-
ing any operations. This normalization process ensures that
our method can adapt to changes in code formatting or com-
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ments. In addition, similar to the previous approach [29, 53],
we discard the functions with less than five lines of code
(LOC) after normalization. Because the probability of these
simple functions having vulnerabilities is low. This operation
substantially reduces the number of functions to be inspected,
thereby enhancing the efficiency of our method.
3.1.2 Standard Bloom Filter
Bloom Filter consists of H hash functions and an M-bit array
used to represent the set S. Each element in the array can be
either zero or one. The number of hash functions (i.e., H)
is between 1 and M − 1. As shown in Figure 2, the steps
for inserting and querying elements in Bloom Filter are as
follows:

0 0 00 0 0 0 00 0Initialization

0 0 01 1 1 0 00 1

Insertion

Query

A1
h1(A1)

A2
h2(A1) h1(A2) h2(A2)

B2
h2(B2)

B1
h1(B2)h2(B1)h1(B1)

Figure 2: Inserting and querying elements in Bloom Filter

Initialization: The Bloom Filter is initialized as an M-bit
array with all zeros.

Insertion: For element “A1” in the set S, H hash functions
are applied to obtain H hash values, and the positions in the
bit array corresponding to these H hash values are set to one.

Query: For querying an element “B1”, H hash functions
are applied to obtain H hash values, and the positions in the
bit array corresponding to these H hash values are checked
to see if they are all set to one. If yes, it indicates that the
queried element “B1” belongs to the set S within the range of
false positive probability (i.e., P); otherwise, the element “B1”
does not exist in set S.

The formulas for calculating M, H, and P are as follows,
where N represents the number of elements in the set repre-
sented by the Bloom Filter:

M =−N × ln(P)

(ln2)2 (1)

H =−M× ln(2)
N

(2)

P =
(

1− e−
HN
M

)H
(3)

Bloom Filter uses hash functions and bit arrays to represent
data sets, and there may be hash conflicts leading to false pos-
itives. Increasing the length of the byte array and the number
of hash functions reduces the false positive rate but increases
the memory consumption (Equation 3). With a fixed accept-
able false positive rate P, the appropriate M can be chosen by
the number of elements N (Equation 1). The number of hash
functions also needs to be weighed, the more hash functions
then the Bloom Filter will be less efficient. However, if it is
too few then the false positive rate will become higher. There-
fore, the appropriate number of hash functions can also be

calculated from the length of the bit array M and the number
of elements N added to the Bloom Filter (Equation 2).

We apply the standard Bloom Filter for recurring vulner-
ability detection. First, we extract feature vectors for each
vulnerability in the vulnerability dataset to form a set of vul-
nerability vectors. Then, each element (feature vector) in the
set has been inserted into the Bloom Filter, including the
vulnerability vector A2 (1,2,3,4,5) in Figure 2. Two hash func-
tions are applied to A2 to get hash values 4 and 9, so the 4th

and 9th position in the Bloom Filter’s bit array are set to 1,
as shown in Figure 2. When a vector B2 (1,2,3,4,6) of target
function is queried, since the last element of this vector is
different from A2, hashing B2 will yield 7 and 10. Neither of
these positions in the bit array is 1. Therefore, it is determined
that the target function is not vulnerable. In fact, A2 is very
similar to B2, differing in only one feature. As a result, stan-
dard Bloom Filter only supports exact membership queries, so
functions with slight modifications cannot be queried. To en-
hance the variety of vulnerabilities we can detect, we design
a new Bloom Filter to support approximate queries, enabling
the detection of similar vulnerabilities.

3.1.3 Shuffle Fuzzy Bloom Filter
In this part, we introduce the design of our shuffle fuzzy bloom
filter (SFBF). It is comprised of a certain number of standard
Bloom Filters, including the initialization parts, insertion part,
and query part.

The initialization part involves initializing a series of
Bloom Filters (B1, B2, ..., BmaxTries) and a series of seeds
(s1, s2, ..., smaxTries). We use these seeds to construct these
Bloom Filters during the insertion part.

The insertion part is where we construct the Bloom Filters
containing the vulnerability dataset. For each feature vector
v0 of a vulnerable function, maxTries rounds of operations
are needed to complete the insertion part. As illustrated in
Figure 3, each round of the insertion stage consists of three
steps. We use the operation in the jth round as an example.

• Step 1: Shuffle v j−1 using seed s j to generate v j.
• Step 2: Discard the first d% positions of v j, reducing

the vector length to 1−d% times of its original length,
resulting in v j.

• Step 3: Insert v j into B j.

After performing maxTries rounds of insertion operations
for each function vector, we construct maxTries Bloom Fil-
ters, forming our SFBF.

The query part is similar to the insertion part as shown
in Figure 3, but different in Step 3. For each function fea-
ture vector t0, multiple rounds of operations are performed to
complete the query part.

• Step 1: Shuffle t j−1 using seed s j to generate t j.
• Step 2: Discard the first d% positions of t j, reducing

the vector length to 1−d% times of its original length,
resulting in t j.
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Figure 3: Each round of the insertion part and query part in Shuffle Fuzzy Bloom Filter

• Step 3: Check whether t j is in the B j. If it is, the query
vector completes the query stage in the jth round of
operations; otherwise, new rounds of query operations
continue until the query stage is completed or the maxi-
mum number of operations, maxTries, is reached.

We use the SFBF to query B2 in Section 3.1.2. Since it has
the operation of shuffle and discard, then the nth round of the
insertion phase will shuffle A2 (1,2,3,4,5) to (5,4,3,1,2) and
discard the first element to get A′

2 (4,3,1,2). B2 (1,2,3,4,6) in
the query phase of the nth round is also shuffled to (6,4,3,1,2),
which yields B′

2 (4,3,1,2) after discarding the first element.
Since A2 and B2 discard the only different element, A′

2 and
B′

2 are exactly the same. Therefore, the SFBF can query B2,
which is implemented to support the querying of slightly
modified functions.

3.1.4 Crucial Features of Vulnerabilities
Second, in order to achieve the filtering of similar vulnerabili-
ties, we extract crucial features to construct feature vectors,
and hash the vectors instead of hashing the entire code in-
formation of a function. We introduce the crucial features
of vulnerabilities that we select and construct feature vec-
tors based on these features. Recent research [33] and [49]
emphasize the significant correlation between source code
vulnerabilities and specific syntactic features. For instance,
syntax structures involving pointers and arrays in the source
code are often vulnerable, as these operations frequently lead
to out-of-bounds access or NULL pointer dereference. Addi-
tionally, specific arithmetic expressions may indicate potential
improper operations, such as integer overflow.

Recent research GraphSPD [47] extracts features that re-
flect syntactic information about vulnerabilities. Therefore,
we borrow the key features extracted in GraphSPD and make
modifications and extensions based on them. Specifically,
GraphSPD only considers identifiers and literal features (e.g.,
variables, numbers, strings, pointers, arrays, null identifiers),
and some keywords related to control flow. In order to capture
more functional features and consider more types of vulnera-
bilities, we extend them to include all 73 C/C++ keywords,
thus covering a wider range of features and structures in the
code. GraphSPD contains only 34 regular operators, to which

we add eight less common operators. GraphSPD does not
contain format strings, but buffer overflows, format string
vulnerabilities, and other types of vulnerabilities are closely
related to format strings. Therefore, we add 20 format strings.
Overall, given the syntactic features of vulnerabilities, we
extract 177 features belonging to four groups from each code
snippet. The specific feature and descriptions are shown in
Table 4 in Appendix A.

These different crucial features correspond to different vul-
nerability types. The sensitive APIs, formatting strings, oper-
ators, or keywords used by different vulnerability types differ.
For example, buffer overflow vulnerabilities are more related
to formatted strings and memory allocation functions (e.g.,
“malloc”, “alloc”). Unauthenticated user input vulnerabilities
are more relevant to formatted string functions (e.g., “printf ”,
“sprintf ”). Out-of-bounds write and out-of-bounds read vulner-
abilities are related to sensitive APIs of “copy” and “sizeof ”,
and pointer-related operations. The null pointer dereference
vulnerability is related to the use of the dereference operator
* and NULL pointers.

We focus exclusively on these 177 crucial features and
based on the presence of these features in each function,
we generate the feature vector. First, we initialize a 177-
dimensional feature vector with all zeros for each function.
Then, if a feature exists, the value at the corresponding posi-
tion in the vector is set to one. This process creates the feature
vectors for each function, preparing for the efficient filter-
ing of potential vulnerable functions in SFBF. Utilizing our
SFBF for the initial stage of filtering helps reduce irrelevant
functions in the target software by 80.63% (refer to Section
5.5). This substantial reduction of functions to be analyzed in
subsequent steps significantly improves the overall speed.

3.2 Token Similarity Filter
The SFBF only filters out functions that do not contain simi-
lar features to vulnerable functions. However, there are cases
where functions have the same vulnerability features but dif-
fer lexically from the vulnerable functions. The SFBF lacks
the ability to discard such functions. Therefore, as the second
filtering stage, we consider extracting the tokens of functions
to increase consideration of lexical information. In this stage,
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we parse the functions and extract their token sets. For exam-
ple, the token set of the code “int a = b*c” consists of “int”,
“a”, “=”, “b”, “*”, and “c”. Then we calculate the similarity
score between the token sets of the function to be examined
and the vulnerable functions, and retain the functions with
similarity scores above a threshold (i.e., T1) along with all cor-
responding similar vulnerabilities. We use a simple similarity
calculation method (i.e., Jaccard similarity) to compute the
similarity between token sets, ensuring high efficiency.

Jaccard similarity is commonly used to compare the sim-
ilarity between sets. Given two sets A and B, the Jaccard
similarity is defined as the ratio of the size of the intersection
of A and B to the size of the union set, it is calculated as:

Jaccard (A,B) =
|A∩B|
|A∪B|

=
|A∩B|

|A|+ |B|− |A∩B|
(4)

Notably, variable names are not symbolized because in the
subsequent taint analysis phase, we need to extract the data
flow based on the variable names to complete the paths collec-
tion. Generally, incorrectly excluding functions with different
variable names but identical content does not occur frequently.
This is because tokenization divides the entire function into
small granularities, with variable names constituting only a
very small part of the token set. If a function differs from a
vulnerability function solely in the variable names but has the
same content, the Jaccard similarity scores between the two
would not be sufficiently low to result in incorrect exclusion.

After the filtering based on token similarity, not only are
functions dissimilar lexically from the vulnerable functions
filtered out, but each suspicious function is also provided
with a list of potential reused vulnerabilities. Consequently, in
the subsequent filtering and detection steps, there is no need
to compare the suspicious function with all vulnerabilities.
Instead, it only needs further validation against the potentially
reused vulnerabilities. In summary, this filtering stage further
improves the speed of our method by reducing the number of
functions to be examined and narrowing down the matching
candidates for each suspicious function. By using the second
step of token similarity filtering, we are able to filter out
99.82% (refer to Section 5.5) of the irrelevant functions.

3.3 AST Similarity Filter
In the previous filtering, we only consider the lexical similar-
ity between target functions and vulnerabilities. However, a
patched secure function may have a very high lexical similar-
ity with the vulnerability. Therefore, in the final filtering stage,
we introduce patch functions to further calculate the syntactic
similarity between target functions, vulnerable functions, and
patch functions. This helps filter candidate functions based
on syntactic similarity.

3.3.1 Delete Lines and Add Lines
Similar to the previous work [53, 56], before performing the
syntactic similarity analysis, we first perform line-level fil-
tering based on two conditions. We use Fv to represent the

vulnerable function and Fp to represent the patched function
after fixing the vulnerability. Deleted lines refer to the lines
that appear in Fv but not in Fp, while added lines refer to the
lines that do not appear in Fv but are present in Fp. Therefore,
for a given pair of functions (Fv, Fp), we further define Sdel as
all deleted statements and Sadd as all added statements. The
target functions eligible for syntactic similarity analysis must
meet the following two conditions:

• C1: The target function (F) must incorporate all deleted
statements, i.e., ∀h ∈ Sdel ,h ∈ F .

• C2: The target function must not include any of the
added statements, i.e., ∀h ∈ Sadd ,h /∈ F .

C1 is to ensure that there are deleted statements in the tar-
get function that are directly related to how the vulnerability
is created. C2 is to ensure that there are no added statements
in the target function that are directly related to how the vul-
nerability is fixed.
3.3.2 Syntactic Similarity Analysis
We then employ AST generated from source code for simi-
larity comparison. Specifically, we measure the similarity by
calculating the number of nodes shared between two ASTs
(i.e., Jaccard similarity).

int a = b*c

int a = b * c

a = b * c

b * c

Figure 4: The AST of the code “int a = b*c”

We employ AST as the objects of comparison because
compared to other graph representations, extracting AST of
function does not require compilation and is very fast. For
example, Figure 4 illustrates the AST of the code “int a =
b*c”. The node “b*c” has three child nodes: “b”, “*”, and “c”.
Nodes shaded in light blue in Figure 4 represent the leaf nodes
(i.e., nodes without child nodes). The leaf node sequence of
each AST corresponds to the token sequence of the code line.
The AST not only encompasses the token sequence of the
code but also encodes syntactic information, representing the
hierarchical structure of code decomposition. In this stage, we
experiment with various algorithms to calculate the similarity
between two ASTs, including 1) traditional hash-based com-
parison methods [60], 2) computing the similarity between
sequences by deep traversal of AST nodes, 3) computing the
similarity by calculating the number of edges shared between
two ASTs, and 4) computing the similarity by directly calcu-
lating the number of nodes shared between two ASTs (i.e.,
Jaccard similarity). Our experimental results show that calcu-
lating simple Jaccard similarity between nodes is sufficient for
rapidly and accurately assessing the similarity between two
ASTs. Therefore, we choose it to compute the AST similarity.

Moreover, we also consider the syntactic information of
patch functions and simultaneously calculate the similarity
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between the ASTs of the target function, vulnerable function,
and patch function. If the similarity with the vulnerability is
higher and exceeds a threshold (i.e., T2), we retain the target
function for further fine-grained semantic analysis, otherwise
we discard the target function. In summary, the target function
must satisfy the following conditions:

• C3: The similarity between target function and vulnera-
ble function should surpass a predefined threshold, i.e.,
Sim(AST _F,AST _Fv)≥ T2.

• C4: The target function should have a higher syn-
tactically similarity to the vulnerable function, i.e.,
Sim(AST _F,AST _Fv)≥ Sim(AST _F,AST _Fp).

This AST-based similarity filter evaluates the syntactic sim-
ilarity between the target function and both the vulnerable
and patched functions. It enhances precision while reducing
the false positives associated with patch matching.

3.4 Summary to Filtering Phase
Using SFBF for the initial coarse-grained filtering signifi-
cantly reduces the number of irrelevant functions in the target
software. This reduction substantially decreases the number
of functions that need to be analyzed in subsequent steps. The
token filter not only filters out functions that are dissimilar to
vulnerabilities lexically but also provides a list of potential
vulnerabilities for each suspicious function. Consequently, in
the subsequent AST filter, there is no need to compare suspi-
cious functions with all vulnerable functions, but only with
potentially reusable vulnerabilities. The AST filter compares
the target function with the vulnerable and patch functions,
and the target functions meeting the criteria are passed to the
subsequent detection stages. This reduction in the number of
functions to be analyzed further enhances the speed of FIRE.

4 Vulnerability Identification Phase
The vulnerability identification phase involves signature ex-
traction and vulnerability detection. In the signature ex-
traction phase, we perform taint analysis on target functions,
vulnerable functions, and patch functions to extract taint prop-
agation paths. In the vulnerability detection phase, the simi-
larity between the tainted paths of the target function and the
divergent parts of the taint paths between the vulnerability
and patch is calculated. This is done to determine if the target
function represents a vulnerability.

4.1 Signature Extraction
4.1.1 Extracting Function Signature
Taint analysis is a program analysis technique used to detect
program vulnerabilities. Taint analysis focuses on sensitive
data (e.g., user input) in the program, accurately tracing the
flow of data to pinpoint potential vulnerability points [36].
The analysis of taint propagation is closely related to the
sensitivity of the information, and the flow of data reflects the
data dependency relationships, carrying a significant amount
of semantic information in the code [21, 28, 37].

Therefore, we use taint analysis to extract signatures, pay-
ing more attention to the sensitive information and seman-
tic details within functions, allowing us to detect recurring
vulnerabilities at a finer-grained semantic level. Specifically,
we perform taint analysis on each function, extracting all
<sources, sinks> points in the function. Unlike regular taint
analysis, we do not consider sanitizers, meaning we do not
check whether taint (i.e., sensitive data) has been neutralized.
The sanitization analysis requires a series of measures for ver-
ification and confirmation, which would introduce additional
processing overhead. Hence, we only focus on the <sources,
sinks> tuples. In response to the extracted tuple, we conduct
taint propagation analysis by considering data dependency
relationships. We extract the propagation paths of tainted data
in the program, which we refer to as the taint paths. These
paths constitute the signature of the function. We use Joern
[58] for taint analysis. Joern generates code property graph
(CPG) for function. CPG is a graphical representation that
covers information about AST, control flow graph (CFG), and
program dependence graph (PDG). A CPG consists of nodes
and their types, labeled directed edges, and key-value pairs.
We get parameters and variables by getting nodes with node
type “identifier”, which we consider as sources, and we get all
function calls by getting nodes with node type “call”, which
we consider as sinks. Joern provides the “reachableByFlows”
method to analyze the possible data flow between the speci-
fied nodes. By using this method, all the paths from sources
to sinks can be obtained.

1. int foo(size_t size) {
2.     int result = -1;

9. }

size

<size, malloc>

<buffer, bar> <size, bar>

size<=0

1 4

buffer buffer

3 6

size size<=0

1 4

malloc

6

buffer bar

4

76

3. void *buffer;
4. if (size <= 0)
5. return result;
6. buffer = malloc(size);
7. result = bar(buffer, 

size);
8. return result;

1. source code 

2. <src, sink>

bar

7

4. taint paths

3. taint propagation paths

Figure 5: Extract taint paths from source code

For example, consider the function in Figure 5 that con-
tains three variables: “size”, “result”, and “buffer”. Two of
these variables (“size” and “buffer”) are used by two different
functions, “malloc” and “bar”. Since variable “result” is not
used by any function, we do not analyze the taint propagation
paths related to variable “result”. Therefore, we can extract
three <sources, sinks> tuples, namely <size, malloc>, <buffer,
bar>, and <size, bar>. We analyze the propagation process
of each tuple, i.e., which operations each variable undergoes
before ultimately propagating to the function use. For exam-
ple, variable “size” appears in the conditional statement of an
“if ” statement and is then used by the “malloc” function. This
completes the first taint propagation path for variable “size”,
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i.e., the first path in Figure 5. Then, variable “size” propa-
gates to the variable “buffer” through the return value of the
“malloc” function, and it is ultimately used by the “bar” func-
tion. This completes the second taint propagation path for the
variable “size”, i.e., the third path in Figure 5.

After extracting all taint propagation paths, we replace each
node in the paths with the corresponding complete code line.
For example, we use the statement “if (size <= 0)” from line
4 to replace the node “size <= 0” in the first path of Figure
5. This results in the taint path, which is the signature of
the function. These taint paths constitute the signature of the
function.

4.1.2 Extracting Vulnerability and Patch Signatures
Similar to extracting taint paths for the target function, we
also extract taint paths for both the vulnerabilities and patch
functions. However, we do not utilize all paths, as most con-
tent in vulnerabilities and patch functions is similar, with only
a few lines of code being different. Therefore, we extract the
differing parts, considering paths that are unique to vulnera-
bilities as vulnerability signatures and paths that are unique
to patches as patch signatures. The differential components
represent critical features of vulnerabilities and precisely cap-
ture vulnerability elicitation and patching. Concentrating on
the differential paths helps in distinguishing between vulnera-
bilities and patches, mitigating the impact of identical paths.
The inputs to this phase are the potential vulnerabilities to be
verified and the pairs of vulnerability patch functions that are
similar to them, and the outputs are the target functions that
are verified as vulnerabilities.

4.2 Vulnerability Detection
For the obtained function signatures, as well as the signa-
tures of vulnerabilities and patches, we determine if the target
function is vulnerable by comparing the similarity between
signatures. Our signatures are composed of sets of paths, and
each path is composed of code lines. Direct text comparison
may lead to inaccurate similarity measurements due to minor
changes causing significant variations in similarity. In con-
trast, using vector representations allows for a better capture
of the semantic information in the text, understanding the
meaning beyond mere reliance on vocabulary and surface
structure. In our approach, we use CodeBERT for the vector-
ization of code lines. CodeBERT is pretrained on a large-scale
code repository, providing a robust understanding of the se-
mantics of the code and enhancing the capture of semantic
relationships between code lines [20].

Therefore, we extract vector representations for all paths
contained in the obtained signatures. Specifically, for each
code line in a given path, we vectorize it to obtain a fixed-
length vector. Subsequently, the vectors corresponding to all
code lines in a path are averaged to reduce dimensionality
while maintaining uniformity in signature vector dimensions.
After such operation, each path is represented by a vector and
each function is represented by a set of vectors. Next, we com-

pute the similarity between the set of target function vectors
and the set of vulnerable function and patch function vectors,
respectively. Specifically, we compute the similarity of each
path vector from the target function with all path vectors from
the vulnerable function and keep the highest similarity score.
For example, if the vulnerable function has m paths, then one
path of target function will calculate the similarity with the
m paths of vulnerable function, thus obtaining m similarity
scores and retaining the maximum value s1. If the target func-
tion has n paths, then there will be n similarity scores retained
at the end, i.e., s1, s2, s3 ...... sn, and averaging these n values
gives the final similarity score S between the target function
and the vulnerable function. Since all the scores are combined
in an averaging operation, they are not affected by the order
in which the paths are combined.

Given the signature vectors set S f for each function in
the target system, Sv for vulnerability signatures, and Sp for
patch signatures, we determine the presence of a vulnerability
in a target function based on the principle that its signature
matches the vulnerability signature but not the patch signa-
ture. Specifically, if the target function satisfies the following
condition, it possesses potential vulnerability:

• C5: The target function should have a higher semantic
similarity to the vulnerable function, i.e., Sim(S f ,Sv)≥
Sim(S f ,Sp).

In this paper, we employ cosine similarity to calculate the
similarity between signature vectors. Cosine similarity is a
widely used algorithm for measuring similarity between vec-
tors. Given two feature vectors A and B, their cosine similarity
is defined as follow:

Cosine_similarity(A,B) =
A ·B

∥A∥ · ∥B∥
(5)

Here, A ·B represents the dot product of A and B, and ∥A∥
and ∥B∥ represent the Euclidean norms of A and B. C5 en-
sures the target function is more similar to the vulnerability
compared to the patch function, reducing the false positives
where patches are incorrectly detected as vulnerabilities.

5 Evaluation
In this section, we evaluate the effectiveness of FIRE and aim
to address the following research questions:

• RQ1: How accurate is FIRE compared to other advanced
recurring vulnerability detection methods?

• RQ2: How efficient is FIRE compared to other advanced
recurring vulnerability detection methods?

• RQ3: How sensitive is FIRE in threshold selection?
• RQ4: How do the multi-stage filters contribute to FIRE?
• RQ5: How does the tainted path contribute to FIRE?
• RQ6: What is the performance of generic vulnerability

detection tools in detecting recurring vulnerabilities?
• RQ7: What is the performance of the code clone detec-

tion approach in detecting recurring vulnerabilities?
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5.1 Evaluation Setup
5.1.1 Dataset
We select target systems for detection from the open-source
community, considering the following criteria during the se-
lection process: 1) Programming Language: The target sys-
tems should be popular C/C++ open-source projects, as our
method is primarily designed for vulnerability detection on
C/C++; 2) Presence of Vulnerabilities: The target systems
should contain a sufficient number of vulnerabilities to allow
for evaluating the effectiveness of FIRE and baseline methods
in detecting recurring vulnerabilities; 3) Diverse Application
Domains: The selected systems should cover various appli-
cation domains to demonstrate the generalizability of FIRE.
Based on these criteria, we collect C/C++ repositories from
GitHub with over 1,000 stars. From these projects, we select
the top 10 software in terms of release time for detection.
Two software have less than two vulnerabilities detected by
FIRE and our comparative recurring vulnerability detection
tools (i.e., VUDDY [29] and MOVERY [53]). Therefore, we
exclude them and add two frequently detected software in
the previous work [33, 34], SeaMonkey and Xen. Finally, we
choose ten open-source projects, and the details are presented
in Table 5 in Appendix B in descending order of LOC. The
lines of code range from 490,103 to 15,573,896, showcasing
the scalability of FIRE. Application domains include inter-
net app suite, machine learning, database, emulator, scripting
language, multimedia processing, computer vision, virtualiza-
tion, and image processing, which is diverse enough to show
the generalizability of FIRE.

For the collection of our vulnerability dataset, we first use
PatchDB [48] as our vulnerability dataset. PatchDB is the
most widely used vulnerability patch dataset available, which
includes 11,167 security patches. However, PatchDB does not
cover complete vulnerability data and the latest vulnerability
in PatchDB was discovered in 2019, so it does not include
new vulnerabilities that have emerged in the last five years.
Secondly, there are nearly six thousand security patches in
PatchDB that do not have a vulnerability type. We need more
complete and updated vulnerability data with information
on vulnerability types. Therefore, we expand our vulnerabil-
ity dataset by manually collecting further vulnerability data.
Similar to previous methods [31, 41], we check if the CVE
contains a Git commit URL from the National Vulnerability
Database (NVD). Subsequently, we collect these URLs to
crawl the secure patch submissions for CVE vulnerabilities
from the respective Git repositories. Thus, we gather 3,316
C/C++ secure patches from the NVD. From these secure
patches, we extract vulnerable functions and patch functions.
Specifically, we focus on the header of the secure patch, which
displays the file commits before and after the vulnerability
is fixed [29, 56]. We extract all functions containing deleted
code lines from the vulnerability file as vulnerable functions
(Fv) and all functions containing added code lines from the
patch file as patched functions (Fp). After manual collection,

we collect over 10,874 pairs of vulnerability-patch function
pairs (Fv, Fp). Thus our vulnerability dataset contains 22,041
(11,167 + 10,874 = 22,041) pairs of vulnerability-patch func-
tions.

5.1.2 Comparative Tools
To evaluate the effectiveness of FIRE, we compare it with two
recurring vulnerability detection tools (i.e., VUDDY [29] and
MOVERY [53]), four general-purpose vulnerability detection
tools (i.e., REVEAL [11], VulBERTa [23], Checkmarx [1],
and FlawFinder [2]), and two general code clone detection
tools (i.e., SourcererCC [43] and Lazar et al. [30]). VUDDY
is an accurate and scalable tool for detecting recurring vul-
nerabilities, utilizing a length-filtering technique to reduce
the number of signatures for comparison. MOVERY is an
accurate tool for detecting recurring vulnerabilities, consid-
ering the oldest vulnerable functions that are susceptible to
attacks. REVEAL is a deep learning-based vulnerability de-
tection tool by using graph neural network. VulBERTa is a
method that utilizes deep knowledge representations to learn
code syntax and semantics for detecting security vulnerabili-
ties in the source code. Checkmarx and FlawFinder are two
traditional static analysis-based vulnerability detection tools.
SourcererCC is a token-based code clone detector by com-
puting the overlapping similarities of two token sets. Lazar et
al. design a novel code clone detector by analyzing the AST
similarity of two functions.

5.1.3 Evaluation Metrics
We adopt five widely-used metrics, true positive (TP), false
positive (FP), false negative (FN), precision (P = T P/(T P+
FP)), and recall (R = T P/(T P+FN)) to evaluate the effec-
tiveness of different methods. TPs and FPs are determined
through manual inspection by three security analysts of all
vulnerability detection results. To ensure the reliability of
the vulnerability inspection results, we refer the source code
of vulnerable functions and patch functions, NVD descrip-
tions, and issue descriptions during the inspection process.
Detecting all vulnerabilities in the target program is almost
impractical, making it difficult to measure the FNs of each tool
easily. Therefore, similar to the previous approaches [53, 56],
we take the union of all TPs detected by three tools as the
ground truth (GT), serving as a benchmark to measure the
FNs of each tool. For example, the FNs in FIRE refer to the
vulnerabilities detected by the other two methods but not dis-
covered by FIRE. The specific evaluation environments are
in Appendix C.

5.2 Effectiveness Evaluation (RQ1)
We run VUDDY, MOVERY, and FIRE to detect recurring
vulnerabilities in the target projects. Among them, VUDDY
uses our collected vulnerability dataset, while MOVERY uses
its own vulnerability dataset since it only discloses the vulner-
ability signatures without the code for signature generation.
Table 1 presents the effectiveness of these three methods, with
the second and third columns displaying the project name and
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Table 1: The True Positive, False Positive, False Negative, Precision, and Recall of VUDDY, MOVERY, and FIRE

IDX Target System GT
VUDDY MOVERY FIRE

TP FP FN Precision Recall TP FP FN Precision Recall TP FP FN Precision Recall
T1 FreeBSD 104 36 17 68 67.9% 34.6% 30 34 74 46.9% 28.8% 78 7 26 91.8% 75.0%
T2 SeaMonkey 23 11 14 12 44.0% 47.8% 3 7 20 30.0% 13.0% 16 1 7 94.1% 69.6%
T3 Turicreate 44 20 11 24 64.5% 45.5% 13 17 31 43.3% 29.5% 38 6 6 86.4% 86.4%
T4 MongoDB 10 6 2 4 75.0% 60.0% 6 7 4 46.2% 60.0% 7 0 3 100.0% 70.0%
T5 Xemu 7 4 21 3 16.0% 57.1% 0 2 7 0.0% 0.0% 4 1 3 80.0% 57.1%
T6 PHP 10 3 4 7 42.9% 30.0% 2 13 8 13.3% 20.0% 7 0 3 100.0% 70.0%
T7 OpenCV 127 74 11 53 87.1% 58.3% 49 29 78 62.8% 38.6% 101 3 26 97.1% 79.5%
T8 FFmpeg 9 3 4 6 42.9% 33.3% 1 4 8 20.0% 11.1% 6 7 3 46.2% 66.7%
T9 Xen 3 0 4 3 0.0% 0.0% 1 2 2 33.3% 33.3% 2 6 1 25.0% 66.7%
T10 OpenMVG 48 20 0 28 100.0% 41.7% 12 4 36 75.0% 25.0% 39 2 9 95.1% 81.3%
Total - 385 177 88 208 66.8% 46.0% 117 119 268 49.6% 30.4% 298 33 87 90.0% 77.4%

the GT number of vulnerabilities, respectively. The remaining
columns show the measurements for each tool.

Overall Results. FIRE achieves a detection precision
of 90.0% for 298 recurring vulnerabilities with a recall of
77.4%, missing 87 vulnerabilities. In contrast, VUDDY and
MOVERY detect only 177 and 117 recurring vulnerabilities,
with recall of 46% and 30.4%, precision of 66.8% and 49.6%,
respectively, both inferior to FIRE. Overall, FIRE outperforms
VUDDY and MOVERY in detecting recurring vulnerabilities,
achieving an average improvement of 31.8% in precision and
39.2% in recall.

Vulnerability Types. We analyze the 298 vulnerabilities
detected by FIRE. Among them, 38 vulnerabilities are Buffer
Overflow vulnerabilities (CWE-119), 37 vulnerabilities are In-
teger Overflow or Wraparound vulnerabilities (CWE-190), 28
vulnerabilities are Improper Input Validation vulnerabilities
(CWE-20), 17 vulnerabilities are Out-of-bounds Write vul-
nerabilities (CWE-787), 15 vulnerabilities are Out-of-bounds
Read vulnerabilities (CWE-125), and 11 vulnerabilities are
Null Pointer Dereference vulnerabilities (CWE-476). This
indicates that FIRE is more proficient in detecting these six
types of vulnerabilities, while the number of other types of vul-
nerabilities detected by FIRE is relatively small. For example,
CWE-399, CWE-834, CWE-434, CWE-362, and CWE-326,
etc. Several factors contribute to this phenomenon. Firstly,
the critical features selected for vulnerability detection may
exhibit biases towards certain types of vulnerabilities, mak-
ing FIRE more proficient in detecting them. For example,
including formatting strings and memory allocation functions
enhances the detection of buffer overflow vulnerabilities. Our
use of sensitive APIs such as “copy”, “sizeof ”, and our focus
on pointers make FIRE proficient in detecting Out-of-bounds
Write and Read vulnerabilities. Similarly, the lack of con-
sideration for file reading-related functions such as “Create-
File” and “WriteFile” limits the detection of vulnerabilities of
CWE-434. Additionally, FIRE also has limitations in detect-
ing vulnerabilities that are difficult to detect through sensitive
APIs or keywords, such as CWE-326. Secondly, some types of
vulnerable functions have lower similarity to patch functions,
thus can be better distinguished. Additionally, the composi-

tion of the dataset may influence the types of vulnerabilities
detected by FIRE, indicating the need to expand the dataset to
cover a broader range of vulnerability types. Lastly, the preva-
lence of certain vulnerability types in real-world scenarios,
such as out-of-bounds write, may contribute to their higher
detection numbers by FIRE.

1 if ( rc ) {
2 + if (s−>ops−>cleanup && s−>ctx.private) {
3 + s−>ops−>cleanup(&s−>ctx);
4 + }
5 g_free (s−>tag);
6 g_free (s−>ctx. fs_root ) ;
7 v9fs_path_free (&path);
8 }

List 1: A patch snippet for CVE-2016-9914

1 if ( rc ) {
2 * v9fs_device_unrealize_common(s);
3 }
4 v9fs_path_free (&path);
5 return rc ;

List 2: Part of Function v9fs_device_realize_common

1 void v9fs_device_unrealize_common(V9fsState *s) {
2 if (s−>ops && s−>ops−>cleanup) {
3 s−>ops−>cleanup(&s−>ctx);
4 }
5 ...
6 g_free (s−>tag);
7 ...
8 g_free (s−>ctx. fs_root ) ;
9 }

List 3: Function v9fs_device_unrealize_common

False Positive Analysis for FIRE. We analyze all 33 false
positives in the experimental results and identify two main
reasons. The first one is patch fixes extending beyond the
function granularity, which is also one of the reasons for false
positives in VUDDY and MOVERY. For example, the patch
for CVE-2016-9914 shown in List 1 is a denial of service vul-
nerability due to a missing cleanup operation. The patch adds
the “s->ops->cleanup()” function for the cleanup operation.
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FIRE determines the function in List 2 as a vulnerability due
to the absence of the lines introduced by patch and its high
similarity to the vulnerable function. However, the function
“v9fs_device_unrealize_common” (shown in List 3) called in
List 2 actually implements the patched functionality. In situ-
ations where the patch functionality is implemented outside
the function, FIRE encounters false positives as it cannot con-
clusively determine whether a vulnerability has been fixed.
While inter-procedural analysis could potentially alleviate
this issue, it comes at the cost of increased computational
overhead, thereby compromising the efficiency of FIRE.

The second reason is caused by the similarity of vulner-
abilities, a phenomenon also observed in MOVERY, result-
ing in a substantial number of false positives. For instance,
CVE-2016-8654 2 encompasses three vulnerable functions
(i.e., “jpc_qmfb_split_col”, “jpc_qmfb_split_colgrp”, and
“jpc_qmfb_split_colres”) that are highly similar, all address-
ing heap buffer overflow vulnerabilities and fixing them by
adjusting the allocated buffer size. When the target function is
a clone of one vulnerability (e.g., “jpc_qmfb_split_colgrp”), it
exhibits high similarity with the other two vulnerabilities (i.e.,
“jpc_qmfb_split_col” and “jpc_qmfb_split_colres”), leading
to false positives. This situation can be mitigated by restrict-
ing the target function to match only the vulnerability with
the highest similarity within the same CVE. This modifica-
tion addresses the majority of false positives, but there is a
specific scenario that remains unresolved. In cases where
the target function introduces changes to deleted lines that
do not impact the triggering of vulnerabilities, the condi-
tions for deleted lines (C1) may not be satisfied. As a result,
false negatives may occur with genuine vulnerabilities (i.e.,
“jpc_qmfb_split_colgrp”), while false positives may arise with
similar vulnerabilities (i.e., “jpc_qmfb_split_colres”).

False Negative Analysis for FIRE. We analyze the 87
false negatives in the experimental results and categorize their
causes into three types. The first reason is as mentioned in the
false positive analysis, where the target functions underwent
changes on deleted lines that do not affect the vulnerability
triggering. This leads to conditions on deleted lines (C1) not
being satisfied, preventing them from entering the judgment
of AST filtering and taint analysis, resulting in false negatives.

The second reason is that there are frequently occurring
statements in Sadd , such as return statements. These state-
ments may often appear in the target functions, making them
not satisfy our detection criteria for added lines (C2). As a
result, they cannot proceed to AST filtering and taint analysis,
leading to a significant number of false negatives. To address
this issue, we count the occurrences of Sadd in target functions,
vulnerable functions, and patch functions. If the statement
counts in the target function match those in the vulnerable
function, the target function can proceed to the next stage,

2Due to the large amount of code, we provide the commit link
for CVE-2016-8654: https://github.com/jasper-software/jasper/commit/4a59
cfaf9ab3d48fca4a15c0d2674bf7138e3d1a

otherwise, it is filtered out. However, when the target function
undergoes significant changes, this method may still result in
some false negatives. For example, List 4 shows the added
line statements in CVE-2018-14567, where the “return -1”
statement appears eight times in the vulnerable function, nine
times in the patch function, and nine times in a target function.
In this scenario, even if the target function has not been fixed,
it may still be filtered out due to the mismatch in added line
counts, resulting in false negatives.

1 return −1;
2 }
3 + if (( state −>how != GZIP) && (ret != LZMA_OK) && (ret

!= LZMA_STREAM_END)) {
4 + xz_error ( state , ret , "lzma error ") ;
5 + return −1;
6 + }
7 } while (strm−>avail_out && ret != LZMA_STREAM_END);

List 4: A patch snippet for CVE-2018-14567

The third reason is that we apply LOC filtering to filter
out all target functions with fewer than five lines of code,
leading to some false negatives. However, the LOC filtering
also resulted in the exclusion of numerous short functions,
significantly enhancing our efficiency (refer to Section 5.5).

Due to space limitations, the false positive and false neg-
ative analysis for VUDDY and MOVERY are presented in
Appendix D.

5.3 Efficiency Evaluation (RQ2)
To evaluate the efficiency of FIRE, we measure the time over-
head of FIRE, VUDDY, and MOVERY in detecting vulnera-
bilities across ten target software projects. These tools share
similar processes with FIRE, including extracting vulnerabil-
ity or patch signatures, extracting target function signatures,
and matching. As the codes for generating vulnerability and
patch signatures of MOVERY are not open-source, we can not
measure the time spent on this operation. Additionally, consid-
ering that the generation of vulnerability and patch signatures
is an one-time operation, we pre-generate all the required
vulnerability signatures and cache down them. Therefore, we
only record the time for target function signature generation
and matching, in other words, the time from the beginning to
the end of the detection process.

The time overhead of each tool is recorded in Figure 6,
where the x-axis is arranged from small to large according to
the number of code lines in the target software, and the y-axis
represents the time overhead in seconds. Overall, the time
overhead of all tools except T5 (PHP) increases with the size
of the project. This is because despite having more lines of
code, PHP parses out fewer functions, and therefore its detec-
tion is relatively faster. Among the three tools, VUDDY has
the least detection time because it simply extracts functions
from files and performs normalization and abstraction opera-
tions. Since it does not consider any semantic information, its
speed is faster.
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Table 2: The effectiveness and efficiency of FIRE as thresholds change
T1 0.6 0.7 0.8
T2 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8

Total F1 Score 82.46% 80.94% 76.26% 82.62% 81.69% 76.42% 80.38% 80.33% 76.26%
Speed (loc/s) 5,264.9 5,563.7 6,207.7 5,889.6 6,193.6 7,021.8 7,161.1 7,120.7 7,759.6
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Figure 6: The time overhead of VUDDY, MOVERY, and FIRE

Compared to MOVERY, which also considers data flow and
control flow information, our detection speed is faster. This is
because MOVERY requires semantic analysis of functions to
generate signatures by extracting data flow and control flow
and matching them at line granularity. Although MOVERY
also reduces the search scope by taking the measure of com-
paring path information, it can only reduce roughly half of
the search space from the software codebase. FIRE can re-
duce 99.96% (discussed in RQ4) of the search space through
the multiple filtering approach, and therefore achieves higher
efficiency. The exception is T3 (Turicreate), which is due to
the fact that T3 has more vulnerabilities, which means that
more candidate functions enter the taint analysis phase. Taint
analysis consumes more time, so T3 is slower to detect. When
there are a large number of vulnerabilities in the software, the
speed of detection decreases, which is the limitation of FIRE
in terms of efficiency.

In addition, as shown in Figure 6, when the target program
changes from a small program to a large program, the in-
crease in our time overhead is more moderate and does not
increase rapidly compared to MOVERY. For example, T10
(OpenMVG) is the smallest program among the ten target
programs with 490,103 lines of code, and T1 (FreeBSD) is
the largest program with 15,573,896 lines of code, which is
31.77 times the program size of T10. The detection time of
FIRE for T1 is only 4.22 times longer than that of T10. As
a comparison, the detection time of MOVERY for T1 is 93
times longer than that of T10, and VUDDY is also 45.51 times
longer. These data clearly prove that FIRE can effectively re-
duce the detection time of large software, and this advantage
is more obvious as the size of the program increases. Even
with a project size of 38.6 M code lines, we can still complete
the detection in less than two hours. This indicates that FIRE
can scale to large software projects, meeting practical needs
in real-world applications.

5.4 Threshold Sensitivity Analysis (RQ3)
In the filtering stage, we can achieve a balance between ef-
fectiveness and recall by configuring two thresholds. One is
the threshold for token filtering (i.e., T1), and the other is the
threshold for AST filtering (i.e., T2). Our default configuration
is set to 0.7 for T1 and 0.6 for T2, and we use these settings
for the effectiveness experiments in Section 5.2. In this part,
we evaluate the sensitivity of FIRE to the two thresholds in
terms of effectiveness and efficiency. For each threshold, we
select three values: 0.6, 0.7, and 0.8, resulting in a total of
nine threshold combinations. For each combination, we run
FIRE on ten target software projects, recording the overall F1
score as a measure of effectiveness and the average lines of
code processed per second as a measure of efficiency.

The experimental data in Table 2 shows that when both
thresholds are set to 0.8, the F1 score is slightly lower. This
is because the strict filtering conditions result in more false
negatives, leading to a decrease in recall. Choosing thresh-
olds of 0.7 or 0.6 has little impact on the F1 score, both
achieving around 80%. The default configuration achieves
the highest F1 scores. Compared to the 0.6 for both T1 and T2
configuration (0.6-0.6), which have almost the same F1 score,
the default configuration is faster, processing an average of
5,889.6 lines of code per second. Therefore, we consider the
default configuration to be a better choice.

5.5 Contribution of Multi-Stage Filter (RQ4)
In order to achieve high efficiency, we add multi-stage filter
to FIRE. In this part, we explore the effectiveness of each
filtering step by analyzing its speed, normal function filtering
rate, and vulnerability detection recall, where the filtering
speed is the average number of functions processed per second
in each stage. The normal function filtering rate is calculated
by dividing the number of remaining functions at the end
of each stage by the overall number of functions. As for the
vulnerability detection recall, we inspect 385 GT instances
after each phase and derive the recall by dividing the number
of remaining GT instances in each phase by the number of
instances in the previous phase. The percentages represent
the combined percentages across all projects.

First of all, only 6.63% of the functions in the vulnerability
dataset have less than five lines of code. Among the software
to be inspected, about 30.96% of the functions have less than
5 lines of code in PHP and 21.59% in FFmpeg. Therefore, it
makes sense to improve efficiency by discarding functions
with less than five LOC in the processing phase.

With the second row of Table 3, we can get that SFBF can
filter 80.63% of target functions, the Token Filter further fil-
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ters out 99.82% of functions, and after the AST Filter, 99.96%
of functions are filtered. For instance, the number of functions
extracted from files in FFmpeg is 23,315. After SFBF, only
7,737 functions remain, and after the Token Filter, only 308
functions are retained. The final AST Filter further reduces
the number of functions to 15. It can be observed that the
number of functions retained after each filtering layer sig-
nificantly decreases for each software, indicating that each
filtering layer we set up plays a role. The fact that only 0.04%
of the final functions need to extract taint paths indicates that
the multi-step filtering is able to massively reduce the number
of functions to be detected, allowing us to keep the overall
speed up despite the relatively slow extraction of taint paths
(only 0.12 functions per second).

Table 3: The speed and proportion of functions that can be
filtered at each filter

Bloom Token AST Taint Path
Filtering Rate 80.63% 99.82% 99.96% 99.97%

Recall 93.24% 99.27% 91.97% 99.99%
Speed (f/s) 167.71 54.31 1.43 0.12

By looking at the third row of Table 3, we can see that each
stage produces a certain percentage of FNs, with the SFBF
and the AST Filter producing more FNs. The reason for gener-
ating FNs in the SFBF stage is the incomplete and imprecise
vulnerability features. As analyzed in RQ1, the vulnerability
features have a mapping relationship with the vulnerability
types. The lack of vulnerability features focusing on certain
vulnerability types generates FNs. In addition, the vulnerabil-
ity features contain the full range of C/C+ keywords, which
differ in their ability to characterise whether a function is a
vulnerability or not. The introduction of low-capability key-
words can be disruptive to vulnerability judgment. In our
future work, we will further investigate the vulnerability fea-
tures to extract more comprehensive and precise vulnerability
features to reduce FNs. The main reason for FN in the AST
Filter phase is the checking of added and deleted lines, too
strict judgments will bring FNs as analyzed in RQ1. Over-
all, the filtering phase does add some FNs, but brings more
massive improvements in detection efficiency. The filtering
phase makes sense from the perspective of balancing recall
and time overhead.

Moreover, we also investigate the effectiveness of SFBF
in improving the detection of vulnerabilities. Specifically, we
replace the SFBF with a standard Bloom Filter in FIRE and
then count the number of GT reported. The result reveals that
only 142 out of 385 GT vulnerabilities are reported, resulting
in a recall of only 36.9%. By employing the SFBF, we are
able to detect an additional 156 recurring vulnerabilities, thus
increasing the recall by 40.5%. This phenomenon demon-
strates that our SFBF can tolerate certain modifications to
functions through shuffling and discarding, thereby fulfilling
the requirements for approximate member queries.

5.6 Contribution of Taint Analysis (RQ5)
In the Vulnerability Identification Phase, we perform vul-
nerability identification in three steps: extracting taint paths,
embedding the paths as vectors using CodeBERT, and com-
puting similarities. To assess the effectiveness of using taint
paths, we conduct two ablation experiments. In the first exper-
iment, we remove the initial step (i.e., without extracting the
taint paths) and directly extract vectors using CodeBERT. In
the second experiment, we entirely remove the Vulnerability
Identification Phase and label all the target functions filtered
by the AST as vulnerabilities.

For the first ablation experiment, we select all functions
(i.e., 359 functions) that pass the AST Filter for CodeBERT
to analyze. Out of the 298 TPs detected by FIRE, CodeBERT
is able to detect only 257. This means there are 41 instances
that CodeBERT misses, resulting in 41 FNs. Additionally,
CodeBERT produces 14 more FPs than FIRE. These findings
indicate that taint analysis provides benefits for FIRE, en-
abling it to detect more vulnerabilities with higher precision.

For the second ablation experiment, the experimental data
indicates that by extracting signatures through taint paths,
FIRE can eliminate 14 FPs. These eliminated FPs primarily
include two types: 1) Target functions that added semanti-
cally equivalent statements to patch the vulnerabilities, and
2) Patches fix vulnerabilities by changing the order of state-
ments, which AST cannot distinguish between vulnerability
and patch functions.

For example, the patch in List 7 in Appendix E addresses a
vulnerability related to unauthorized information disclosure.
The target function in List 8 in Appendix E achieves seman-
tically equivalent patching through two nested if statements.
Through the extraction of data flow, the use of taint paths can
effectively address such semantically equivalent alternatives,
identifying semantic equivalence between the target function
and patch function, thereby reducing FPs. The patch in List 9
in Appendix E solves the issue of mismatched assumptions by
swapping the order of code blocks. This change is reflected
as a positional shift of subtrees in the AST and does not alter
the number or content of nodes. Therefore, using AST simi-
larity filter is insufficient to distinguish differences between
the vulnerable function and the patched function, leading to
a misclassification of the target function as a vulnerability.
Taint paths can highlight the order of variable occurrences,
allowing them to identify differences between vulnerability
and patch, thus eliminating FPs.

5.7 Performance of General-Purpose Vulnera-
bility Detection (RQ6)

Compare with REVEAL and VulBERTa. We train the mod-
els of REVEAL and VulBERTa using the Diversevul dataset
[13]. 385 GTs are used as the test set to assess their detection
performance. We do not use all functions from the ten target
software as the test dataset because analyzing all functions
from predictions is a challenging and time-consuming task.
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The test results reveal that, out of the 385 GTs, REVEAL only
detects 134, with a recall of 34.8%, while VulBERTa can de-
tect 158, with a recall of 41%. Our method achieves a 77.4%
recall in detecting the 298 GTs, outperforming the two deep
learning-based methods. This is because the performance of
deep learning-based methods relies on the model architec-
ture and the training dataset, especially on the quantity and
correctness of the labeled dataset. However, the intelligent col-
lection, labeling, and classification of vulnerability datasets
still present challenges [38]. Therefore, our method proves to
be more effective in detecting recurring vulnerabilities.

Compare with FlawFinder and Checkmarx. We use
two static analysis tools to inspect vulnerabilities in ten soft-
ware to see if they could detect the 385 GTs. Among them,
FlawFinder only detects 44 vulnerabilities, while Checkmarx
detects 50 vulnerabilities. With recall of only 11.4% and
13%, respectively, they lag far behind FIRE, VUDDY, and
MOVERY. These results indicate that static analysis is inade-
quate for detecting recurring vulnerabilities, confirming the
effectiveness of our method.

5.8 Performance of Clone Detection (RQ7)
In this part, we examine the ability of general code clone
detection tools to detect recurring vulnerabilities. Specifically,
we select two state-of-the-art code clone detectors, Sourcer-
erCC [43] and the tool developed by Lazar et al. [30], as
comparative tools. We use the full vulnerability dataset as
input, treating functions similar to these vulnerable functions
in each project as potential vulnerabilities. SourcererCC and
Lazar et al. report 35,127 and 17,839 potential vulnerabili-
ties, respectively. We manually analyze 10% of the randomly
selected results. The analysis shows that SourcererCC and
Lazar et al. have a precision of 0.72% and 0.46%, respectively.
Additionally, we use these two tools to detect 385 GTs to cal-
culate recall. The results show that the recall of SourcererCC
and Lazar et al. are 41.9% and 36.7%, respectively. These
results indicate that general code clone detection methods are
not suitable for detecting recurring vulnerabilities. In most
cases, the code differences between vulnerable functions and
patched functions are minimal. Therefore, code clone detec-
tion tools that use only vulnerable functions may incorrectly
identify patched functions as vulnerable, resulting in high FPs.

6 Discussion
Vulnerability Disclosure. Of the 298 vulnerabilities we iden-
tified, 13 vulnerabilities are successfully replicated. We report
these vulnerabilities to the respective software development
teams. Among them, eight development teams confirm our
findings, while we are still awaiting responses from the re-
maining. For the vulnerabilities that have not been confirmed,
we will not disclose any information until patches are applied.

Limitations. Our method still has some limitations: Firstly,
we detect vulnerabilities by computing the similarity between
target functions and both vulnerability and patch functions.

Only when the similarity between a target function and a
vulnerability is higher and surpasses a threshold is the target
function considered a potential vulnerability. Therefore, this
approach is challenged in detecting extensive modifications
in target functions that preserve the semantic equivalence
with vulnerabilities, necessitating the assistance of dynamic
analysis techniques. However, this could have a substantial
impact on our efficiency. This reason also leads us to remain
limited in dealing with similar vulnerabilities. We mitigate
this issue by restricting target functions to match only the
most similar vulnerabilities with the same CVE. However,
there are still specific cases that remain unresolved as we
discussed in Section 5.2.

Secondly, as mentioned in our FN analysis, we filter target
functions by checking for the presence of deleted lines in the
target function. This filtering approach may be too strict and
could miss potential vulnerabilities where modifications are
made to the deleted lines. In future work, we plan to adjust
the criteria for judging added and deleted lines to tolerate a
certain degree of modification.

Thirdly, our method is designed for vulnerabilities that
occur at the function level. Therefore, any changes beyond
the function level cannot be handled. This limitation leads to
FPs and FNs. Implementing inter-procedural analysis could
mitigate this issue. However, inter-procedural analysis comes
with higher computational costs.

Lastly, there are limitations to the generalizability of FIRE
to other programming languages and vulnerabilities. Since
FIRE only targets C/C++ when selecting crucial features, this
results in FIRE only being able to detect vulnerabilities in
C/C++. In the future, we will extract corresponding keywords
for other programming languages so that FIRE can be ported
to other programming languages. The lack of vulnerability
profiles for certain types of vulnerabilities may limit FIRE
to extend to other vulnerability types. In the future, we will
further investigate the vulnerability features to extract more
comprehensive and precise features to reduce FNs.

7 Conclusion
In this paper, we propose and implement a novel method
named FIRE. FIRE can 1) rapidly detect extensive recur-
ring vulnerabilities through multi-stage filtering, 2) support
for detecting complex recurring vulnerabilities with syntax
changes, and 3) consider differences between vulnerabilities
and patches by using differential taint paths. Our evaluation
results demonstrate that FIRE significantly outperforms state-
of-the-art methods for recurring vulnerability detection. It
can detect 298 recurring vulnerabilities, achieving an average
improvement of 31.8% in precision and 39.2% in recall.
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A Simple Vulnerability Features
Given the syntactic features of vulnerabilities, we extracted
177 features belonging to the following four groups from each
code snippet as shown in Table 4.

The first group comprises 42 sensitive APIs, which are re-
lated to memory management, string operations, locks and
concurrency, and system-level functionalities. Improper use
of these APIs for memory allocation, release, and manipu-
lation may lead to issues such as memory leaks and buffer
overflows. Using unsafe string manipulation functions may
result in vulnerabilities like buffer overflows and format string
vulnerabilities. Incorrect use of locks can lead to concurrency
issues like deadlocks and race conditions. Inappropriate use
of system-level operations may result in problems such as per-
mission issues, data inconsistency, and denial-of-service at-
tacks. Hence, our crucial features include APIs that are prone
to unsafe behavior in the C/C++ programming languages.

The second group comprises 20 format strings, which are
critical features in vulnerabilities. Improper input validation
or incorrect use of format strings when using format string
functions (e.g., “printf ”, “sprintf ”, “fprintf ”, etc.) often leads
to potential security vulnerabilities, such as code injection
attacks. Therefore, our crucial features include format strings.

Table 4: Simple Vulnerability Features

sensitive
APIs

alloc, free, mem, copy, new, open, close,
delete, create, release, sizeof, remove, clear,

dequene, enquene, detach, Attach, str,
string, lock, mutex, spin, init, register,

disable, enable, put, get, up, down, inc, dec,
add, sub, set, map, stop, start, prepare,

suspend, resume, connect

format
strings

%d, %i, %o, %u, %x, %X, %f, %F, %e,
%E, %g, %G, %a, %A, %c, %C, %s, %S,

%p, %n

operators

bitand, bitor, xor, not, not_eq, or, or_eq,
and, ++, –, +, -, *, /, %, =, +=, -=, *=, /=,

%=, «=, »=, &=, =̂, |=, &&, ||, !, ==, !=, >=,
<=, >, <, &, |, «, », , ,̂ ->

C/C++
key-

words

asm, auto, alignas, alignof, bool, break,
case, catch, char, char16_t, char32_t, class,

const, const_cast, constexpr, continue,
decltype, default, do, double, dynamic_cast,
else, enum, explicit, export, extern, false,
float, for, friend, goto, if, inline, int, long,
mutable, namespace, noexcept, nullptr,

operator, private, protected, public,
reinterpret_cast, return, short, signed, static,

static_assert, static_cast, struct, switch,
template, this, thread_local, throw, true, try,
typedef, typeid, typename, union, unsigned,

using, virtual, void, volatile, wchar_t,
while, compl, override, final, assert

The third group comprises 42 operators, which are often
directly related to the built-in semantics of programming
languages. These operators can map directly to underlying
computer instructions or the semantic rules of high-level lan-
guages without requiring additional function calls. Addition-
ally, the use of operators may pose potential risks, such as
integer overflow and bitwise operation errors. Therefore, our
crucial features include operators.

The fourth group comprises 73 C/C++ keywords. In C/C++,
keywords are identifiers with special meanings, holding sig-
nificant positions in the syntax of programming languages.
Compilers use keywords to represent the fundamental struc-
tures, control flow, data types, and other fundamental elements
of the code. Thus, our crucial features include keywords.

B Target Software
The target systems are presented in Table 5.

Table 5: Target software
IDX Name Version #Lines Domain
T1 FreeBSD 12.2.0 15,573,896 Operating System
T2 SeaMonkey 2.53.18 8,370,870 Internet App Suite
T3 Turicreate 6.4.1 5,003,684 Machine Learning
T4 MongoDB r4.2.11 3,295,598 Database
T5 Xemu 0.7.118 1,642,871 Emulator
T6 PHP 8.3.2 1,390,193 Scripting Language
T7 OpenCV 4.5.1 1,201,122 Computer Vision
T8 FFmpeg n4.3.2 1,118,186 Multimedia Processing
T9 Xen 4.17.3 527,124 Virtualization
T10 OpenMVG 2.1 490,103 Image Processing
Total - - 38,613,647 -

C Evaluation Environment
We employ the precise and efficient open-source function
parser Ctags [4] to extract functions from vulnerability files,
patch files, and the target software. We use Tree-Sitter [3]
to extract the AST of functions and Joern [58] to generate
taint paths for functions. FIRE is implemented using 2,836
lines of Python code. The experiments are conducted on a
machine with a 3.40 GHz Intel i7-13700k processor and 48
GB of RAM, running on ArchLinux with Linux Zen Kernel.
The memory usage of FIRE is 20 GB. All the advanced
methods compared in the experiments are configured with
settings identical to those reported in their respective original
papers.

D False Positive and False Negative Analysis
for VUDDY and MOVERY

FP Analysis for VUDDY and MOVERY. In addition to false
positives caused by exceeding function granularity, VUDDY
generates significant false positives mainly due to abstrac-
tion. VUDDY detects renaming clones of vulnerability by
replacing all formal parameters, local variables, data types,
and function calls with specific symbols in a function. How-
ever, when a vulnerability is fixed by only changing these
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abstracted parts, the abstracted vulnerable function and the
patched function will have identical hash values. As a re-
sult, VUDDY may incorrectly identify patched functions as
vulnerabilities, leading to a large amount of false positives.
Moreover, excessive abstraction can also cause hash collisions
for relatively simple functions. For example, the patch in List
5 fixes a vulnerability by adding range checks for block device
read or write requests. However, due to excessive abstraction,
the target function in List 6 shares the same hash value as the
vulnerable function in List 5, even though they implement
entirely different functionalities and the target function is not
vulnerable, leading to false positives.

Similar to the second false positive reason in our method,
MOVERY generated a large number of false positives due
to the similarity of vulnerabilities. As the absence of restric-
tions limits the target function to only match the most similar
vulnerability within the same CVE, MOVERY generates sig-
nificantly more false positives for this reason compared to
FIRE. Additionally, similar to VUDDY, MOVERY also ex-
hibits false positives caused by abstraction.

1 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs,
int64_t sector_num, QEMUIOVector *iov, int nb_sectors ,
BlockDriverCompletionFunc *cb, void *opaque) {

2 + if (bdrv_check_request(bs , sector_num, nb_sectors ) )
3 + return NULL;
4 +
5 return bdrv_aio_rw_vector(bs , sector_num, iov , nb_sectors

, cb, opaque, 0) ;
6 }

List 5: A patch snippet for CVE-2008-0928

1 int xmlParseBalancedChunkMemory(xmlDocPtr doc,
xmlSAXHandlerPtr sax, void *user_data, int depth , const
xmlChar *string , xmlNodePtr *lst ) {

2 return xmlParseBalancedChunkMemoryRecover(doc, sax,
user_data, depth, string , lst ,0) ;

3 }

List 6: Function xmlParseBalancedChunkMemory

FN Analysis for VUDDY and MOVERY. The false neg-
atives in VUDDY arise from its use of exact matching. If
a target function undergoes changes that do not affect the
triggering of the vulnerability, VUDDY cannot detect such
vulnerabilities. In other words, VUDDY can only detect exact
clones and renamed clones of vulnerability. As for MOVERY,
since it also uses the same deletion and addition line detection
as ours, the reasons for its false negatives are similar to ours.
Moreover, MOVERY does not count the occurrences of added
lines, leading to more false negatives than FIRE.

E Code Snippets
List 7, List 8, and List 9 are the code snippets used in Section
5.6.

F Multi-Version Vulnerability
We use FIRE to investigate different versions of OpenMVG
(i.e., versions 0.1, 0.5, 0.7, 0.8, 1.0, 1.6, 2.0, and the latest
version 2.1) to analyze vulnerability propagation between
versions. We find that there is a vulnerability that propagates
continuously from version 0.1 to version 2.1. Version 0.8
introduced a large number of vulnerabilities, of which only
one was fixed in version 1.0, and the remaining 38 vulnera-
bilities propagated continuously to version 2.1, where a new
vulnerability was introduced. This phenomenon illustrates
that vulnerability propagation between different versions of
the same software is serious. Vulnerabilities introduced by
a certain version will have a higher probability of propagat-
ing to subsequent versions, which is more serious than the
propagation between different software. Therefore, efficient
vulnerability detection is needed to detect vulnerabilities on
time and prevent further propagation.

1 nl1e = l1e_from_intpte ( val ) ;
2 + if ( !( l1e_get_flags (nl1e) & _PAGE_PRESENT) &&

pv_l1tf_check_l1e(d, nl1e) )
3 + return X86EMUL_RETRY;
4 switch ( ret = get_page_from_l1e(nl1e , d, d) )
5 {
6 default :

List 7: A patch snippet for CVE-2018-3620

1 nl1e = l1e_from_intpte ( val ) ;
2 * if ( !( l1e_get_flags (nl1e) & _PAGE_PRESENT) )
3 * {
4 * if ( pv_l1tf_check_l1e (d, nl1e) )
5 * return X86EMUL_RETRY;
6 * }
7 else
8 {
9 switch ( ret = get_page_from_l1e(nl1e , d, d) )

10 {
11 default :

List 8: A snippet for Function ptwr_emulated_update

1 + if ( buf−>have_grant )
2 + {
3 + __release_grant_for_copy (buf−>domain, buf−>ptr.u. ref ,

buf−>read_only);
4 + buf−>have_grant = 0;
5 + }
6 if ( buf−>have_type )
7 {
8 put_page_type(buf−>page);
9 .....

10 put_page(buf−>page);
11 buf−>page = NULL;
12 }
13 − if ( buf−>have_grant )
14 − {
15 − __release_grant_for_copy (buf−>domain, buf−>ptr.u. ref ,

buf−>read_only);
16 − buf−>have_grant = 0;
17 − }

List 9: A patch snippet for CVE-2017-15597
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